ML Model Evaluation
Model evaluation is an essential part of your ML journey. It allows you to benchmark your model’s performance against an unseen dataset. You can extract chosen metrics, create visualizations, log metadata, and compare the performance of different models. In your MLOps ecosystem, a model evaluation step is crucial for monitoring the evolution of your model or multiple models when your dataset grows or changes over time and when you retrain your model.
Beam provides support for running model evaluation on a TensorFlow model directly inside your pipeline by using a PTransform called ExtractEvaluateAndWriteResults. This PTransform is part of TensorFlow Model Analysis (TFMA), a library for performing model evaluation across different slices of data. TFMA performs its computations in a distributed manner over large amounts of data using Beam, allowing you to evaluate models on large amounts of data in a distributed manner. These metrics are compared over slices of data and visualized in Jupyter or Colab notebooks.
TFMA Example
Here is an example of how you can use ExtractEvaluateAndWriteResults to evaluate a linear regression model.
First, define the configuration to specify the model information, the chosen metrics, and optionally the data slices.
from google.protobuf import text_format
# Define the TFMA evaluation configuration
eval_config = text_format.Parse("""
## Model information
model_specs {
# For keras and serving models, you need to add a `label_key`.
label_key: "output"
}
## This post-training metric information is merged with any built-in
## metrics from training
metrics_specs {
metrics { class_name: "ExampleCount" }
metrics { class_name: "MeanAbsoluteError" }
metrics { class_name: "MeanSquaredError" }
metrics { class_name: "MeanPrediction" }
}
slicing_specs {}
""", tfma.EvalConfig())
Then, create a pipeline to run the evaluation:
from tfx_bsl.public import tfxio
eval_shared_model = tfma.default_eval_shared_model(
eval_saved_model_path='model_path', eval_config=eval_config)
tfx_io = tfxio.TFExampleRecord(
file_pattern='tfrecords_path',
raw_record_column_name=tfma.ARROW_INPUT_COLUMN)
# Run evaluation
with beam.Pipeline() as pipeline:
_ = (
pipeline
| 'ReadData' >> tfx_io.BeamSource()
| 'EvalModel' >> tfma.ExtractEvaluateAndWriteResults(
eval_shared_model=eval_shared_model,
eval_config=eval_config,
output_path='output_path'))
This pipeline saves the results, including the config file, metrics, plots, and so on, to a chosen output_path.
TFMA End-to-end Example
For a full end-to-end example of model evaluation in TFMA on Beam, see the tfma_beam notebook.
This example shows the creation of tfrecords from an open source dataset, the training of a model, and the evaluation in Beam.
Last updated on 2025/01/22
Have you found everything you were looking for?
Was it all useful and clear? Is there anything that you would like to change? Let us know!