Test Your Pipeline
Testing your pipeline is a particularly important step in developing an effective data processing solution. The indirect nature of the Beam model, in which your user code constructs a pipeline graph to be executed remotely, can make debugging failed runs a non-trivial task. Often it is faster and simpler to perform local unit testing on your pipeline code than to debug a pipeline’s remote execution.
Before running your pipeline on the runner of your choice, unit testing your pipeline code locally is often the best way to identify and fix bugs in your pipeline code. Unit testing your pipeline locally also allows you to use your familiar/favorite local debugging tools.
You can use DirectRunner, a local runner helpful for testing and local development.
After you test your pipeline using the DirectRunner
, you can use the runner of your choice to test on a small scale. For example, use the Flink runner with a local or remote Flink cluster.
The Beam SDKs provide a number of ways to unit test your pipeline code, from the lowest to the highest levels. From the lowest to the highest level, these are:
- You can test the individual functions used in your pipeline.
- You can test an entire Transform as a unit.
- You can perform an end-to-end test for an entire pipeline.
To support unit testing, the Beam SDK for Java provides a number of test classes in the testing package. You can use these tests as references and guides.
Testing Transforms
To test a transform you’ve created, you can use the following pattern:
- Create a
TestPipeline
. - Create some static, known test input data.
- Use the
Create
transform to create aPCollection
of your input data. Apply
your transform to the inputPCollection
and save the resulting outputPCollection
.- Use
PAssert
and its subclasses to verify that the outputPCollection
contains the elements that you expect.
TestPipeline
TestPipeline is a class included in the Beam Java SDK specifically for testing transforms.
TestPipeline is a class included in the Beam Python SDK specifically for testing transforms.
For tests, useTestPipeline
in place of Pipeline
when you create the pipeline object. Unlike Pipeline.create
, TestPipeline.create
handles setting PipelineOptions
internally.You create a TestPipeline
as follows:
Note: Read about testing unbounded pipelines in Beam in this blog post.
Using the Create Transform
You can use the Create
transform to create a PCollection
out of a standard in-memory collection class, such as Java or Python List
. See Creating a PCollection for more information.
PAssert
PAssert is a class included in the Beam Java SDK that is an assertion on the contents of a PCollection
. You can use PAssert
to verify that a PCollection
contains a specific set of expected elements.
For a given PCollection
, you can use PAssert
to verify the contents as follows:
Any Java code that uses PAssert
must link in JUnit
and Hamcrest
. If you’re using Maven, you can link in Hamcrest
by adding the following dependency to your project’s pom.xml
file:
For more information on how these classes work, see the org.apache.beam.sdk.testing package documentation.
An Example Test for a Composite Transform
The following code shows a complete test for a composite transform. The test applies the Count
transform to an input PCollection
of String
elements. The test uses the Create
transform to create the input PCollection
from a List<String>
.
public class CountTest {
// Our static input data, which will make up the initial PCollection.
static final String[] WORDS_ARRAY = new String[] {
"hi", "there", "hi", "hi", "sue", "bob",
"hi", "sue", "", "", "ZOW", "bob", ""};
static final List<String> WORDS = Arrays.asList(WORDS_ARRAY);
public void testCount() {
// Create a test pipeline.
Pipeline p = TestPipeline.create();
// Create an input PCollection.
PCollection<String> input = p.apply(Create.of(WORDS));
// Apply the Count transform under test.
PCollection<KV<String, Long>> output =
input.apply(Count.<String>perElement());
// Assert on the results.
PAssert.that(output)
.containsInAnyOrder(
KV.of("hi", 4L),
KV.of("there", 1L),
KV.of("sue", 2L),
KV.of("bob", 2L),
KV.of("", 3L),
KV.of("ZOW", 1L));
// Run the pipeline.
p.run();
}
}
import unittest
import apache_beam as beam
from apache_beam.testing.test_pipeline import TestPipeline
from apache_beam.testing.util import assert_that
from apache_beam.testing.util import equal_to
class CountTest(unittest.TestCase):
def test_count(self):
# Our static input data, which will make up the initial PCollection.
WORDS = [
"hi", "there", "hi", "hi", "sue", "bob",
"hi", "sue", "", "", "ZOW", "bob", ""
]
# Create a test pipeline.
with TestPipeline() as p:
# Create an input PCollection.
input = p | beam.Create(WORDS)
# Apply the Count transform under test.
output = input | beam.combiners.Count.PerElement()
# Assert on the results.
assert_that(
output,
equal_to([
("hi", 4),
("there", 1),
("sue", 2),
("bob", 2),
("", 3),
("ZOW", 1)]))
# The pipeline will run and verify the results.
Testing a Pipeline End-to-End
You can use the test classes in the Beam SDKs (such as TestPipeline
and PAssert
in the Beam SDK for Java) to test an entire pipeline end-to-end. Typically, to test an entire pipeline, you do the following:
- For every source of input data to your pipeline, create some known static test input data.
- Create some static test output data that matches what you expect in your pipeline’s final output
PCollection
(s). - Create a
TestPipeline
in place of the standardPipeline.create
. - In place of your pipeline’s
Read
transform(s), use theCreate
transform to create one or morePCollection
s from your static input data. - Apply your pipeline’s transforms.
- In place of your pipeline’s
Write
transform(s), usePAssert
to verify that the contents of the finalPCollection
s your pipeline produces match the expected values in your static output data.
Testing the WordCount Pipeline
The following example code shows how one might test the WordCount example pipeline. WordCount
usually reads lines from a text file for input data; instead, the test creates a List<String>
containing some text lines and uses a Create
transform to create an initial PCollection
.
WordCount
’s final transform (from the composite transform CountWords
) produces a PCollection<String>
of formatted word counts suitable for printing. Rather than write that PCollection
to an output text file, our test pipeline uses PAssert
to verify that the elements of the PCollection
match those of a static String
array containing our expected output data.
public class WordCountTest {
// Our static input data, which will comprise the initial PCollection.
static final String[] WORDS_ARRAY = new String[] {
"hi there", "hi", "hi sue bob",
"hi sue", "", "bob hi"};
static final List<String> WORDS = Arrays.asList(WORDS_ARRAY);
// Our static output data, which is the expected data that the final PCollection must match.
static final String[] COUNTS_ARRAY = new String[] {
"hi: 5", "there: 1", "sue: 2", "bob: 2"};
// Example test that tests the pipeline's transforms.
public void testCountWords() throws Exception {
Pipeline p = TestPipeline.create();
// Create a PCollection from the WORDS static input data.
PCollection<String> input = p.apply(Create.of(WORDS));
// Run ALL the pipeline's transforms (in this case, the CountWords composite transform).
PCollection<String> output = input.apply(new CountWords());
// Assert that the output PCollection matches the COUNTS_ARRAY known static output data.
PAssert.that(output).containsInAnyOrder(COUNTS_ARRAY);
// Run the pipeline.
p.run();
}
}
import unittest
import apache_beam as beam
from apache_beam.testing.test_pipeline import TestPipeline
from apache_beam.testing.util import assert_that
from apache_beam.testing.util import equal_to
class CountWords(beam.PTransform):
# CountWords transform omitted for conciseness.
# Full transform can be found here - https://github.com/apache/beam/blob/master/sdks/python/apache_beam/examples/wordcount_debugging.py
class WordCountTest(unittest.TestCase):
# Our input data, which will make up the initial PCollection.
WORDS = [
"hi", "there", "hi", "hi", "sue", "bob",
"hi", "sue", "", "", "ZOW", "bob", ""
]
# Our output data, which is the expected data that the final PCollection must match.
EXPECTED_COUNTS = ["hi: 5", "there: 1", "sue: 2", "bob: 2"]
# Example test that tests the pipeline's transforms.
def test_count_words(self):
with TestPipeline() as p:
# Create a PCollection from the WORDS static input data.
input = p | beam.Create(WORDS)
# Run ALL the pipeline's transforms (in this case, the CountWords composite transform).
output = input | CountWords()
# Assert that the output PCollection matches the EXPECTED_COUNTS data.
assert_that(output, equal_to(EXPECTED_COUNTS), label='CheckOutput')
# The pipeline will run and verify the results.
Last updated on 2024/09/17
Have you found everything you were looking for?
Was it all useful and clear? Is there anything that you would like to change? Let us know!