#
# Licensed to the Apache Software Foundation (ASF) under one or more
# contributor license agreements. See the NOTICE file distributed with
# this work for additional information regarding copyright ownership.
# The ASF licenses this file to You under the Apache License, Version 2.0
# (the "License"); you may not use this file except in compliance with
# the License. You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
"""EvaluationContext tracks global state, triggers and watermarks."""
from __future__ import absolute_import
import collections
import threading
from apache_beam.transforms import sideinputs
from apache_beam.runners.direct.clock import Clock
from apache_beam.runners.direct.watermark_manager import WatermarkManager
from apache_beam.runners.direct.executor import TransformExecutor
from apache_beam.runners.direct.direct_metrics import DirectMetrics
from apache_beam.utils import counters
class _ExecutionContext(object):
def __init__(self, watermarks, existing_state):
self._watermarks = watermarks
self._existing_state = existing_state
@property
def watermarks(self):
return self._watermarks
@property
def existing_state(self):
return self._existing_state
class _SideInputView(object):
def __init__(self, view):
self._view = view
self.callable_queue = collections.deque()
self.elements = []
self.value = None
self.has_result = False
class _SideInputsContainer(object):
"""An in-process container for side inputs.
It provides methods for blocking until a side-input is available and writing
to a side input.
"""
def __init__(self, views):
self._lock = threading.Lock()
self._views = {}
for view in views:
self._views[view] = _SideInputView(view)
def get_value_or_schedule_after_output(self, side_input, task):
with self._lock:
view = self._views[side_input]
if not view.has_result:
view.callable_queue.append(task)
task.blocked = True
return (view.has_result, view.value)
def add_values(self, side_input, values):
with self._lock:
view = self._views[side_input]
assert not view.has_result
view.elements.extend(values)
def finalize_value_and_get_tasks(self, side_input):
with self._lock:
view = self._views[side_input]
assert not view.has_result
assert view.value is None
assert view.callable_queue is not None
view.value = self._pvalue_to_value(side_input, view.elements)
view.elements = None
result = tuple(view.callable_queue)
for task in result:
task.blocked = False
view.callable_queue = None
view.has_result = True
return result
def _pvalue_to_value(self, view, values):
"""Given a side input view, returns the associated value in requested form.
Args:
view: SideInput for the requested side input.
values: Iterable values associated with the side input.
Returns:
The side input in its requested form.
Raises:
ValueError: If values cannot be converted into the requested form.
"""
return sideinputs.SideInputMap(type(view), view._view_options(), values)
[docs]class EvaluationContext(object):
"""Evaluation context with the global state information of the pipeline.
The evaluation context for a specific pipeline being executed by the
DirectRunner. Contains state shared within the execution across all
transforms.
EvaluationContext contains shared state for an execution of the
DirectRunner that can be used while evaluating a PTransform. This
consists of views into underlying state and watermark implementations, access
to read and write side inputs, and constructing counter sets and
execution contexts. This includes executing callbacks asynchronously when
state changes to the appropriate point (e.g. when a side input is
requested and known to be empty).
EvaluationContext also handles results by committing finalizing
bundles based on the current global state and updating the global state
appropriately. This includes updating the per-(step,key) state, updating
global watermarks, and executing any callbacks that can be executed.
"""
def __init__(self, pipeline_options, bundle_factory, root_transforms,
value_to_consumers, step_names, views):
self.pipeline_options = pipeline_options
self._bundle_factory = bundle_factory
self._root_transforms = root_transforms
self._value_to_consumers = value_to_consumers
self._step_names = step_names
self.views = views
self._pcollection_to_views = collections.defaultdict(list)
for view in views:
self._pcollection_to_views[view.pvalue].append(view)
# AppliedPTransform -> Evaluator specific state objects
self._application_state_interals = {}
self._watermark_manager = WatermarkManager(
Clock(), root_transforms, value_to_consumers)
self._side_inputs_container = _SideInputsContainer(views)
self._pending_unblocked_tasks = []
self._counter_factory = counters.CounterFactory()
self._cache = None
self._metrics = DirectMetrics()
self._lock = threading.Lock()
[docs] def use_pvalue_cache(self, cache):
assert not self._cache
self._cache = cache
[docs] def metrics(self):
# TODO. Should this be made a @property?
return self._metrics
@property
def has_cache(self):
return self._cache is not None
[docs] def append_to_cache(self, applied_ptransform, tag, elements):
with self._lock:
assert self._cache
self._cache.append(applied_ptransform, tag, elements)
[docs] def is_root_transform(self, applied_ptransform):
return applied_ptransform in self._root_transforms
[docs] def handle_result(
self, completed_bundle, completed_timers, result):
"""Handle the provided result produced after evaluating the input bundle.
Handle the provided TransformResult, produced after evaluating
the provided committed bundle (potentially None, if the result of a root
PTransform).
The result is the output of running the transform contained in the
TransformResult on the contents of the provided bundle.
Args:
completed_bundle: the bundle that was processed to produce the result.
completed_timers: the timers that were delivered to produce the
completed_bundle.
result: the TransformResult of evaluating the input bundle
Returns:
the committed bundles contained within the handled result.
"""
with self._lock:
committed_bundles = self._commit_bundles(
result.uncommitted_output_bundles)
self._watermark_manager.update_watermarks(
completed_bundle, result.transform, completed_timers,
committed_bundles, result.watermark_hold)
self._metrics.commit_logical(completed_bundle,
result.logical_metric_updates)
# If the result is for a view, update side inputs container.
if (result.uncommitted_output_bundles
and result.uncommitted_output_bundles[0].pcollection
in self._pcollection_to_views):
for view in self._pcollection_to_views[
result.uncommitted_output_bundles[0].pcollection]:
for committed_bundle in committed_bundles:
# side_input must be materialized.
self._side_inputs_container.add_values(
view,
committed_bundle.get_elements_iterable(make_copy=True))
if (self.get_execution_context(result.transform)
.watermarks.input_watermark
== WatermarkManager.WATERMARK_POS_INF):
self._pending_unblocked_tasks.extend(
self._side_inputs_container.finalize_value_and_get_tasks(view))
if result.counters:
for counter in result.counters:
merged_counter = self._counter_factory.get_counter(
counter.name, counter.combine_fn)
merged_counter.accumulator.merge([counter.accumulator])
self._application_state_interals[result.transform] = result.state
return committed_bundles
[docs] def get_aggregator_values(self, aggregator_or_name):
return self._counter_factory.get_aggregator_values(aggregator_or_name)
[docs] def schedule_pending_unblocked_tasks(self, executor_service):
if self._pending_unblocked_tasks:
with self._lock:
for task in self._pending_unblocked_tasks:
executor_service.submit(task)
self._pending_unblocked_tasks = []
def _commit_bundles(self, uncommitted_bundles):
"""Commits bundles and returns a immutable set of committed bundles."""
for in_progress_bundle in uncommitted_bundles:
producing_applied_ptransform = in_progress_bundle.pcollection.producer
watermarks = self._watermark_manager.get_watermarks(
producing_applied_ptransform)
in_progress_bundle.commit(watermarks.synchronized_processing_output_time)
return tuple(uncommitted_bundles)
[docs] def get_execution_context(self, applied_ptransform):
return _ExecutionContext(
self._watermark_manager.get_watermarks(applied_ptransform),
self._application_state_interals.get(applied_ptransform))
[docs] def create_bundle(self, output_pcollection):
"""Create an uncommitted bundle for the specified PCollection."""
return self._bundle_factory.create_bundle(output_pcollection)
[docs] def create_empty_committed_bundle(self, output_pcollection):
"""Create empty bundle useful for triggering evaluation."""
return self._bundle_factory.create_empty_committed_bundle(
output_pcollection)
[docs] def is_done(self, transform=None):
"""Checks completion of a step or the pipeline.
Args:
transform: AppliedPTransform to check for completion.
Returns:
True if the step will not produce additional output. If transform is None
returns true if all steps are done.
"""
if transform:
return self._is_transform_done(transform)
for applied_ptransform in self._step_names:
if not self._is_transform_done(applied_ptransform):
return False
return True
def _is_transform_done(self, transform):
tw = self._watermark_manager.get_watermarks(transform)
return tw.output_watermark == WatermarkManager.WATERMARK_POS_INF
[docs] def get_value_or_schedule_after_output(self, side_input, task):
assert isinstance(task, TransformExecutor)
return self._side_inputs_container.get_value_or_schedule_after_output(
side_input, task)