Source code for apache_beam.transforms.core

#
# Licensed to the Apache Software Foundation (ASF) under one or more
# contributor license agreements.  See the NOTICE file distributed with
# this work for additional information regarding copyright ownership.
# The ASF licenses this file to You under the Apache License, Version 2.0
# (the "License"); you may not use this file except in compliance with
# the License.  You may obtain a copy of the License at
#
#    http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#

"""Core PTransform subclasses, such as FlatMap, GroupByKey, and Map."""

from __future__ import absolute_import

import copy
import inspect
import types

from apache_beam import pvalue
from apache_beam import typehints
from apache_beam.coders import typecoders
from apache_beam.internal import util
from apache_beam.runners.api import beam_runner_api_pb2
from apache_beam.transforms import ptransform
from apache_beam.transforms.display import DisplayDataItem
from apache_beam.transforms.display import HasDisplayData
from apache_beam.transforms.ptransform import PTransform
from apache_beam.transforms.ptransform import PTransformWithSideInputs
from apache_beam.transforms.window import MIN_TIMESTAMP
from apache_beam.transforms.window import TimestampCombiner
from apache_beam.transforms.window import WindowedValue
from apache_beam.transforms.window import TimestampedValue
from apache_beam.transforms.window import GlobalWindows
from apache_beam.transforms.window import WindowFn
from apache_beam.typehints import Any
from apache_beam.typehints import Iterable
from apache_beam.typehints import KV
from apache_beam.typehints import trivial_inference
from apache_beam.typehints import Union
from apache_beam.typehints.decorators import get_type_hints
from apache_beam.typehints.decorators import TypeCheckError
from apache_beam.typehints.decorators import WithTypeHints
from apache_beam.typehints.trivial_inference import element_type
from apache_beam.typehints.typehints import is_consistent_with
from apache_beam.utils import urns
from apache_beam.options.pipeline_options import TypeOptions


__all__ = [
    'DoFn',
    'CombineFn',
    'PartitionFn',
    'ParDo',
    'FlatMap',
    'Map',
    'Filter',
    'CombineGlobally',
    'CombinePerKey',
    'CombineValues',
    'GroupByKey',
    'Partition',
    'Windowing',
    'WindowInto',
    'Flatten',
    'Create',
    ]


# Type variables
T = typehints.TypeVariable('T')
K = typehints.TypeVariable('K')
V = typehints.TypeVariable('V')


class DoFnContext(object):
  """A context available to all methods of DoFn instance."""
  pass


class DoFnProcessContext(DoFnContext):
  """A processing context passed to DoFn process() during execution.

  Most importantly, a DoFn.process method will access context.element
  to get the element it is supposed to process.

  Attributes:
    label: label of the ParDo whose element is being processed.
    element: element being processed
      (in process method only; always None in start_bundle and finish_bundle)
    timestamp: timestamp of the element
      (in process method only; always None in start_bundle and finish_bundle)
    windows: windows of the element
      (in process method only; always None in start_bundle and finish_bundle)
    state: a DoFnState object, which holds the runner's internal state
      for this element.
      Not used by the pipeline code.
  """

  def __init__(self, label, element=None, state=None):
    """Initialize a processing context object with an element and state.

    The element represents one value from a PCollection that will be accessed
    by a DoFn object during pipeline execution, and state is an arbitrary object
    where counters and other pipeline state information can be passed in.

    DoFnProcessContext objects are also used as inputs to PartitionFn instances.

    Args:
      label: label of the PCollection whose element is being processed.
      element: element of a PCollection being processed using this context.
      state: a DoFnState object with state to be passed in to the DoFn object.
    """
    self.label = label
    self.state = state
    if element is not None:
      self.set_element(element)

  def set_element(self, windowed_value):
    if windowed_value is None:
      # Not currently processing an element.
      if hasattr(self, 'element'):
        del self.element
        del self.timestamp
        del self.windows
    else:
      self.element = windowed_value.value
      self.timestamp = windowed_value.timestamp
      self.windows = windowed_value.windows


[docs]class DoFn(WithTypeHints, HasDisplayData): """A function object used by a transform with custom processing. The ParDo transform is such a transform. The ParDo.apply method will take an object of type DoFn and apply it to all elements of a PCollection object. In order to have concrete DoFn objects one has to subclass from DoFn and define the desired behavior (start_bundle/finish_bundle and process) or wrap a callable object using the CallableWrapperDoFn class. """ ElementParam = 'ElementParam' SideInputParam = 'SideInputParam' TimestampParam = 'TimestampParam' WindowParam = 'WindowParam' DoFnParams = [ElementParam, SideInputParam, TimestampParam, WindowParam] @staticmethod
[docs] def from_callable(fn): return CallableWrapperDoFn(fn)
[docs] def default_label(self): return self.__class__.__name__
[docs] def process(self, element, *args, **kwargs): """Called for each element of a pipeline. The default arguments are needed for the DoFnRunner to be able to pass the parameters correctly. Args: element: The element to be processed *args: side inputs **kwargs: keyword side inputs """ raise NotImplementedError
[docs] def start_bundle(self): """Called before a bundle of elements is processed on a worker. Elements to be processed are split into bundles and distributed to workers. Before a worker calls process() on the first element of its bundle, it calls this method. """ pass
[docs] def finish_bundle(self): """Called after a bundle of elements is processed on a worker. """ pass
[docs] def get_function_arguments(self, func): """Return the function arguments based on the name provided. If they have a _inspect_function attached to the class then use that otherwise default to the python inspect library. """ func_name = '_inspect_%s' % func if hasattr(self, func_name): f = getattr(self, func_name) return f() f = getattr(self, func) return inspect.getargspec(f)
# TODO(sourabhbajaj): Do we want to remove the responsiblity of these from # the DoFn or maybe the runner
[docs] def infer_output_type(self, input_type): # TODO(robertwb): Side inputs types. # TODO(robertwb): Assert compatibility with input type hint? return self._strip_output_annotations( trivial_inference.infer_return_type(self.process, [input_type]))
def _strip_output_annotations(self, type_hint): annotations = (TimestampedValue, WindowedValue, pvalue.TaggedOutput) # TODO(robertwb): These should be parameterized types that the # type inferencer understands. if (type_hint in annotations or trivial_inference.element_type(type_hint) in annotations): return Any return type_hint def _process_argspec_fn(self): """Returns the Python callable that will eventually be invoked. This should ideally be the user-level function that is called with the main and (if any) side inputs, and is used to relate the type hint parameters with the input parameters (e.g., by argument name). """ return self.process
[docs] def is_process_bounded(self): """Checks if an object is a bound method on an instance.""" if not isinstance(self.process, types.MethodType): return False # Not a method if self.process.im_self is None: return False # Method is not bound if issubclass(self.process.im_class, type) or \ self.process.im_class is types.ClassType: return False # Method is a classmethod return True
def _fn_takes_side_inputs(fn): try: argspec = inspect.getargspec(fn) except TypeError: # We can't tell; maybe it does. return True is_bound = isinstance(fn, types.MethodType) and fn.im_self is not None return len(argspec.args) > 1 + is_bound or argspec.varargs or argspec.keywords class CallableWrapperDoFn(DoFn): """For internal use only; no backwards-compatibility guarantees. A DoFn (function) object wrapping a callable object. The purpose of this class is to conveniently wrap simple functions and use them in transforms. """ def __init__(self, fn): """Initializes a CallableWrapperDoFn object wrapping a callable. Args: fn: A callable object. Raises: TypeError: if fn parameter is not a callable type. """ if not callable(fn): raise TypeError('Expected a callable object instead of: %r' % fn) self._fn = fn if isinstance(fn, ( types.BuiltinFunctionType, types.MethodType, types.FunctionType)): self.process = fn else: # For cases such as set / list where fn is callable but not a function self.process = lambda element: fn(element) super(CallableWrapperDoFn, self).__init__() def display_data(self): # If the callable has a name, then it's likely a function, and # we show its name. # Otherwise, it might be an instance of a callable class. We # show its class. display_data_value = (self._fn.__name__ if hasattr(self._fn, '__name__') else self._fn.__class__) return {'fn': DisplayDataItem(display_data_value, label='Transform Function')} def __repr__(self): return 'CallableWrapperDoFn(%s)' % self._fn def default_type_hints(self): type_hints = get_type_hints(self._fn) # If the fn was a DoFn annotated with a type-hint that hinted a return # type compatible with Iterable[Any], then we strip off the outer # container type due to the 'flatten' portion of FlatMap. # TODO(robertwb): Should we require an iterable specification for FlatMap? if type_hints.output_types: args, kwargs = type_hints.output_types if len(args) == 1 and is_consistent_with(args[0], Iterable[Any]): type_hints = type_hints.copy() type_hints.set_output_types(element_type(args[0]), **kwargs) return type_hints def infer_output_type(self, input_type): return self._strip_output_annotations( trivial_inference.infer_return_type(self._fn, [input_type])) def _process_argspec_fn(self): return getattr(self._fn, '_argspec_fn', self._fn)
[docs]class CombineFn(WithTypeHints, HasDisplayData): """A function object used by a Combine transform with custom processing. A CombineFn specifies how multiple values in all or part of a PCollection can be merged into a single value---essentially providing the same kind of information as the arguments to the Python "reduce" builtin (except for the input argument, which is an instance of CombineFnProcessContext). The combining process proceeds as follows: 1. Input values are partitioned into one or more batches. 2. For each batch, the create_accumulator method is invoked to create a fresh initial "accumulator" value representing the combination of zero values. 3. For each input value in the batch, the add_input method is invoked to combine more values with the accumulator for that batch. 4. The merge_accumulators method is invoked to combine accumulators from separate batches into a single combined output accumulator value, once all of the accumulators have had all the input value in their batches added to them. This operation is invoked repeatedly, until there is only one accumulator value left. 5. The extract_output operation is invoked on the final accumulator to get the output value. """
[docs] def default_label(self): return self.__class__.__name__
[docs] def create_accumulator(self, *args, **kwargs): """Return a fresh, empty accumulator for the combine operation. Args: *args: Additional arguments and side inputs. **kwargs: Additional arguments and side inputs. """ raise NotImplementedError(str(self))
[docs] def add_input(self, accumulator, element, *args, **kwargs): """Return result of folding element into accumulator. CombineFn implementors must override add_input. Args: accumulator: the current accumulator element: the element to add *args: Additional arguments and side inputs. **kwargs: Additional arguments and side inputs. """ raise NotImplementedError(str(self))
[docs] def add_inputs(self, accumulator, elements, *args, **kwargs): """Returns the result of folding each element in elements into accumulator. This is provided in case the implementation affords more efficient bulk addition of elements. The default implementation simply loops over the inputs invoking add_input for each one. Args: accumulator: the current accumulator elements: the elements to add *args: Additional arguments and side inputs. **kwargs: Additional arguments and side inputs. """ for element in elements: accumulator = self.add_input(accumulator, element, *args, **kwargs) return accumulator
[docs] def merge_accumulators(self, accumulators, *args, **kwargs): """Returns the result of merging several accumulators to a single accumulator value. Args: accumulators: the accumulators to merge *args: Additional arguments and side inputs. **kwargs: Additional arguments and side inputs. """ raise NotImplementedError(str(self))
[docs] def extract_output(self, accumulator, *args, **kwargs): """Return result of converting accumulator into the output value. Args: accumulator: the final accumulator value computed by this CombineFn for the entire input key or PCollection. *args: Additional arguments and side inputs. **kwargs: Additional arguments and side inputs. """ raise NotImplementedError(str(self))
[docs] def apply(self, elements, *args, **kwargs): """Returns result of applying this CombineFn to the input values. Args: elements: the set of values to combine. *args: Additional arguments and side inputs. **kwargs: Additional arguments and side inputs. """ return self.extract_output( self.add_inputs( self.create_accumulator(*args, **kwargs), elements, *args, **kwargs), *args, **kwargs)
[docs] def for_input_type(self, input_type): """Returns a specialized implementation of self, if it exists. Otherwise, returns self. Args: input_type: the type of input elements. """ return self
@staticmethod
[docs] def from_callable(fn): return CallableWrapperCombineFn(fn)
@staticmethod
[docs] def maybe_from_callable(fn): return fn if isinstance(fn, CombineFn) else CallableWrapperCombineFn(fn)
class CallableWrapperCombineFn(CombineFn): """For internal use only; no backwards-compatibility guarantees. A CombineFn (function) object wrapping a callable object. The purpose of this class is to conveniently wrap simple functions and use them in Combine transforms. """ _EMPTY = object() def __init__(self, fn): """Initializes a CallableFn object wrapping a callable. Args: fn: A callable object that reduces elements of an iterable to a single value (like the builtins sum and max). This callable must be capable of receiving the kind of values it generates as output in its input, and for best results, its operation must be commutative and associative. Raises: TypeError: if fn parameter is not a callable type. """ if not callable(fn): raise TypeError('Expected a callable object instead of: %r' % fn) super(CallableWrapperCombineFn, self).__init__() self._fn = fn def display_data(self): return {'fn_dd': self._fn} def __repr__(self): return "CallableWrapperCombineFn(%s)" % self._fn def create_accumulator(self, *args, **kwargs): return self._EMPTY def add_input(self, accumulator, element, *args, **kwargs): if accumulator is self._EMPTY: return element return self._fn([accumulator, element], *args, **kwargs) def add_inputs(self, accumulator, elements, *args, **kwargs): if accumulator is self._EMPTY: return self._fn(elements, *args, **kwargs) elif isinstance(elements, (list, tuple)): return self._fn([accumulator] + list(elements), *args, **kwargs) def union(): yield accumulator for e in elements: yield e return self._fn(union(), *args, **kwargs) def merge_accumulators(self, accumulators, *args, **kwargs): # It's (weakly) assumed that self._fn is associative. return self._fn(accumulators, *args, **kwargs) def extract_output(self, accumulator, *args, **kwargs): return self._fn(()) if accumulator is self._EMPTY else accumulator def default_type_hints(self): fn_hints = get_type_hints(self._fn) if fn_hints.input_types is None: return fn_hints else: # fn(Iterable[V]) -> V becomes CombineFn(V) -> V input_args, input_kwargs = fn_hints.input_types if not input_args: if len(input_kwargs) == 1: input_args, input_kwargs = tuple(input_kwargs.values()), {} else: raise TypeError('Combiner input type must be specified positionally.') if not is_consistent_with(input_args[0], Iterable[Any]): raise TypeCheckError( 'All functions for a Combine PTransform must accept a ' 'single argument compatible with: Iterable[Any]. ' 'Instead a function with input type: %s was received.' % input_args[0]) input_args = (element_type(input_args[0]),) + input_args[1:] # TODO(robertwb): Assert output type is consistent with input type? hints = fn_hints.copy() hints.set_input_types(*input_args, **input_kwargs) return hints def for_input_type(self, input_type): # Avoid circular imports. from apache_beam.transforms import cy_combiners if self._fn is any: return cy_combiners.AnyCombineFn() elif self._fn is all: return cy_combiners.AllCombineFn() else: known_types = { (sum, int): cy_combiners.SumInt64Fn(), (min, int): cy_combiners.MinInt64Fn(), (max, int): cy_combiners.MaxInt64Fn(), (sum, float): cy_combiners.SumFloatFn(), (min, float): cy_combiners.MinFloatFn(), (max, float): cy_combiners.MaxFloatFn(), } return known_types.get((self._fn, input_type), self)
[docs]class PartitionFn(WithTypeHints): """A function object used by a Partition transform. A PartitionFn specifies how individual values in a PCollection will be placed into separate partitions, indexed by an integer. """
[docs] def default_label(self): return self.__class__.__name__
[docs] def partition_for(self, element, num_partitions, *args, **kwargs): """Specify which partition will receive this element. Args: element: An element of the input PCollection. num_partitions: Number of partitions, i.e., output PCollections. *args: optional parameters and side inputs. **kwargs: optional parameters and side inputs. Returns: An integer in [0, num_partitions). """ pass
class CallableWrapperPartitionFn(PartitionFn): """For internal use only; no backwards-compatibility guarantees. A PartitionFn object wrapping a callable object. Instances of this class wrap simple functions for use in Partition operations. """ def __init__(self, fn): """Initializes a PartitionFn object wrapping a callable. Args: fn: A callable object, which should accept the following arguments: element - element to assign to a partition. num_partitions - number of output partitions. and may accept additional arguments and side inputs. Raises: TypeError: if fn is not a callable type. """ if not callable(fn): raise TypeError('Expected a callable object instead of: %r' % fn) self._fn = fn def partition_for(self, element, num_partitions, *args, **kwargs): return self._fn(element, num_partitions, *args, **kwargs)
[docs]class ParDo(PTransformWithSideInputs): """A ParDo transform. Processes an input PCollection by applying a DoFn to each element and returning the accumulated results into an output PCollection. The type of the elements is not fixed as long as the DoFn can deal with it. In reality the type is restrained to some extent because the elements sometimes must be persisted to external storage. See the expand() method comments for a detailed description of all possible arguments. Note that the DoFn must return an iterable for each element of the input PCollection. An easy way to do this is to use the yield keyword in the process method. Args: pcoll: a PCollection to be processed. fn: a DoFn object to be applied to each element of pcoll argument. *args: positional arguments passed to the dofn object. **kwargs: keyword arguments passed to the dofn object. Note that the positional and keyword arguments will be processed in order to detect PCollections that will be computed as side inputs to the transform. During pipeline execution whenever the DoFn object gets executed (its apply() method gets called) the PCollection arguments will be replaced by values from the PCollection in the exact positions where they appear in the argument lists. """ def __init__(self, fn, *args, **kwargs): super(ParDo, self).__init__(fn, *args, **kwargs) # TODO(robertwb): Change all uses of the dofn attribute to use fn instead. self.dofn = self.fn self.output_tags = set() if not isinstance(self.fn, DoFn): raise TypeError('ParDo must be called with a DoFn instance.') # Validate the DoFn by creating a DoFnSignature from apache_beam.runners.common import DoFnSignature DoFnSignature(self.fn)
[docs] def default_type_hints(self): return self.fn.get_type_hints()
[docs] def infer_output_type(self, input_type): return trivial_inference.element_type( self.fn.infer_output_type(input_type))
[docs] def make_fn(self, fn): if isinstance(fn, DoFn): return fn return CallableWrapperDoFn(fn)
def _process_argspec_fn(self): return self.fn._process_argspec_fn()
[docs] def display_data(self): return {'fn': DisplayDataItem(self.fn.__class__, label='Transform Function'), 'fn_dd': self.fn}
[docs] def expand(self, pcoll): return pvalue.PCollection(pcoll.pipeline)
[docs] def with_outputs(self, *tags, **main_kw): """Returns a tagged tuple allowing access to the outputs of a ParDo. The resulting object supports access to the PCollection associated with a tag (e.g., o.tag, o[tag]) and iterating over the available tags (e.g., for tag in o: ...). Args: *tags: if non-empty, list of valid tags. If a list of valid tags is given, it will be an error to use an undeclared tag later in the pipeline. **main_kw: dictionary empty or with one key 'main' defining the tag to be used for the main output (which will not have a tag associated with it). Returns: An object of type DoOutputsTuple that bundles together all the outputs of a ParDo transform and allows accessing the individual PCollections for each output using an object.tag syntax. Raises: TypeError: if the self object is not a PCollection that is the result of a ParDo transform. ValueError: if main_kw contains any key other than 'main'. """ main_tag = main_kw.pop('main', None) if main_kw: raise ValueError('Unexpected keyword arguments: %s' % main_kw.keys()) return _MultiParDo(self, tags, main_tag)
class _MultiParDo(PTransform): def __init__(self, do_transform, tags, main_tag): super(_MultiParDo, self).__init__(do_transform.label) self._do_transform = do_transform self._tags = tags self._main_tag = main_tag def expand(self, pcoll): _ = pcoll | self._do_transform return pvalue.DoOutputsTuple( pcoll.pipeline, self._do_transform, self._tags, self._main_tag)
[docs]def FlatMap(fn, *args, **kwargs): # pylint: disable=invalid-name """FlatMap is like ParDo except it takes a callable to specify the transformation. The callable must return an iterable for each element of the input PCollection. The elements of these iterables will be flattened into the output PCollection. Args: fn: a callable object. *args: positional arguments passed to the transform callable. **kwargs: keyword arguments passed to the transform callable. Returns: A PCollection containing the Map outputs. Raises: TypeError: If the fn passed as argument is not a callable. Typical error is to pass a DoFn instance which is supported only for ParDo. """ label = 'FlatMap(%s)' % ptransform.label_from_callable(fn) if not callable(fn): raise TypeError( 'FlatMap can be used only with callable objects. ' 'Received %r instead.' % (fn)) pardo = ParDo(CallableWrapperDoFn(fn), *args, **kwargs) pardo.label = label return pardo
[docs]def Map(fn, *args, **kwargs): # pylint: disable=invalid-name """Map is like FlatMap except its callable returns only a single element. Args: fn: a callable object. *args: positional arguments passed to the transform callable. **kwargs: keyword arguments passed to the transform callable. Returns: A PCollection containing the Map outputs. Raises: TypeError: If the fn passed as argument is not a callable. Typical error is to pass a DoFn instance which is supported only for ParDo. """ if not callable(fn): raise TypeError( 'Map can be used only with callable objects. ' 'Received %r instead.' % (fn)) if _fn_takes_side_inputs(fn): wrapper = lambda x, *args, **kwargs: [fn(x, *args, **kwargs)] else: wrapper = lambda x: [fn(x)] label = 'Map(%s)' % ptransform.label_from_callable(fn) # TODO. What about callable classes? if hasattr(fn, '__name__'): wrapper.__name__ = fn.__name__ # Proxy the type-hint information from the original function to this new # wrapped function. get_type_hints(wrapper).input_types = get_type_hints(fn).input_types output_hint = get_type_hints(fn).simple_output_type(label) if output_hint: get_type_hints(wrapper).set_output_types(typehints.Iterable[output_hint]) # pylint: disable=protected-access wrapper._argspec_fn = fn # pylint: enable=protected-access pardo = FlatMap(wrapper, *args, **kwargs) pardo.label = label return pardo
[docs]def Filter(fn, *args, **kwargs): # pylint: disable=invalid-name """Filter is a FlatMap with its callable filtering out elements. Args: fn: a callable object. *args: positional arguments passed to the transform callable. **kwargs: keyword arguments passed to the transform callable. Returns: A PCollection containing the Filter outputs. Raises: TypeError: If the fn passed as argument is not a callable. Typical error is to pass a DoFn instance which is supported only for FlatMap. """ if not callable(fn): raise TypeError( 'Filter can be used only with callable objects. ' 'Received %r instead.' % (fn)) wrapper = lambda x, *args, **kwargs: [x] if fn(x, *args, **kwargs) else [] label = 'Filter(%s)' % ptransform.label_from_callable(fn) # TODO: What about callable classes? if hasattr(fn, '__name__'): wrapper.__name__ = fn.__name__ # Proxy the type-hint information from the function being wrapped, setting the # output type to be the same as the input type. get_type_hints(wrapper).input_types = get_type_hints(fn).input_types output_hint = get_type_hints(fn).simple_output_type(label) if (output_hint is None and get_type_hints(wrapper).input_types and get_type_hints(wrapper).input_types[0]): output_hint = get_type_hints(wrapper).input_types[0] if output_hint: get_type_hints(wrapper).set_output_types(typehints.Iterable[output_hint]) # pylint: disable=protected-access wrapper._argspec_fn = fn # pylint: enable=protected-access pardo = FlatMap(wrapper, *args, **kwargs) pardo.label = label return pardo
[docs]class CombineGlobally(PTransform): """A CombineGlobally transform. Reduces a PCollection to a single value by progressively applying a CombineFn to portions of the PCollection (and to intermediate values created thereby). See documentation in CombineFn for details on the specifics on how CombineFns are applied. Args: pcoll: a PCollection to be reduced into a single value. fn: a CombineFn object that will be called to progressively reduce the PCollection into single values, or a callable suitable for wrapping by CallableWrapperCombineFn. *args: positional arguments passed to the CombineFn object. **kwargs: keyword arguments passed to the CombineFn object. Raises: TypeError: If the output type of the input PCollection is not compatible with Iterable[A]. Returns: A single-element PCollection containing the main output of the Combine transform. Note that the positional and keyword arguments will be processed in order to detect PObjects that will be computed as side inputs to the transform. During pipeline execution whenever the CombineFn object gets executed (i.e., any of the CombineFn methods get called), the PObject arguments will be replaced by their actual value in the exact position where they appear in the argument lists. """ has_defaults = True as_view = False def __init__(self, fn, *args, **kwargs): if not (isinstance(fn, CombineFn) or callable(fn)): raise TypeError( 'CombineGlobally can be used only with combineFn objects. ' 'Received %r instead.' % (fn)) super(CombineGlobally, self).__init__() self.fn = fn self.args = args self.kwargs = kwargs
[docs] def display_data(self): return {'combine_fn': DisplayDataItem(self.fn.__class__, label='Combine Function'), 'combine_fn_dd': self.fn}
[docs] def default_label(self): return 'CombineGlobally(%s)' % ptransform.label_from_callable(self.fn)
def _clone(self, **extra_attributes): clone = copy.copy(self) clone.__dict__.update(extra_attributes) return clone
[docs] def with_defaults(self, has_defaults=True): return self._clone(has_defaults=has_defaults)
[docs] def without_defaults(self): return self.with_defaults(False)
[docs] def as_singleton_view(self): return self._clone(as_view=True)
[docs] def expand(self, pcoll): def add_input_types(transform): type_hints = self.get_type_hints() if type_hints.input_types: return transform.with_input_types(type_hints.input_types[0][0]) return transform combined = (pcoll | 'KeyWithVoid' >> add_input_types( Map(lambda v: (None, v)).with_output_types( KV[None, pcoll.element_type])) | 'CombinePerKey' >> CombinePerKey( self.fn, *self.args, **self.kwargs) | 'UnKey' >> Map(lambda (k, v): v)) if not self.has_defaults and not self.as_view: return combined if self.has_defaults: combine_fn = ( self.fn if isinstance(self.fn, CombineFn) else CombineFn.from_callable(self.fn)) default_value = combine_fn.apply([], *self.args, **self.kwargs) else: default_value = pvalue.AsSingleton._NO_DEFAULT # pylint: disable=protected-access view = pvalue.AsSingleton(combined, default_value=default_value) if self.as_view: return view else: if pcoll.windowing.windowfn != GlobalWindows(): raise ValueError( "Default values are not yet supported in CombineGlobally() if the " "output PCollection is not windowed by GlobalWindows. " "Instead, use CombineGlobally().without_defaults() to output " "an empty PCollection if the input PCollection is empty, " "or CombineGlobally().as_singleton_view() to get the default " "output of the CombineFn if the input PCollection is empty.") def typed(transform): # TODO(robertwb): We should infer this. if combined.element_type: return transform.with_output_types(combined.element_type) return transform return (pcoll.pipeline | 'DoOnce' >> Create([None]) | 'InjectDefault' >> typed(Map(lambda _, s: s, view)))
[docs]class CombinePerKey(PTransformWithSideInputs): """A per-key Combine transform. Identifies sets of values associated with the same key in the input PCollection, then applies a CombineFn to condense those sets to single values. See documentation in CombineFn for details on the specifics on how CombineFns are applied. Args: pcoll: input pcollection. fn: instance of CombineFn to apply to all values under the same key in pcoll, or a callable whose signature is ``f(iterable, *args, **kwargs)`` (e.g., sum, max). *args: arguments and side inputs, passed directly to the CombineFn. **kwargs: arguments and side inputs, passed directly to the CombineFn. Returns: A PObject holding the result of the combine operation. """
[docs] def display_data(self): return {'combine_fn': DisplayDataItem(self.fn.__class__, label='Combine Function'), 'combine_fn_dd': self.fn}
[docs] def make_fn(self, fn): self._fn_label = ptransform.label_from_callable(fn) return fn if isinstance(fn, CombineFn) else CombineFn.from_callable(fn)
[docs] def default_label(self): return '%s(%s)' % (self.__class__.__name__, self._fn_label)
def _process_argspec_fn(self): return self.fn._fn # pylint: disable=protected-access
[docs] def expand(self, pcoll): args, kwargs = util.insert_values_in_args( self.args, self.kwargs, self.side_inputs) return pcoll | GroupByKey() | 'Combine' >> CombineValues( self.fn, *args, **kwargs)
# TODO(robertwb): Rename to CombineGroupedValues?
[docs]class CombineValues(PTransformWithSideInputs):
[docs] def make_fn(self, fn): return fn if isinstance(fn, CombineFn) else CombineFn.from_callable(fn)
[docs] def expand(self, pcoll): args, kwargs = util.insert_values_in_args( self.args, self.kwargs, self.side_inputs) input_type = pcoll.element_type key_type = None if input_type is not None: key_type, _ = input_type.tuple_types runtime_type_check = ( pcoll.pipeline._options.view_as(TypeOptions).runtime_type_check) return pcoll | ParDo( CombineValuesDoFn(key_type, self.fn, runtime_type_check), *args, **kwargs)
class CombineValuesDoFn(DoFn): """DoFn for performing per-key Combine transforms.""" def __init__(self, input_pcoll_type, combinefn, runtime_type_check): super(CombineValuesDoFn, self).__init__() self.combinefn = combinefn self.runtime_type_check = runtime_type_check def process(self, element, *args, **kwargs): # Expected elements input to this DoFn are 2-tuples of the form # (key, iter), with iter an iterable of all the values associated with key # in the input PCollection. if self.runtime_type_check: # Apply the combiner in a single operation rather than artificially # breaking it up so that output type violations manifest as TypeCheck # errors rather than type errors. return [ (element[0], self.combinefn.apply(element[1], *args, **kwargs))] # Add the elements into three accumulators (for testing of merge). elements = element[1] accumulators = [] for k in range(3): if len(elements) <= k: break accumulators.append( self.combinefn.add_inputs( self.combinefn.create_accumulator(*args, **kwargs), elements[k::3], *args, **kwargs)) # Merge the accumulators. accumulator = self.combinefn.merge_accumulators( accumulators, *args, **kwargs) # Convert accumulator to the final result. return [(element[0], self.combinefn.extract_output(accumulator, *args, **kwargs))] def default_type_hints(self): hints = self.combinefn.get_type_hints().copy() if hints.input_types: K = typehints.TypeVariable('K') args, kwargs = hints.input_types args = (typehints.Tuple[K, typehints.Iterable[args[0]]],) + args[1:] hints.set_input_types(*args, **kwargs) else: K = typehints.Any if hints.output_types: main_output_type = hints.simple_output_type('') hints.set_output_types(typehints.Tuple[K, main_output_type]) return hints @typehints.with_input_types(typehints.KV[K, V]) @typehints.with_output_types(typehints.KV[K, typehints.Iterable[V]])
[docs]class GroupByKey(PTransform): """A group by key transform. Processes an input PCollection consisting of key/value pairs represented as a tuple pair. The result is a PCollection where values having a common key are grouped together. For example (a, 1), (b, 2), (a, 3) will result into (a, [1, 3]), (b, [2]). The implementation here is used only when run on the local direct runner. """
[docs] class ReifyWindows(DoFn):
[docs] def process(self, element, window=DoFn.WindowParam, timestamp=DoFn.TimestampParam): try: k, v = element except TypeError: raise TypeCheckError('Input to GroupByKey must be a PCollection with ' 'elements compatible with KV[A, B]') return [(k, WindowedValue(v, timestamp, [window]))]
[docs] def infer_output_type(self, input_type): key_type, value_type = trivial_inference.key_value_types(input_type) return Iterable[KV[key_type, typehints.WindowedValue[value_type]]]
[docs] class GroupAlsoByWindow(DoFn): # TODO(robertwb): Support combiner lifting. def __init__(self, windowing): super(GroupByKey.GroupAlsoByWindow, self).__init__() self.windowing = windowing
[docs] def infer_output_type(self, input_type): key_type, windowed_value_iter_type = trivial_inference.key_value_types( input_type) value_type = windowed_value_iter_type.inner_type.inner_type return Iterable[KV[key_type, Iterable[value_type]]]
[docs] def start_bundle(self): # pylint: disable=wrong-import-order, wrong-import-position from apache_beam.transforms.trigger import InMemoryUnmergedState from apache_beam.transforms.trigger import create_trigger_driver # pylint: enable=wrong-import-order, wrong-import-position self.driver = create_trigger_driver(self.windowing, True) self.state_type = InMemoryUnmergedState
[docs] def process(self, element): k, vs = element state = self.state_type() # TODO(robertwb): Conditionally process in smaller chunks. for wvalue in self.driver.process_elements(state, vs, MIN_TIMESTAMP): yield wvalue.with_value((k, wvalue.value)) while state.timers: fired = state.get_and_clear_timers() for timer_window, (name, time_domain, fire_time) in fired: for wvalue in self.driver.process_timer( timer_window, name, time_domain, fire_time, state): yield wvalue.with_value((k, wvalue.value))
[docs] def expand(self, pcoll): # This code path is only used in the local direct runner. For Dataflow # runner execution, the GroupByKey transform is expanded on the service. input_type = pcoll.element_type if input_type is not None: # Initialize type-hints used below to enforce type-checking and to pass # downstream to further PTransforms. key_type, value_type = trivial_inference.key_value_types(input_type) typecoders.registry.verify_deterministic( typecoders.registry.get_coder(key_type), 'GroupByKey operation "%s"' % self.label) reify_output_type = KV[key_type, typehints.WindowedValue[value_type]] gbk_input_type = ( KV[key_type, Iterable[typehints.WindowedValue[value_type]]]) gbk_output_type = KV[key_type, Iterable[value_type]] # pylint: disable=bad-continuation return (pcoll | 'ReifyWindows' >> (ParDo(self.ReifyWindows()) .with_output_types(reify_output_type)) | 'GroupByKey' >> (_GroupByKeyOnly() .with_input_types(reify_output_type) .with_output_types(gbk_input_type)) | ('GroupByWindow' >> ParDo( self.GroupAlsoByWindow(pcoll.windowing)) .with_input_types(gbk_input_type) .with_output_types(gbk_output_type))) else: # The input_type is None, run the default return (pcoll | 'ReifyWindows' >> ParDo(self.ReifyWindows()) | 'GroupByKey' >> _GroupByKeyOnly() | 'GroupByWindow' >> ParDo( self.GroupAlsoByWindow(pcoll.windowing)))
@typehints.with_input_types(typehints.KV[K, V]) @typehints.with_output_types(typehints.KV[K, typehints.Iterable[V]]) class _GroupByKeyOnly(PTransform): """A group by key transform, ignoring windows.""" def infer_output_type(self, input_type): key_type, value_type = trivial_inference.key_value_types(input_type) return KV[key_type, Iterable[value_type]] def expand(self, pcoll): self._check_pcollection(pcoll) return pvalue.PCollection(pcoll.pipeline)
[docs]class Partition(PTransformWithSideInputs): """Split a PCollection into several partitions. Uses the specified PartitionFn to separate an input PCollection into the specified number of sub-PCollections. When apply()d, a Partition() PTransform requires the following: Args: partitionfn: a PartitionFn, or a callable with the signature described in CallableWrapperPartitionFn. n: number of output partitions. The result of this PTransform is a simple list of the output PCollections representing each of n partitions, in order. """
[docs] class ApplyPartitionFnFn(DoFn): """A DoFn that applies a PartitionFn."""
[docs] def process(self, element, partitionfn, n, *args, **kwargs): partition = partitionfn.partition_for(element, n, *args, **kwargs) if not 0 <= partition < n: raise ValueError( 'PartitionFn specified out-of-bounds partition index: ' '%d not in [0, %d)' % (partition, n)) # Each input is directed into the output that corresponds to the # selected partition. yield pvalue.TaggedOutput(str(partition), element)
[docs] def make_fn(self, fn): return fn if isinstance(fn, PartitionFn) else CallableWrapperPartitionFn(fn)
[docs] def expand(self, pcoll): n = int(self.args[0]) return pcoll | ParDo( self.ApplyPartitionFnFn(), self.fn, *self.args, **self.kwargs).with_outputs(*[str(t) for t in range(n)])
[docs]class Windowing(object): def __init__(self, windowfn, triggerfn=None, accumulation_mode=None, timestamp_combiner=None): global AccumulationMode, DefaultTrigger # pylint: disable=global-variable-not-assigned # pylint: disable=wrong-import-order, wrong-import-position from apache_beam.transforms.trigger import AccumulationMode, DefaultTrigger # pylint: enable=wrong-import-order, wrong-import-position if triggerfn is None: triggerfn = DefaultTrigger() if accumulation_mode is None: if triggerfn == DefaultTrigger(): accumulation_mode = AccumulationMode.DISCARDING else: raise ValueError( 'accumulation_mode must be provided for non-trivial triggers') if not windowfn.get_window_coder().is_deterministic(): raise ValueError( 'window fn (%s) does not have a determanistic coder (%s)' % ( window_fn, windowfn.get_window_coder())) self.windowfn = windowfn self.triggerfn = triggerfn self.accumulation_mode = accumulation_mode self.timestamp_combiner = ( timestamp_combiner or TimestampCombiner.OUTPUT_AT_EOW) self._is_default = ( self.windowfn == GlobalWindows() and self.triggerfn == DefaultTrigger() and self.accumulation_mode == AccumulationMode.DISCARDING and self.timestamp_combiner == TimestampCombiner.OUTPUT_AT_EOW) def __repr__(self): return "Windowing(%s, %s, %s, %s)" % (self.windowfn, self.triggerfn, self.accumulation_mode, self.timestamp_combiner) def __eq__(self, other): if type(self) == type(other): if self._is_default and other._is_default: return True return ( self.windowfn == other.windowfn and self.triggerfn == other.triggerfn and self.accumulation_mode == other.accumulation_mode and self.timestamp_combiner == other.timestamp_combiner) return False
[docs] def is_default(self): return self._is_default
[docs] def to_runner_api(self, context): return beam_runner_api_pb2.WindowingStrategy( window_fn=self.windowfn.to_runner_api(context), # TODO(robertwb): Prohibit implicit multi-level merging. merge_status=(beam_runner_api_pb2.NEEDS_MERGE if self.windowfn.is_merging() else beam_runner_api_pb2.NON_MERGING), window_coder_id=context.coders.get_id( self.windowfn.get_window_coder()), trigger=self.triggerfn.to_runner_api(context), accumulation_mode=self.accumulation_mode, output_time=self.timestamp_combiner, # TODO(robertwb): Support EMIT_IF_NONEMPTY closing_behavior=beam_runner_api_pb2.EMIT_ALWAYS, allowed_lateness=0)
@staticmethod
[docs] def from_runner_api(proto, context): # pylint: disable=wrong-import-order, wrong-import-position from apache_beam.transforms.trigger import TriggerFn return Windowing( windowfn=WindowFn.from_runner_api(proto.window_fn, context), triggerfn=TriggerFn.from_runner_api(proto.trigger, context), accumulation_mode=proto.accumulation_mode, timestamp_combiner=proto.output_time)
@typehints.with_input_types(T) @typehints.with_output_types(T)
[docs]class WindowInto(ParDo): """A window transform assigning windows to each element of a PCollection. Transforms an input PCollection by applying a windowing function to each element. Each transformed element in the result will be a WindowedValue element with the same input value and timestamp, with its new set of windows determined by the windowing function. """
[docs] class WindowIntoFn(DoFn): """A DoFn that applies a WindowInto operation.""" def __init__(self, windowing): self.windowing = windowing
[docs] def process(self, element, timestamp=DoFn.TimestampParam): context = WindowFn.AssignContext(timestamp, element=element) new_windows = self.windowing.windowfn.assign(context) yield WindowedValue(element, context.timestamp, new_windows)
def __init__(self, windowfn, **kwargs): """Initializes a WindowInto transform. Args: windowfn: Function to be used for windowing """ triggerfn = kwargs.pop('trigger', None) accumulation_mode = kwargs.pop('accumulation_mode', None) timestamp_combiner = kwargs.pop('timestamp_combiner', None) self.windowing = Windowing(windowfn, triggerfn, accumulation_mode, timestamp_combiner) super(WindowInto, self).__init__(self.WindowIntoFn(self.windowing))
[docs] def get_windowing(self, unused_inputs): return self.windowing
[docs] def infer_output_type(self, input_type): return input_type
[docs] def expand(self, pcoll): input_type = pcoll.element_type if input_type is not None: output_type = input_type self.with_input_types(input_type) self.with_output_types(output_type) return super(WindowInto, self).expand(pcoll)
[docs] def to_runner_api_parameter(self, context): return ( urns.WINDOW_INTO_TRANSFORM, self.windowing.to_runner_api(context))
@staticmethod
[docs] def from_runner_api_parameter(proto, context): windowing = Windowing.from_runner_api(proto, context) return WindowInto( windowing.windowfn, trigger=windowing.triggerfn, accumulation_mode=windowing.accumulation_mode, timestamp_combiner=windowing.timestamp_combiner)
PTransform.register_urn( urns.WINDOW_INTO_TRANSFORM, # TODO(robertwb): Update WindowIntoPayload to include the full strategy. # (Right now only WindowFn is used, but we need this to reconstitute the # WindowInto transform, and in the future will need it at runtime to # support meta-data driven triggers.) beam_runner_api_pb2.WindowingStrategy, WindowInto.from_runner_api_parameter) # Python's pickling is broken for nested classes. WindowIntoFn = WindowInto.WindowIntoFn
[docs]class Flatten(PTransform): """Merges several PCollections into a single PCollection. Copies all elements in 0 or more PCollections into a single output PCollection. If there are no input PCollections, the resulting PCollection will be empty (but see also kwargs below). Args: **kwargs: Accepts a single named argument "pipeline", which specifies the pipeline that "owns" this PTransform. Ordinarily Flatten can obtain this information from one of the input PCollections, but if there are none (or if there's a chance there may be none), this argument is the only way to provide pipeline information and should be considered mandatory. """ def __init__(self, **kwargs): super(Flatten, self).__init__() self.pipeline = kwargs.pop('pipeline', None) if kwargs: raise ValueError('Unexpected keyword arguments: %s' % kwargs.keys()) def _extract_input_pvalues(self, pvalueish): try: pvalueish = tuple(pvalueish) except TypeError: raise ValueError('Input to Flatten must be an iterable.') return pvalueish, pvalueish
[docs] def expand(self, pcolls): for pcoll in pcolls: self._check_pcollection(pcoll) return pvalue.PCollection(self.pipeline)
[docs] def get_windowing(self, inputs): if not inputs: # TODO(robertwb): Return something compatible with every windowing? return Windowing(GlobalWindows()) return super(Flatten, self).get_windowing(inputs)
[docs] def to_runner_api_parameter(self, context): return urns.FLATTEN_TRANSFORM, None
@staticmethod
[docs] def from_runner_api_parameter(unused_parameter, unused_context): return Flatten()
PTransform.register_urn( urns.FLATTEN_TRANSFORM, None, Flatten.from_runner_api_parameter)
[docs]class Create(PTransform): """A transform that creates a PCollection from an iterable.""" def __init__(self, value): """Initializes a Create transform. Args: value: An object of values for the PCollection """ super(Create, self).__init__() if isinstance(value, basestring): raise TypeError('PTransform Create: Refusing to treat string as ' 'an iterable. (string=%r)' % value) elif isinstance(value, dict): value = value.items() self.value = tuple(value)
[docs] def infer_output_type(self, unused_input_type): if not self.value: return Any return Union[[trivial_inference.instance_to_type(v) for v in self.value]]
[docs] def expand(self, pbegin): from apache_beam.io import iobase assert isinstance(pbegin, pvalue.PBegin) self.pipeline = pbegin.pipeline ouput_type = (self.get_type_hints().simple_output_type(self.label) or self.infer_output_type(None)) coder = typecoders.registry.get_coder(ouput_type) source = self._create_source_from_iterable(self.value, coder) return pbegin.pipeline | iobase.Read(source).with_output_types(ouput_type)
[docs] def get_windowing(self, unused_inputs): return Windowing(GlobalWindows())
@staticmethod def _create_source_from_iterable(values, coder): return Create._create_source(map(coder.encode, values), coder) @staticmethod def _create_source(serialized_values, coder): from apache_beam.io import iobase class _CreateSource(iobase.BoundedSource): def __init__(self, serialized_values, coder): self._coder = coder self._serialized_values = [] self._total_size = 0 self._serialized_values = serialized_values self._total_size = sum(map(len, self._serialized_values)) def read(self, range_tracker): start_position = range_tracker.start_position() current_position = start_position def split_points_unclaimed(stop_position): if current_position >= stop_position: return 0 return stop_position - current_position - 1 range_tracker.set_split_points_unclaimed_callback( split_points_unclaimed) element_iter = iter(self._serialized_values[start_position:]) for i in range(start_position, range_tracker.stop_position()): if not range_tracker.try_claim(i): return current_position = i yield self._coder.decode(next(element_iter)) def split(self, desired_bundle_size, start_position=None, stop_position=None): from apache_beam.io import iobase if len(self._serialized_values) < 2: yield iobase.SourceBundle( weight=0, source=self, start_position=0, stop_position=len(self._serialized_values)) else: if start_position is None: start_position = 0 if stop_position is None: stop_position = len(self._serialized_values) avg_size_per_value = self._total_size / len(self._serialized_values) num_values_per_split = max( int(desired_bundle_size / avg_size_per_value), 1) start = start_position while start < stop_position: end = min(start + num_values_per_split, stop_position) remaining = stop_position - end # Avoid having a too small bundle at the end. if remaining < (num_values_per_split / 4): end = stop_position sub_source = Create._create_source( self._serialized_values[start:end], self._coder) yield iobase.SourceBundle(weight=(end - start), source=sub_source, start_position=0, stop_position=(end - start)) start = end def get_range_tracker(self, start_position, stop_position): if start_position is None: start_position = 0 if stop_position is None: stop_position = len(self._serialized_values) from apache_beam import io return io.OffsetRangeTracker(start_position, stop_position) def estimate_size(self): return self._total_size return _CreateSource(serialized_values, coder)