Source code for apache_beam.io.tfrecordio

#
# Licensed to the Apache Software Foundation (ASF) under one or more
# contributor license agreements.  See the NOTICE file distributed with
# this work for additional information regarding copyright ownership.
# The ASF licenses this file to You under the Apache License, Version 2.0
# (the "License"); you may not use this file except in compliance with
# the License.  You may obtain a copy of the License at
#
#    http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
"""TFRecord sources and sinks."""

from __future__ import absolute_import

import logging
import struct

from apache_beam import coders
from apache_beam.io import filebasedsource
from apache_beam.io import filebasedsink
from apache_beam.io.filesystem import CompressionTypes
from apache_beam.io.iobase import Read
from apache_beam.io.iobase import Write
from apache_beam.transforms import PTransform
import crcmod

__all__ = ['ReadFromTFRecord', 'WriteToTFRecord']


def _default_crc32c_fn(value):
  """Calculates crc32c by either snappy or crcmod based on installation."""

  if not _default_crc32c_fn.fn:
    try:
      import snappy  # pylint: disable=import-error
      _default_crc32c_fn.fn = snappy._crc32c  # pylint: disable=protected-access
    except ImportError:
      logging.warning('Couldn\'t find python-snappy so the implementation of '
                      '_TFRecordUtil._masked_crc32c is not as fast as it could '
                      'be.')
      _default_crc32c_fn.fn = crcmod.predefined.mkPredefinedCrcFun('crc-32c')
  return _default_crc32c_fn.fn(value)


_default_crc32c_fn.fn = None


class _TFRecordUtil(object):
  """Provides basic TFRecord encoding/decoding with consistency checks.

  For detailed TFRecord format description see:
    https://www.tensorflow.org/versions/master/api_docs/python/python_io.html#tfrecords-format-details

  Note that masks and length are represented in LittleEndian order.
  """

  @classmethod
  def _masked_crc32c(cls, value, crc32c_fn=_default_crc32c_fn):
    """Compute a masked crc32c checksum for a value.

    Args:
      value: A string for which we compute the crc.
      crc32c_fn: A function that can compute a crc32c.
        This is a performance hook that also helps with testing. Callers are
        not expected to make use of it directly.
    Returns:
      Masked crc32c checksum.
    """

    crc = crc32c_fn(value)
    return (((crc >> 15) | (crc << 17)) + 0xa282ead8) & 0xffffffff

  @staticmethod
  def encoded_num_bytes(record):
    """Return the number of bytes consumed by a record in its encoded form."""
    # 16 = 8 (Length) + 4 (crc of length) + 4 (crc of data)
    return len(record) + 16

  @classmethod
  def write_record(cls, file_handle, value):
    """Encode a value as a TFRecord.

    Args:
      file_handle: The file to write to.
      value: A string content of the record.
    """
    encoded_length = struct.pack('<Q', len(value))
    file_handle.write('{}{}{}{}'.format(
        encoded_length,
        struct.pack('<I', cls._masked_crc32c(encoded_length)),  #
        value,
        struct.pack('<I', cls._masked_crc32c(value))))

  @classmethod
  def read_record(cls, file_handle):
    """Read a record from a TFRecords file.

    Args:
      file_handle: The file to read from.
    Returns:
      None if EOF is reached; the paylod of the record otherwise.
    Raises:
      ValueError: If file appears to not be a valid TFRecords file.
    """
    buf_length_expected = 12
    buf = file_handle.read(buf_length_expected)
    if not buf:
      return None  # EOF Reached.

    # Validate all length related payloads.
    if len(buf) != buf_length_expected:
      raise ValueError('Not a valid TFRecord. Fewer than %d bytes: %s' %
                       (buf_length_expected, buf.encode('hex')))
    length, length_mask_expected = struct.unpack('<QI', buf)
    length_mask_actual = cls._masked_crc32c(buf[:8])
    if length_mask_actual != length_mask_expected:
      raise ValueError('Not a valid TFRecord. Mismatch of length mask: %s' %
                       buf.encode('hex'))

    # Validate all data related payloads.
    buf_length_expected = length + 4
    buf = file_handle.read(buf_length_expected)
    if len(buf) != buf_length_expected:
      raise ValueError('Not a valid TFRecord. Fewer than %d bytes: %s' %
                       (buf_length_expected, buf.encode('hex')))
    data, data_mask_expected = struct.unpack('<%dsI' % length, buf)
    data_mask_actual = cls._masked_crc32c(data)
    if data_mask_actual != data_mask_expected:
      raise ValueError('Not a valid TFRecord. Mismatch of data mask: %s' %
                       buf.encode('hex'))

    # All validation checks passed.
    return data


class _TFRecordSource(filebasedsource.FileBasedSource):
  """A File source for reading files of TFRecords.

  For detailed TFRecords format description see:
    https://www.tensorflow.org/versions/master/api_docs/python/python_io.html#tfrecords-format-details
  """

  def __init__(self,
               file_pattern,
               coder,
               compression_type,
               validate):
    """Initialize a TFRecordSource.  See ReadFromTFRecord for details."""
    super(_TFRecordSource, self).__init__(
        file_pattern=file_pattern,
        compression_type=compression_type,
        splittable=False,
        validate=validate)
    self._coder = coder

  def read_records(self, file_name, offset_range_tracker):
    if offset_range_tracker.start_position():
      raise ValueError('Start position not 0:%s' %
                       offset_range_tracker.start_position())

    current_offset = offset_range_tracker.start_position()
    with self.open_file(file_name) as file_handle:
      while True:
        if not offset_range_tracker.try_claim(current_offset):
          raise RuntimeError('Unable to claim position: %s' % current_offset)
        record = _TFRecordUtil.read_record(file_handle)
        if record is None:
          return  # Reached EOF
        else:
          current_offset += _TFRecordUtil.encoded_num_bytes(record)
          yield self._coder.decode(record)


[docs]class ReadFromTFRecord(PTransform): """Transform for reading TFRecord sources.""" def __init__(self, file_pattern, coder=coders.BytesCoder(), compression_type=CompressionTypes.AUTO, validate=True, **kwargs): """Initialize a ReadFromTFRecord transform. Args: file_pattern: A file glob pattern to read TFRecords from. coder: Coder used to decode each record. compression_type: Used to handle compressed input files. Default value is CompressionTypes.AUTO, in which case the file_path's extension will be used to detect the compression. validate: Boolean flag to verify that the files exist during the pipeline creation time. **kwargs: optional args dictionary. These are passed through to parent constructor. Returns: A ReadFromTFRecord transform object. """ super(ReadFromTFRecord, self).__init__(**kwargs) self._source = _TFRecordSource(file_pattern, coder, compression_type, validate)
[docs] def expand(self, pvalue): return pvalue.pipeline | Read(self._source)
class _TFRecordSink(filebasedsink.FileBasedSink): """Sink for writing TFRecords files. For detailed TFRecord format description see: https://www.tensorflow.org/versions/master/api_docs/python/python_io.html#tfrecords-format-details """ def __init__(self, file_path_prefix, coder, file_name_suffix, num_shards, shard_name_template, compression_type): """Initialize a TFRecordSink. See WriteToTFRecord for details.""" super(_TFRecordSink, self).__init__( file_path_prefix=file_path_prefix, coder=coder, file_name_suffix=file_name_suffix, num_shards=num_shards, shard_name_template=shard_name_template, mime_type='application/octet-stream', compression_type=compression_type) def write_encoded_record(self, file_handle, value): _TFRecordUtil.write_record(file_handle, value)
[docs]class WriteToTFRecord(PTransform): """Transform for writing to TFRecord sinks.""" def __init__(self, file_path_prefix, coder=coders.BytesCoder(), file_name_suffix='', num_shards=0, shard_name_template=None, compression_type=CompressionTypes.AUTO, **kwargs): """Initialize WriteToTFRecord transform. Args: file_path_prefix: The file path to write to. The files written will begin with this prefix, followed by a shard identifier (see num_shards), and end in a common extension, if given by file_name_suffix. coder: Coder used to encode each record. file_name_suffix: Suffix for the files written. num_shards: The number of files (shards) used for output. If not set, the default value will be used. shard_name_template: A template string containing placeholders for the shard number and shard count. When constructing a filename for a particular shard number, the upper-case letters 'S' and 'N' are replaced with the 0-padded shard number and shard count respectively. This argument can be '' in which case it behaves as if num_shards was set to 1 and only one file will be generated. The default pattern used is '-SSSSS-of-NNNNN' if None is passed as the shard_name_template. compression_type: Used to handle compressed output files. Typical value is CompressionTypes.AUTO, in which case the file_path's extension will be used to detect the compression. **kwargs: Optional args dictionary. These are passed through to parent constructor. Returns: A WriteToTFRecord transform object. """ super(WriteToTFRecord, self).__init__(**kwargs) self._sink = _TFRecordSink(file_path_prefix, coder, file_name_suffix, num_shards, shard_name_template, compression_type)
[docs] def expand(self, pcoll): return pcoll | Write(self._sink)