#
# Licensed to the Apache Software Foundation (ASF) under one or more
# contributor license agreements. See the NOTICE file distributed with
# this work for additional information regarding copyright ownership.
# The ASF licenses this file to You under the Apache License, Version 2.0
# (the "License"); you may not use this file except in compliance with
# the License. You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
""" For internal use only. No backwards compatibility guarantees.
Dataflow client utility functions."""
import codecs
import getpass
import json
import logging
import os
import re
import time
from StringIO import StringIO
from datetime import datetime
from apitools.base.py import encoding
from apitools.base.py import exceptions
from apache_beam.internal.gcp.auth import get_service_credentials
from apache_beam.internal.gcp.json_value import to_json_value
from apache_beam.io.filesystems import FileSystems
from apache_beam.io.gcp.internal.clients import storage
from apache_beam.runners.dataflow.internal import dependency
from apache_beam.runners.dataflow.internal.clients import dataflow
from apache_beam.runners.dataflow.internal.dependency import get_sdk_name_and_version
from apache_beam.runners.dataflow.internal.names import PropertyNames
from apache_beam.transforms import cy_combiners
from apache_beam.transforms.display import DisplayData
from apache_beam.utils import retry
from apache_beam.options.pipeline_options import DebugOptions
from apache_beam.options.pipeline_options import GoogleCloudOptions
from apache_beam.options.pipeline_options import StandardOptions
from apache_beam.options.pipeline_options import WorkerOptions
[docs]class Step(object):
"""Wrapper for a dataflow Step protobuf."""
def __init__(self, step_kind, step_name, additional_properties=None):
self.step_kind = step_kind
self.step_name = step_name
self.proto = dataflow.Step(kind=step_kind, name=step_name)
self.proto.properties = {}
self._additional_properties = []
if additional_properties is not None:
for (n, v, t) in additional_properties:
self.add_property(n, v, t)
[docs] def add_property(self, name, value, with_type=False):
self._additional_properties.append((name, value, with_type))
self.proto.properties.additionalProperties.append(
dataflow.Step.PropertiesValue.AdditionalProperty(
key=name, value=to_json_value(value, with_type=with_type)))
def _get_outputs(self):
"""Returns a list of all output labels for a step."""
outputs = []
for p in self.proto.properties.additionalProperties:
if p.key == PropertyNames.OUTPUT_INFO:
for entry in p.value.array_value.entries:
for entry_prop in entry.object_value.properties:
if entry_prop.key == PropertyNames.OUTPUT_NAME:
outputs.append(entry_prop.value.string_value)
return outputs
def __reduce__(self):
"""Reduce hook for pickling the Step class more easily."""
return (Step, (self.step_kind, self.step_name, self._additional_properties))
[docs] def get_output(self, tag=None):
"""Returns name if it is one of the outputs or first output if name is None.
Args:
tag: tag of the output as a string or None if we want to get the
name of the first output.
Returns:
The name of the output associated with the tag or the first output
if tag was None.
Raises:
ValueError: if the tag does not exist within outputs.
"""
outputs = self._get_outputs()
if tag is None:
return outputs[0]
else:
name = '%s_%s' % (PropertyNames.OUT, tag)
if name not in outputs:
raise ValueError(
'Cannot find named output: %s in %s.' % (name, outputs))
return name
[docs]class Environment(object):
"""Wrapper for a dataflow Environment protobuf."""
def __init__(self, packages, options, environment_version):
self.standard_options = options.view_as(StandardOptions)
self.google_cloud_options = options.view_as(GoogleCloudOptions)
self.worker_options = options.view_as(WorkerOptions)
self.debug_options = options.view_as(DebugOptions)
self.proto = dataflow.Environment()
self.proto.clusterManagerApiService = GoogleCloudOptions.COMPUTE_API_SERVICE
self.proto.dataset = '{}/cloud_dataflow'.format(
GoogleCloudOptions.BIGQUERY_API_SERVICE)
self.proto.tempStoragePrefix = (
self.google_cloud_options.temp_location.replace(
'gs:/',
GoogleCloudOptions.STORAGE_API_SERVICE))
# User agent information.
self.proto.userAgent = dataflow.Environment.UserAgentValue()
self.local = 'localhost' in self.google_cloud_options.dataflow_endpoint
if self.google_cloud_options.service_account_email:
self.proto.serviceAccountEmail = (
self.google_cloud_options.service_account_email)
sdk_name, version_string = get_sdk_name_and_version()
self.proto.userAgent.additionalProperties.extend([
dataflow.Environment.UserAgentValue.AdditionalProperty(
key='name',
value=to_json_value(sdk_name)),
dataflow.Environment.UserAgentValue.AdditionalProperty(
key='version', value=to_json_value(version_string))])
# Version information.
self.proto.version = dataflow.Environment.VersionValue()
if self.standard_options.streaming:
job_type = 'FNAPI_STREAMING'
else:
job_type = 'PYTHON_BATCH'
self.proto.version.additionalProperties.extend([
dataflow.Environment.VersionValue.AdditionalProperty(
key='job_type',
value=to_json_value(job_type)),
dataflow.Environment.VersionValue.AdditionalProperty(
key='major', value=to_json_value(environment_version))])
# Experiments
if self.debug_options.experiments:
for experiment in self.debug_options.experiments:
self.proto.experiments.append(experiment)
# Worker pool(s) information.
package_descriptors = []
for package in packages:
package_descriptors.append(
dataflow.Package(
location='%s/%s' % (
self.google_cloud_options.staging_location.replace(
'gs:/', GoogleCloudOptions.STORAGE_API_SERVICE),
package),
name=package))
pool = dataflow.WorkerPool(
kind='local' if self.local else 'harness',
packages=package_descriptors,
taskrunnerSettings=dataflow.TaskRunnerSettings(
parallelWorkerSettings=dataflow.WorkerSettings(
baseUrl=GoogleCloudOptions.DATAFLOW_ENDPOINT,
servicePath=self.google_cloud_options.dataflow_endpoint)))
pool.autoscalingSettings = dataflow.AutoscalingSettings()
# Set worker pool options received through command line.
if self.worker_options.num_workers:
pool.numWorkers = self.worker_options.num_workers
if self.worker_options.max_num_workers:
pool.autoscalingSettings.maxNumWorkers = (
self.worker_options.max_num_workers)
if self.worker_options.autoscaling_algorithm:
values_enum = dataflow.AutoscalingSettings.AlgorithmValueValuesEnum
pool.autoscalingSettings.algorithm = {
'NONE': values_enum.AUTOSCALING_ALGORITHM_NONE,
'THROUGHPUT_BASED': values_enum.AUTOSCALING_ALGORITHM_BASIC,
}.get(self.worker_options.autoscaling_algorithm)
if self.worker_options.machine_type:
pool.machineType = self.worker_options.machine_type
if self.worker_options.disk_size_gb:
pool.diskSizeGb = self.worker_options.disk_size_gb
if self.worker_options.disk_type:
pool.diskType = self.worker_options.disk_type
if self.worker_options.zone:
pool.zone = self.worker_options.zone
if self.worker_options.network:
pool.network = self.worker_options.network
if self.worker_options.subnetwork:
pool.subnetwork = self.worker_options.subnetwork
if self.worker_options.worker_harness_container_image:
pool.workerHarnessContainerImage = (
self.worker_options.worker_harness_container_image)
else:
pool.workerHarnessContainerImage = (
dependency.get_default_container_image_for_current_sdk(job_type))
if self.worker_options.use_public_ips is not None:
if self.worker_options.use_public_ips:
pool.ipConfiguration = (
dataflow.WorkerPool
.IpConfigurationValueValuesEnum.WORKER_IP_PUBLIC)
else:
pool.ipConfiguration = (
dataflow.WorkerPool
.IpConfigurationValueValuesEnum.WORKER_IP_PRIVATE)
if self.standard_options.streaming:
# Use separate data disk for streaming.
disk = dataflow.Disk()
if self.local:
disk.diskType = 'local'
# TODO(ccy): allow customization of disk.
pool.dataDisks.append(disk)
self.proto.workerPools.append(pool)
sdk_pipeline_options = options.get_all_options()
if sdk_pipeline_options:
self.proto.sdkPipelineOptions = (
dataflow.Environment.SdkPipelineOptionsValue())
options_dict = {k: v
for k, v in sdk_pipeline_options.iteritems()
if v is not None}
self.proto.sdkPipelineOptions.additionalProperties.append(
dataflow.Environment.SdkPipelineOptionsValue.AdditionalProperty(
key='options', value=to_json_value(options_dict)))
dd = DisplayData.create_from_options(options)
items = [item.get_dict() for item in dd.items]
self.proto.sdkPipelineOptions.additionalProperties.append(
dataflow.Environment.SdkPipelineOptionsValue.AdditionalProperty(
key='display_data', value=to_json_value(items)))
[docs]class Job(object):
"""Wrapper for a dataflow Job protobuf."""
def __str__(self):
def encode_shortstrings(input_buffer, errors='strict'):
"""Encoder (from Unicode) that suppresses long base64 strings."""
original_len = len(input_buffer)
if original_len > 150:
if self.base64_str_re.match(input_buffer):
input_buffer = '<string of %d bytes>' % original_len
input_buffer = input_buffer.encode('ascii', errors=errors)
else:
matched = self.coder_str_re.match(input_buffer)
if matched:
input_buffer = '%s<string of %d bytes>' % (
matched.group(1), matched.end(2) - matched.start(2))
input_buffer = input_buffer.encode('ascii', errors=errors)
return input_buffer, original_len
def decode_shortstrings(input_buffer, errors='strict'):
"""Decoder (to Unicode) that suppresses long base64 strings."""
shortened, length = encode_shortstrings(input_buffer, errors)
return unicode(shortened), length
def shortstrings_registerer(encoding_name):
if encoding_name == 'shortstrings':
return codecs.CodecInfo(name='shortstrings',
encode=encode_shortstrings,
decode=decode_shortstrings)
return None
codecs.register(shortstrings_registerer)
# Use json "dump string" method to get readable formatting;
# further modify it to not output too-long strings, aimed at the
# 10,000+ character hex-encoded "serialized_fn" values.
return json.dumps(
json.loads(encoding.MessageToJson(self.proto), encoding='shortstrings'),
indent=2, sort_keys=True)
@staticmethod
def _build_default_job_name(user_name):
"""Generates a default name for a job.
user_name is lowercased, and any characters outside of [-a-z0-9]
are removed. If necessary, the user_name is truncated to shorten
the job name to 63 characters."""
user_name = re.sub('[^-a-z0-9]', '', user_name.lower())
date_component = datetime.utcnow().strftime('%m%d%H%M%S-%f')
app_user_name = 'beamapp-{}'.format(user_name)
job_name = '{}-{}'.format(app_user_name, date_component)
if len(job_name) > 63:
job_name = '{}-{}'.format(app_user_name[:-(len(job_name) - 63)],
date_component)
return job_name
@staticmethod
[docs] def default_job_name(job_name):
if job_name is None:
job_name = Job._build_default_job_name(getpass.getuser())
return job_name
def __init__(self, options):
self.options = options
self.google_cloud_options = options.view_as(GoogleCloudOptions)
if not self.google_cloud_options.job_name:
self.google_cloud_options.job_name = self.default_job_name(
self.google_cloud_options.job_name)
required_google_cloud_options = ['project', 'job_name', 'temp_location']
missing = [
option for option in required_google_cloud_options
if not getattr(self.google_cloud_options, option)]
if missing:
raise ValueError(
'Missing required configuration parameters: %s' % missing)
if not self.google_cloud_options.staging_location:
logging.info('Defaulting to the temp_location as staging_location: %s',
self.google_cloud_options.temp_location)
(self.google_cloud_options
.staging_location) = self.google_cloud_options.temp_location
# Make the staging and temp locations job name and time specific. This is
# needed to avoid clashes between job submissions using the same staging
# area or team members using same job names. This method is not entirely
# foolproof since two job submissions with same name can happen at exactly
# the same time. However the window is extremely small given that
# time.time() has at least microseconds granularity. We add the suffix only
# for GCS staging locations where the potential for such clashes is high.
if self.google_cloud_options.staging_location.startswith('gs://'):
path_suffix = '%s.%f' % (self.google_cloud_options.job_name, time.time())
self.google_cloud_options.staging_location = FileSystems.join(
self.google_cloud_options.staging_location, path_suffix)
self.google_cloud_options.temp_location = FileSystems.join(
self.google_cloud_options.temp_location, path_suffix)
self.proto = dataflow.Job(name=self.google_cloud_options.job_name)
if self.options.view_as(StandardOptions).streaming:
self.proto.type = dataflow.Job.TypeValueValuesEnum.JOB_TYPE_STREAMING
else:
self.proto.type = dataflow.Job.TypeValueValuesEnum.JOB_TYPE_BATCH
self.base64_str_re = re.compile(r'^[A-Za-z0-9+/]*=*$')
self.coder_str_re = re.compile(r'^([A-Za-z]+\$)([A-Za-z0-9+/]*=*)$')
[docs] def json(self):
return encoding.MessageToJson(self.proto)
def __reduce__(self):
"""Reduce hook for pickling the Job class more easily."""
return (Job, (self.options,))
[docs]class DataflowApplicationClient(object):
"""A Dataflow API client used by application code to create and query jobs."""
def __init__(self, options, environment_version):
"""Initializes a Dataflow API client object."""
self.standard_options = options.view_as(StandardOptions)
self.google_cloud_options = options.view_as(GoogleCloudOptions)
self.environment_version = environment_version
if self.google_cloud_options.no_auth:
credentials = None
else:
credentials = get_service_credentials()
self._client = dataflow.DataflowV1b3(
url=self.google_cloud_options.dataflow_endpoint,
credentials=credentials,
get_credentials=(not self.google_cloud_options.no_auth))
self._storage_client = storage.StorageV1(
url='https://www.googleapis.com/storage/v1',
credentials=credentials,
get_credentials=(not self.google_cloud_options.no_auth))
# TODO(silviuc): Refactor so that retry logic can be applied.
@retry.no_retries # Using no_retries marks this as an integration point.
def _gcs_file_copy(self, from_path, to_path):
to_folder, to_name = os.path.split(to_path)
with open(from_path, 'rb') as f:
self.stage_file(to_folder, to_name, f)
[docs] def stage_file(self, gcs_or_local_path, file_name, stream,
mime_type='application/octet-stream'):
"""Stages a file at a GCS or local path with stream-supplied contents."""
if not gcs_or_local_path.startswith('gs://'):
local_path = FileSystems.join(gcs_or_local_path, file_name)
logging.info('Staging file locally to %s', local_path)
with open(local_path, 'wb') as f:
f.write(stream.read())
return
gcs_location = FileSystems.join(gcs_or_local_path, file_name)
bucket, name = gcs_location[5:].split('/', 1)
request = storage.StorageObjectsInsertRequest(
bucket=bucket, name=name)
logging.info('Starting GCS upload to %s...', gcs_location)
upload = storage.Upload(stream, mime_type)
try:
response = self._storage_client.objects.Insert(request, upload=upload)
except exceptions.HttpError as e:
reportable_errors = {
403: 'access denied',
404: 'bucket not found',
}
if e.status_code in reportable_errors:
raise IOError(('Could not upload to GCS path %s: %s. Please verify '
'that credentials are valid and that you have write '
'access to the specified path.') %
(gcs_or_local_path, reportable_errors[e.status_code]))
raise
logging.info('Completed GCS upload to %s', gcs_location)
return response
@retry.no_retries # Using no_retries marks this as an integration point.
def create_job(self, job):
"""Creates job description. May stage and/or submit for remote execution."""
self.create_job_description(job)
# Stage and submit the job when necessary
dataflow_job_file = job.options.view_as(DebugOptions).dataflow_job_file
template_location = (
job.options.view_as(GoogleCloudOptions).template_location)
job_location = template_location or dataflow_job_file
if job_location:
gcs_or_local_path = os.path.dirname(job_location)
file_name = os.path.basename(job_location)
self.stage_file(gcs_or_local_path, file_name, StringIO(job.json()))
if not template_location:
return self.submit_job_description(job)
logging.info('A template was just created at location %s',
template_location)
return None
[docs] def create_job_description(self, job):
"""Creates a job described by the workflow proto."""
resources = dependency.stage_job_resources(
job.options, file_copy=self._gcs_file_copy)
job.proto.environment = Environment(
packages=resources, options=job.options,
environment_version=self.environment_version).proto
logging.debug('JOB: %s', job)
@retry.with_exponential_backoff(num_retries=3, initial_delay_secs=3)
def get_job_metrics(self, job_id):
request = dataflow.DataflowProjectsLocationsJobsGetMetricsRequest()
request.jobId = job_id
request.location = self.google_cloud_options.region
request.projectId = self.google_cloud_options.project
try:
response = self._client.projects_locations_jobs.GetMetrics(request)
except exceptions.BadStatusCodeError as e:
logging.error('HTTP status %d. Unable to query metrics',
e.response.status)
raise
return response
@retry.with_exponential_backoff(num_retries=3)
def submit_job_description(self, job):
"""Creates and excutes a job request."""
request = dataflow.DataflowProjectsLocationsJobsCreateRequest()
request.projectId = self.google_cloud_options.project
request.location = self.google_cloud_options.region
request.job = job.proto
try:
response = self._client.projects_locations_jobs.Create(request)
except exceptions.BadStatusCodeError as e:
logging.error('HTTP status %d trying to create job'
' at dataflow service endpoint %s',
e.response.status,
self.google_cloud_options.dataflow_endpoint)
logging.fatal('details of server error: %s', e)
raise
logging.info('Create job: %s', response)
# The response is a Job proto with the id for the new job.
logging.info('Created job with id: [%s]', response.id)
logging.info(
'To access the Dataflow monitoring console, please navigate to '
'https://console.developers.google.com/project/%s/dataflow/job/%s',
self.google_cloud_options.project, response.id)
return response
@retry.with_exponential_backoff() # Using retry defaults from utils/retry.py
def modify_job_state(self, job_id, new_state):
"""Modify the run state of the job.
Args:
job_id: The id of the job.
new_state: A string representing the new desired state. It could be set to
either 'JOB_STATE_DONE', 'JOB_STATE_CANCELLED' or 'JOB_STATE_DRAINING'.
Returns:
True if the job was modified successfully.
"""
if new_state == 'JOB_STATE_DONE':
new_state = dataflow.Job.RequestedStateValueValuesEnum.JOB_STATE_DONE
elif new_state == 'JOB_STATE_CANCELLED':
new_state = dataflow.Job.RequestedStateValueValuesEnum.JOB_STATE_CANCELLED
elif new_state == 'JOB_STATE_DRAINING':
new_state = dataflow.Job.RequestedStateValueValuesEnum.JOB_STATE_DRAINING
else:
# Other states could only be set by the service.
return False
request = dataflow.DataflowProjectsLocationsJobsUpdateRequest()
request.jobId = job_id
request.projectId = self.google_cloud_options.project
request.location = self.google_cloud_options.region
request.job = dataflow.Job(requestedState=new_state)
self._client.projects_jobs.Update(request)
return True
@retry.with_exponential_backoff() # Using retry defaults from utils/retry.py
def get_job(self, job_id):
"""Gets the job status for a submitted job.
Args:
job_id: A string representing the job_id for the workflow as returned
by the a create_job() request.
Returns:
A Job proto. See below for interesting fields.
The Job proto returned from a get_job() request contains some interesting
fields:
currentState: An object representing the current state of the job. The
string representation of the object (str() result) has the following
possible values: JOB_STATE_UNKNONW, JOB_STATE_STOPPED,
JOB_STATE_RUNNING, JOB_STATE_DONE, JOB_STATE_FAILED,
JOB_STATE_CANCELLED.
createTime: UTC time when the job was created
(e.g. '2015-03-10T00:01:53.074Z')
currentStateTime: UTC time for the current state of the job.
"""
request = dataflow.DataflowProjectsLocationsJobsGetRequest()
request.jobId = job_id
request.projectId = self.google_cloud_options.project
request.location = self.google_cloud_options.region
response = self._client.projects_locations_jobs.Get(request)
return response
@retry.with_exponential_backoff() # Using retry defaults from utils/retry.py
def list_messages(
self, job_id, start_time=None, end_time=None, page_token=None,
minimum_importance=None):
"""List messages associated with the execution of a job.
Args:
job_id: A string representing the job_id for the workflow as returned
by the a create_job() request.
start_time: If specified, only messages generated after the start time
will be returned, otherwise all messages since job started will be
returned. The value is a string representing UTC time
(e.g., '2015-08-18T21:03:50.644Z')
end_time: If specified, only messages generated before the end time
will be returned, otherwise all messages up to current time will be
returned. The value is a string representing UTC time
(e.g., '2015-08-18T21:03:50.644Z')
page_token: A string to be used as next page token if the list call
returned paginated results.
minimum_importance: Filter for messages based on importance. The possible
string values in increasing order of importance are: JOB_MESSAGE_DEBUG,
JOB_MESSAGE_DETAILED, JOB_MESSAGE_BASIC, JOB_MESSAGE_WARNING,
JOB_MESSAGE_ERROR. For example, a filter set on warning will allow only
warnings and errors and exclude all others.
Returns:
A tuple consisting of a list of JobMessage instances and a
next page token string.
Raises:
RuntimeError: if an unexpected value for the message_importance argument
is used.
The JobMessage objects returned by the call contain the following fields:
id: A unique string identifier for the message.
time: A string representing the UTC time of the message
(e.g., '2015-08-18T21:03:50.644Z')
messageImportance: An enumeration value for the message importance. The
value if converted to string will have the following possible values:
JOB_MESSAGE_DEBUG, JOB_MESSAGE_DETAILED, JOB_MESSAGE_BASIC,
JOB_MESSAGE_WARNING, JOB_MESSAGE_ERROR.
messageText: A message string.
"""
request = dataflow.DataflowProjectsLocationsJobsMessagesListRequest(
jobId=job_id, location=self.google_cloud_options.region,
projectId=self.google_cloud_options.project)
if page_token is not None:
request.pageToken = page_token
if start_time is not None:
request.startTime = start_time
if end_time is not None:
request.endTime = end_time
if minimum_importance is not None:
if minimum_importance == 'JOB_MESSAGE_DEBUG':
request.minimumImportance = (
dataflow.DataflowProjectsLocationsJobsMessagesListRequest
.MinimumImportanceValueValuesEnum
.JOB_MESSAGE_DEBUG)
elif minimum_importance == 'JOB_MESSAGE_DETAILED':
request.minimumImportance = (
dataflow.DataflowProjectsLocationsJobsMessagesListRequest
.MinimumImportanceValueValuesEnum
.JOB_MESSAGE_DETAILED)
elif minimum_importance == 'JOB_MESSAGE_BASIC':
request.minimumImportance = (
dataflow.DataflowProjectsLocationsJobsMessagesListRequest
.MinimumImportanceValueValuesEnum
.JOB_MESSAGE_BASIC)
elif minimum_importance == 'JOB_MESSAGE_WARNING':
request.minimumImportance = (
dataflow.DataflowProjectsLocationsJobsMessagesListRequest
.MinimumImportanceValueValuesEnum
.JOB_MESSAGE_WARNING)
elif minimum_importance == 'JOB_MESSAGE_ERROR':
request.minimumImportance = (
dataflow.DataflowProjectsLocationsJobsMessagesListRequest
.MinimumImportanceValueValuesEnum
.JOB_MESSAGE_ERROR)
else:
raise RuntimeError(
'Unexpected value for minimum_importance argument: %r',
minimum_importance)
response = self._client.projects_locations_jobs_messages.List(request)
return response.jobMessages, response.nextPageToken
[docs]class MetricUpdateTranslators(object):
"""Translators between accumulators and dataflow metric updates."""
@staticmethod
[docs] def translate_boolean(accumulator, metric_update_proto):
metric_update_proto.boolean = accumulator.value
@staticmethod
[docs] def translate_scalar_mean_int(accumulator, metric_update_proto):
if accumulator.count:
metric_update_proto.integerMean = dataflow.IntegerMean()
metric_update_proto.integerMean.sum = to_split_int(accumulator.sum)
metric_update_proto.integerMean.count = to_split_int(accumulator.count)
else:
metric_update_proto.nameAndKind.kind = None
@staticmethod
[docs] def translate_scalar_mean_float(accumulator, metric_update_proto):
if accumulator.count:
metric_update_proto.floatingPointMean = dataflow.FloatingPointMean()
metric_update_proto.floatingPointMean.sum = accumulator.sum
metric_update_proto.floatingPointMean.count = to_split_int(
accumulator.count)
else:
metric_update_proto.nameAndKind.kind = None
@staticmethod
[docs] def translate_scalar_counter_int(accumulator, metric_update_proto):
metric_update_proto.integer = to_split_int(accumulator.value)
@staticmethod
[docs] def translate_scalar_counter_float(accumulator, metric_update_proto):
metric_update_proto.floatingPoint = accumulator.value
[docs]def to_split_int(n):
res = dataflow.SplitInt64()
res.lowBits = n & 0xffffffff
res.highBits = n >> 32
return res
[docs]def translate_distribution(distribution_update, metric_update_proto):
"""Translate metrics DistributionUpdate to dataflow distribution update."""
dist_update_proto = dataflow.DistributionUpdate()
dist_update_proto.min = to_split_int(distribution_update.min)
dist_update_proto.max = to_split_int(distribution_update.max)
dist_update_proto.count = to_split_int(distribution_update.count)
dist_update_proto.sum = to_split_int(distribution_update.sum)
metric_update_proto.distribution = dist_update_proto
[docs]def translate_value(value, metric_update_proto):
metric_update_proto.integer = to_split_int(value)
[docs]def translate_scalar(accumulator, metric_update):
metric_update.scalar = to_json_value(accumulator.value, with_type=True)
[docs]def translate_mean(accumulator, metric_update):
if accumulator.count:
metric_update.meanSum = to_json_value(accumulator.sum, with_type=True)
metric_update.meanCount = to_json_value(accumulator.count, with_type=True)
else:
# A denominator of 0 will raise an error in the service.
# What it means is we have nothing to report yet, so don't.
metric_update.kind = None
# To enable a counter on the service, add it to this dictionary.
metric_translations = {
cy_combiners.CountCombineFn: ('sum', translate_scalar),
cy_combiners.SumInt64Fn: ('sum', translate_scalar),
cy_combiners.MinInt64Fn: ('min', translate_scalar),
cy_combiners.MaxInt64Fn: ('max', translate_scalar),
cy_combiners.MeanInt64Fn: ('mean', translate_mean),
cy_combiners.SumFloatFn: ('sum', translate_scalar),
cy_combiners.MinFloatFn: ('min', translate_scalar),
cy_combiners.MaxFloatFn: ('max', translate_scalar),
cy_combiners.MeanFloatFn: ('mean', translate_mean),
cy_combiners.AllCombineFn: ('and', translate_scalar),
cy_combiners.AnyCombineFn: ('or', translate_scalar),
}
counter_translations = {
cy_combiners.CountCombineFn: (
dataflow.NameAndKind.KindValueValuesEnum.SUM,
MetricUpdateTranslators.translate_scalar_counter_int),
cy_combiners.SumInt64Fn: (
dataflow.NameAndKind.KindValueValuesEnum.SUM,
MetricUpdateTranslators.translate_scalar_counter_int),
cy_combiners.MinInt64Fn: (
dataflow.NameAndKind.KindValueValuesEnum.MIN,
MetricUpdateTranslators.translate_scalar_counter_int),
cy_combiners.MaxInt64Fn: (
dataflow.NameAndKind.KindValueValuesEnum.MAX,
MetricUpdateTranslators.translate_scalar_counter_int),
cy_combiners.MeanInt64Fn: (
dataflow.NameAndKind.KindValueValuesEnum.MEAN,
MetricUpdateTranslators.translate_scalar_mean_int),
cy_combiners.SumFloatFn: (
dataflow.NameAndKind.KindValueValuesEnum.SUM,
MetricUpdateTranslators.translate_scalar_counter_float),
cy_combiners.MinFloatFn: (
dataflow.NameAndKind.KindValueValuesEnum.MIN,
MetricUpdateTranslators.translate_scalar_counter_float),
cy_combiners.MaxFloatFn: (
dataflow.NameAndKind.KindValueValuesEnum.MAX,
MetricUpdateTranslators.translate_scalar_counter_float),
cy_combiners.MeanFloatFn: (
dataflow.NameAndKind.KindValueValuesEnum.MEAN,
MetricUpdateTranslators.translate_scalar_mean_float),
cy_combiners.AllCombineFn: (
dataflow.NameAndKind.KindValueValuesEnum.AND,
MetricUpdateTranslators.translate_boolean),
cy_combiners.AnyCombineFn: (
dataflow.NameAndKind.KindValueValuesEnum.OR,
MetricUpdateTranslators.translate_boolean),
}