Source code for apache_beam.transforms.userstate

#
# Licensed to the Apache Software Foundation (ASF) under one or more
# contributor license agreements.  See the NOTICE file distributed with
# this work for additional information regarding copyright ownership.
# The ASF licenses this file to You under the Apache License, Version 2.0
# (the "License"); you may not use this file except in compliance with
# the License.  You may obtain a copy of the License at
#
#    http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#

"""User-facing interfaces for the Beam State and Timer APIs.

Experimental; no backwards-compatibility guarantees.
"""

from __future__ import absolute_import

import types
from builtins import object

from apache_beam.coders import Coder
from apache_beam.coders import coders
from apache_beam.portability.api import beam_runner_api_pb2
from apache_beam.transforms.timeutil import TimeDomain


[docs]class StateSpec(object): """Specification for a user DoFn state cell.""" def __init__(self): raise NotImplementedError def __repr__(self): return '%s(%s)' % (self.__class__.__name__, self.name)
[docs] def to_runner_api(self, context): raise NotImplementedError
[docs]class BagStateSpec(StateSpec): """Specification for a user DoFn bag state cell.""" def __init__(self, name, coder): assert isinstance(name, str) assert isinstance(coder, Coder) self.name = name self.coder = coder
[docs] def to_runner_api(self, context): return beam_runner_api_pb2.StateSpec( bag_spec=beam_runner_api_pb2.BagStateSpec( element_coder_id=context.coders.get_id(self.coder)))
[docs]class SetStateSpec(StateSpec): """Specification for a user DoFn Set State cell""" def __init__(self, name, coder): if not isinstance(name, str): raise TypeError("SetState name is not a string") if not isinstance(coder, Coder): raise TypeError("SetState coder is not of type Coder") self.name = name self.coder = coder
[docs] def to_runner_api(self, context): return beam_runner_api_pb2.StateSpec( set_spec=beam_runner_api_pb2.SetStateSpec( element_coder_id=context.coders.get_id(self.coder)))
[docs]class CombiningValueStateSpec(StateSpec): """Specification for a user DoFn combining value state cell.""" def __init__(self, name, coder=None, combine_fn=None): """Initialize the specification for CombiningValue state. CombiningValueStateSpec(name, combine_fn) -> Coder-inferred combining value state spec. CombiningValueStateSpec(name, coder, combine_fn) -> Combining value state spec with coder and combine_fn specified. Args: name (str): The name by which the state is identified. coder (Coder): Coder specifying how to encode the values to be combined. May be inferred. combine_fn (``CombineFn`` or ``callable``): Function specifying how to combine the values passed to state. """ # Avoid circular import. from apache_beam.transforms.core import CombineFn # We want the coder to be optional, but unfortunately it comes # before the non-optional combine_fn parameter, which we can't # change for backwards compatibility reasons. # # Instead, allow it to be omitted (by either passing two arguments # or combine_fn by keyword.) if combine_fn is None: if coder is None: raise ValueError('combine_fn must be provided') else: coder, combine_fn = None, coder self.combine_fn = CombineFn.maybe_from_callable(combine_fn) if coder is None: coder = self.combine_fn.get_accumulator_coder() assert isinstance(name, str) assert isinstance(coder, Coder) self.name = name # The coder here should be for the accumulator type of the given CombineFn. self.coder = coder
[docs] def to_runner_api(self, context): return beam_runner_api_pb2.StateSpec( combining_spec=beam_runner_api_pb2.CombiningStateSpec( combine_fn=self.combine_fn.to_runner_api(context), accumulator_coder_id=context.coders.get_id(self.coder)))
[docs]class TimerSpec(object): """Specification for a user stateful DoFn timer.""" def __init__(self, name, time_domain): self.name = name if time_domain not in (TimeDomain.WATERMARK, TimeDomain.REAL_TIME): raise ValueError('Unsupported TimeDomain: %r.' % (time_domain,)) self.time_domain = time_domain self._attached_callback = None def __repr__(self): return '%s(%s)' % (self.__class__.__name__, self.name)
[docs] def to_runner_api(self, context): return beam_runner_api_pb2.TimerSpec( time_domain=TimeDomain.to_runner_api(self.time_domain), timer_coder_id=context.coders.get_id( coders._TimerCoder(coders.SingletonCoder(None))))
[docs]def on_timer(timer_spec): """Decorator for timer firing DoFn method. This decorator allows a user to specify an on_timer processing method in a stateful DoFn. Sample usage:: class MyDoFn(DoFn): TIMER_SPEC = TimerSpec('timer', TimeDomain.WATERMARK) @on_timer(TIMER_SPEC) def my_timer_expiry_callback(self): logging.info('Timer expired!') """ if not isinstance(timer_spec, TimerSpec): raise ValueError('@on_timer decorator expected TimerSpec.') def _inner(method): if not callable(method): raise ValueError('@on_timer decorator expected callable.') if timer_spec._attached_callback: raise ValueError( 'Multiple on_timer callbacks registered for %r.' % timer_spec) timer_spec._attached_callback = method return method return _inner
[docs]def get_dofn_specs(dofn): """Gets the state and timer specs for a DoFn, if any. Args: dofn (apache_beam.transforms.core.DoFn): The DoFn instance to introspect for timer and state specs. """ # Avoid circular import. from apache_beam.runners.common import MethodWrapper from apache_beam.transforms.core import _DoFnParam from apache_beam.transforms.core import _StateDoFnParam from apache_beam.transforms.core import _TimerDoFnParam all_state_specs = set() all_timer_specs = set() # Validate params to process(), start_bundle(), finish_bundle() and to # any on_timer callbacks. for method_name in dir(dofn): if not isinstance(getattr(dofn, method_name, None), types.MethodType): continue method = MethodWrapper(dofn, method_name) param_ids = [d.param_id for d in method.defaults if isinstance(d, _DoFnParam)] if len(param_ids) != len(set(param_ids)): raise ValueError( 'DoFn %r has duplicate %s method parameters: %s.' % ( dofn, method_name, param_ids)) for d in method.defaults: if isinstance(d, _StateDoFnParam): all_state_specs.add(d.state_spec) elif isinstance(d, _TimerDoFnParam): all_timer_specs.add(d.timer_spec) return all_state_specs, all_timer_specs
[docs]def is_stateful_dofn(dofn): """Determines whether a given DoFn is a stateful DoFn.""" # A Stateful DoFn is a DoFn that uses user state or timers. all_state_specs, all_timer_specs = get_dofn_specs(dofn) return bool(all_state_specs or all_timer_specs)
[docs]def validate_stateful_dofn(dofn): """Validates the proper specification of a stateful DoFn.""" # Get state and timer specs. all_state_specs, all_timer_specs = get_dofn_specs(dofn) # Reject DoFns that have multiple state or timer specs with the same name. if len(all_state_specs) != len(set(s.name for s in all_state_specs)): raise ValueError( 'DoFn %r has multiple StateSpecs with the same name: %s.' % ( dofn, all_state_specs)) if len(all_timer_specs) != len(set(s.name for s in all_timer_specs)): raise ValueError( 'DoFn %r has multiple TimerSpecs with the same name: %s.' % ( dofn, all_timer_specs)) # Reject DoFns that use timer specs without corresponding timer callbacks. for timer_spec in all_timer_specs: if not timer_spec._attached_callback: raise ValueError( ('DoFn %r has a TimerSpec without an associated on_timer ' 'callback: %s.') % (dofn, timer_spec)) method_name = timer_spec._attached_callback.__name__ if (timer_spec._attached_callback != getattr(dofn, method_name, None).__func__): raise ValueError( ('The on_timer callback for %s is not the specified .%s method ' 'for DoFn %r (perhaps it was overwritten?).') % ( timer_spec, method_name, dofn))
[docs]class RuntimeTimer(object): """Timer interface object passed to user code.""" def __init__(self, timer_spec): self._cleared = False self._new_timestamp = None
[docs] def clear(self): self._cleared = True self._new_timestamp = None
[docs] def set(self, timestamp): self._new_timestamp = timestamp
[docs]class RuntimeState(object): """State interface object passed to user code."""
[docs] def prefetch(self): # The default implementation here does nothing. pass
[docs]class AccumulatingRuntimeState(RuntimeState):
[docs] def read(self): raise NotImplementedError(type(self))
[docs] def add(self, value): raise NotImplementedError(type(self))
[docs] def clear(self): raise NotImplementedError(type(self))
[docs]class BagRuntimeState(AccumulatingRuntimeState): """Bag state interface object passed to user code."""
[docs]class SetRuntimeState(AccumulatingRuntimeState): """Set state interface object passed to user code."""
[docs]class CombiningValueRuntimeState(AccumulatingRuntimeState): """Combining value state interface object passed to user code."""
[docs]class UserStateContext(object): """Wrapper allowing user state and timers to be accessed by a DoFnInvoker."""
[docs] def get_timer(self, timer_spec, key, window): raise NotImplementedError(type(self))
[docs] def get_state(self, state_spec, key, window): raise NotImplementedError(type(self))
[docs] def commit(self): raise NotImplementedError(type(self))