#
# Licensed to the Apache Software Foundation (ASF) under one or more
# contributor license agreements. See the NOTICE file distributed with
# this work for additional information regarding copyright ownership.
# The ASF licenses this file to You under the Apache License, Version 2.0
# (the "License"); you may not use this file except in compliance with
# the License. You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
"""
Utility functions used for integrating Metrics API into load tests pipelines.
Metrics are send to BigQuery in following format:
test_id | submit_timestamp | metric_type | value
The 'test_id' is common for all metrics for one run.
Currently it is possible to have following metrics types:
* runtime
* total_bytes_count
"""
from __future__ import absolute_import
import logging
import time
import uuid
import apache_beam as beam
from apache_beam.metrics import Metrics
try:
from google.cloud import bigquery
from google.cloud.bigquery.schema import SchemaField
from google.cloud.exceptions import NotFound
except ImportError:
bigquery = None
SchemaField = None
NotFound = None
RUNTIME_METRIC = 'runtime'
COUNTER_LABEL = 'total_bytes_count'
ID_LABEL = 'test_id'
SUBMIT_TIMESTAMP_LABEL = 'timestamp'
METRICS_TYPE_LABEL = 'metric'
VALUE_LABEL = 'value'
SCHEMA = [
{'name': ID_LABEL,
'field_type': 'STRING',
'mode': 'REQUIRED'
},
{'name': SUBMIT_TIMESTAMP_LABEL,
'field_type': 'TIMESTAMP',
'mode': 'REQUIRED'
},
{'name': METRICS_TYPE_LABEL,
'field_type': 'STRING',
'mode': 'REQUIRED'
},
{'name': VALUE_LABEL,
'field_type': 'FLOAT',
'mode': 'REQUIRED'
}
]
_LOGGER = logging.getLogger()
[docs]def parse_step(step_name):
"""Replaces white spaces and removes 'Step:' label
Args:
step_name(str): step name passed in metric ParDo
Returns:
lower case step name without namespace and step label
"""
return step_name.lower().replace(' ', '_').strip('step:_')
[docs]def split_metrics_by_namespace_and_name(metrics, namespace, name):
"""Splits metrics list namespace and name.
Args:
metrics: list of metrics from pipeline result
namespace(str): filter metrics by namespace
name(str): filter metrics by name
Returns:
two lists - one of metrics which are matching filters
and second of not matching
"""
matching_metrics = []
not_matching_metrics = []
for dist in metrics:
if dist.key.metric.namespace == namespace\
and dist.key.metric.name == name:
matching_metrics.append(dist)
else:
not_matching_metrics.append(dist)
return matching_metrics, not_matching_metrics
[docs]def get_generic_distributions(generic_dists, metric_id):
"""Creates flatten list of distributions per its value type.
A generic distribution is the one which is not processed but saved in
the most raw version.
Args:
generic_dists: list of distributions to be saved
metric_id(uuid): id of the current test run
Returns:
list of dictionaries made from :class:`DistributionMetric`
"""
return sum(
(get_all_distributions_by_type(dist, metric_id)
for dist in generic_dists),
[]
)
[docs]def get_all_distributions_by_type(dist, metric_id):
"""Creates new list of objects with type of each distribution
metric value.
Args:
dist(object): DistributionMetric object to be parsed
metric_id(uuid): id of the current test run
Returns:
list of :class:`DistributionMetric` objects
"""
submit_timestamp = time.time()
dist_types = ['mean', 'max', 'min', 'sum']
return [
get_distribution_dict(dist_type, submit_timestamp,
dist, metric_id)
for dist_type in dist_types
]
[docs]def get_distribution_dict(metric_type, submit_timestamp, dist, metric_id):
"""Function creates :class:`DistributionMetric`
Args:
metric_type(str): type of value from distribution metric which will
be saved (ex. max, min, mean, sum)
submit_timestamp: timestamp when metric is saved
dist(object) distribution object from pipeline result
metric_id(uuid): id of the current test run
Returns:
dictionary prepared for saving according to schema
"""
return DistributionMetric(dist, submit_timestamp, metric_id,
metric_type).as_dict()
[docs]class MetricsReader(object):
"""
A :class:`MetricsReader` retrieves metrics from pipeline result,
prepares it for publishers and setup publishers.
"""
publishers = []
def __init__(self, project_name=None, bq_table=None, bq_dataset=None,
publish_to_bq=False, filters=None):
"""Initializes :class:`MetricsReader` .
Args:
project_name (str): project with BigQuery where metrics will be saved
bq_table (str): BigQuery table where metrics will be saved
bq_dataset (str): BigQuery dataset where metrics will be saved
filters: MetricFilter to query only filtered metrics
"""
self._namespace = bq_table
self.publishers.append(ConsoleMetricsPublisher())
check = project_name and bq_table and bq_dataset and publish_to_bq
if check:
bq_publisher = BigQueryMetricsPublisher(
project_name, bq_table, bq_dataset)
self.publishers.append(bq_publisher)
self.filters = filters
[docs] def publish_metrics(self, result):
metrics = result.metrics().query(self.filters)
# Metrics from pipeline result are stored in map with keys: 'gauges',
# 'distributions' and 'counters'.
# Under each key there is list of objects of each metric type. It is
# required to prepare metrics for publishing purposes. Expected is to have
# a list of dictionaries matching the schema.
insert_dicts = self._prepare_all_metrics(metrics)
if len(insert_dicts) > 0:
for publisher in self.publishers:
publisher.publish(insert_dicts)
def _prepare_all_metrics(self, metrics):
metric_id = uuid.uuid4().hex
insert_rows = self._get_counters(metrics['counters'], metric_id)
insert_rows += self._get_distributions(metrics['distributions'], metric_id)
return insert_rows
def _get_counters(self, counters, metric_id):
submit_timestamp = time.time()
return [
CounterMetric(counter, submit_timestamp, metric_id).as_dict()
for counter in counters
]
def _get_distributions(self, distributions, metric_id):
rows = []
matching_namsespace, not_matching_namespace = \
split_metrics_by_namespace_and_name(distributions, self._namespace,
RUNTIME_METRIC)
if len(matching_namsespace) > 0:
runtime_metric = RuntimeMetric(matching_namsespace, metric_id)
rows.append(runtime_metric.as_dict())
if len(not_matching_namespace) > 0:
rows += get_generic_distributions(not_matching_namespace, metric_id)
return rows
[docs]class Metric(object):
"""Metric base class in ready-to-save format."""
def __init__(self, submit_timestamp, metric_id, value,
metric=None, label=None):
"""Initializes :class:`Metric`
Args:
metric (object): object of metric result
submit_timestamp (float): date-time of saving metric to database
metric_id (uuid): unique id to identify test run
value: value of metric
label: custom metric name to be saved in database
"""
self.submit_timestamp = submit_timestamp
self.metric_id = metric_id
self.label = label or metric.key.metric.namespace + \
'_' + parse_step(metric.key.step) + \
'_' + metric.key.metric.name
self.value = value
[docs] def as_dict(self):
return {SUBMIT_TIMESTAMP_LABEL: self.submit_timestamp,
ID_LABEL: self.metric_id,
VALUE_LABEL: self.value,
METRICS_TYPE_LABEL: self.label
}
[docs]class CounterMetric(Metric):
"""The Counter Metric in ready-to-publish format.
Args:
counter_metric (object): counter metric object from MetricResult
submit_timestamp (float): date-time of saving metric to database
metric_id (uuid): unique id to identify test run
"""
def __init__(self, counter_metric, submit_timestamp, metric_id):
value = counter_metric.committed
super(CounterMetric, self).__init__(submit_timestamp, metric_id,
value, counter_metric)
[docs]class DistributionMetric(Metric):
"""The Distribution Metric in ready-to-publish format.
Args:
dist_metric (object): distribution metric object from MetricResult
submit_timestamp (float): date-time of saving metric to database
metric_id (uuid): unique id to identify test run
"""
def __init__(self, dist_metric, submit_timestamp, metric_id, metric_type):
custom_label = dist_metric.key.metric.namespace + \
'_' + parse_step(dist_metric.key.step) + \
'_' + metric_type + \
'_' + dist_metric.key.metric.name
value = getattr(dist_metric.committed, metric_type)
super(DistributionMetric, self) \
.__init__(submit_timestamp, metric_id, value, dist_metric, custom_label)
[docs]class RuntimeMetric(Metric):
"""The Distribution Metric in ready-to-publish format.
Args:
runtime_list: list of distributions metrics from MetricResult
with runtime name
metric_id(uuid): unique id to identify test run
"""
def __init__(self, runtime_list, metric_id):
value = self._prepare_runtime_metrics(runtime_list)
submit_timestamp = time.time()
# Label does not include step name, because it is one value calculated
# out of many steps
label = runtime_list[0].key.metric.namespace + \
'_' + RUNTIME_METRIC
super(RuntimeMetric, self).__init__(submit_timestamp, metric_id,
value, None, label)
def _prepare_runtime_metrics(self, distributions):
min_values = []
max_values = []
for dist in distributions:
min_values.append(dist.result.min)
max_values.append(dist.result.max)
# finding real start
min_value = min(min_values)
# finding real end
max_value = max(max_values)
runtime_in_s = float(max_value - min_value)
return runtime_in_s
[docs]class ConsoleMetricsPublisher(object):
"""A :class:`ConsoleMetricsPublisher` publishes collected metrics
to console output."""
[docs] def publish(self, results):
if len(results) > 0:
log = "Load test results for test: %s and timestamp: %s:" \
% (results[0][ID_LABEL], results[0][SUBMIT_TIMESTAMP_LABEL])
_LOGGER.info(log)
for result in results:
log = "Metric: %s Value: %d" \
% (result[METRICS_TYPE_LABEL], result[VALUE_LABEL])
_LOGGER.info(log)
else:
_LOGGER.info("No test results were collected.")
[docs]class BigQueryMetricsPublisher(object):
"""A :class:`BigQueryMetricsPublisher` publishes collected metrics
to BigQuery output."""
def __init__(self, project_name, table, dataset):
self.bq = BigQueryClient(project_name, table, dataset)
[docs] def publish(self, results):
outputs = self.bq.save(results)
if len(outputs) > 0:
for output in outputs:
errors = output['errors']
for err in errors:
_LOGGER.error(err['message'])
raise ValueError(
'Unable save rows in BigQuery: {}'.format(err['message']))
[docs]class BigQueryClient(object):
"""A :class:`BigQueryClient` publishes collected metrics to
BigQuery output."""
def __init__(self, project_name, table, dataset):
self._namespace = table
self._client = bigquery.Client(project=project_name)
self._schema_names = self._get_schema_names()
schema = self._prepare_schema()
self._get_or_create_table(schema, dataset)
def _get_schema_names(self):
return [schema['name'] for schema in SCHEMA]
def _prepare_schema(self):
return [SchemaField(**row) for row in SCHEMA]
def _get_or_create_table(self, bq_schemas, dataset):
if self._namespace == '':
raise ValueError('Namespace cannot be empty.')
dataset = self._get_dataset(dataset)
table_ref = dataset.table(self._namespace)
try:
self._bq_table = self._client.get_table(table_ref)
except NotFound:
table = bigquery.Table(table_ref, schema=bq_schemas)
self._bq_table = self._client.create_table(table)
def _get_dataset(self, dataset_name):
bq_dataset_ref = self._client.dataset(dataset_name)
try:
bq_dataset = self._client.get_dataset(bq_dataset_ref)
except NotFound:
raise ValueError(
'Dataset {} does not exist in your project. '
'You have to create table first.'
.format(dataset_name))
return bq_dataset
[docs] def save(self, results):
return self._client.insert_rows(self._bq_table, results)
[docs]class MeasureTime(beam.DoFn):
"""A distribution metric prepared to be added to pipeline as ParDo
to measure runtime."""
def __init__(self, namespace):
"""Initializes :class:`MeasureTime`.
namespace(str): namespace of metric
"""
self.namespace = namespace
self.runtime = Metrics.distribution(self.namespace, RUNTIME_METRIC)
[docs] def start_bundle(self):
self.runtime.update(time.time())
[docs] def finish_bundle(self):
self.runtime.update(time.time())
[docs] def process(self, element):
yield element
[docs]class MeasureBytes(beam.DoFn):
"""Metric to measure how many bytes was observed in pipeline."""
LABEL = 'total_bytes'
def __init__(self, namespace, extractor=None):
"""Initializes :class:`MeasureBytes`.
Args:
namespace(str): metric namespace
extractor: function to extract elements to be count
"""
self.namespace = namespace
self.counter = Metrics.counter(self.namespace, self.LABEL)
self.extractor = extractor if extractor else lambda x: (yield x)
[docs] def process(self, element, *args):
for value in self.extractor(element, *args):
self.counter.inc(len(value))
yield element
[docs]class CountMessages(beam.DoFn):
LABEL = 'total_messages'
def __init__(self, namespace):
self.namespace = namespace
self.counter = Metrics.counter(self.namespace, self.LABEL)
[docs] def process(self, element):
self.counter.inc(1)
yield element