Source code for apache_beam.runners.dataflow.ptransform_overrides
#
# Licensed to the Apache Software Foundation (ASF) under one or more
# contributor license agreements. See the NOTICE file distributed with
# this work for additional information regarding copyright ownership.
# The ASF licenses this file to You under the Apache License, Version 2.0
# (the "License"); you may not use this file except in compliance with
# the License. You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
"""Ptransform overrides for DataflowRunner."""
# pytype: skip-file
from __future__ import absolute_import
from apache_beam.pipeline import PTransformOverride
[docs]class CreatePTransformOverride(PTransformOverride):
"""A ``PTransformOverride`` for ``Create`` in streaming mode."""
[docs] def matches(self, applied_ptransform):
# Imported here to avoid circular dependencies.
# pylint: disable=wrong-import-order, wrong-import-position
from apache_beam import Create
from apache_beam.runners.dataflow.internal import apiclient
if isinstance(applied_ptransform.transform, Create):
return not apiclient._use_fnapi(
applied_ptransform.outputs[None].pipeline._options)
else:
return False
[docs] def get_replacement_transform(self, ptransform):
# Imported here to avoid circular dependencies.
# pylint: disable=wrong-import-order, wrong-import-position
from apache_beam import PTransform
# Return a wrapper rather than ptransform.as_read() directly to
# ensure backwards compatibility of the pipeline structure.
class LegacyCreate(PTransform):
def expand(self, pbegin):
return pbegin | ptransform.as_read()
return LegacyCreate().with_output_types(ptransform.get_output_type())
[docs]class ReadPTransformOverride(PTransformOverride):
"""A ``PTransformOverride`` for ``Read(BoundedSource)``"""
[docs] def matches(self, applied_ptransform):
from apache_beam.io import Read
from apache_beam.io.iobase import BoundedSource
# Only overrides Read(BoundedSource) transform
if (isinstance(applied_ptransform.transform, Read) and
not getattr(applied_ptransform.transform, 'override', False)):
if isinstance(applied_ptransform.transform.source, BoundedSource):
return True
return False
[docs] def get_replacement_transform(self, ptransform):
from apache_beam import pvalue
from apache_beam.io import iobase
class Read(iobase.Read):
override = True
def expand(self, pbegin):
return pvalue.PCollection(
self.pipeline, is_bounded=self.source.is_bounded())
return Read(ptransform.source).with_output_types(
ptransform.get_type_hints().simple_output_type('Read'))
[docs]class JrhReadPTransformOverride(PTransformOverride):
"""A ``PTransformOverride`` for ``Read(BoundedSource)``"""
[docs] def matches(self, applied_ptransform):
from apache_beam.io import Read
from apache_beam.io.iobase import BoundedSource
return (
isinstance(applied_ptransform.transform, Read) and
isinstance(applied_ptransform.transform.source, BoundedSource))
[docs] def get_replacement_transform(self, ptransform):
from apache_beam.io import Read
from apache_beam.transforms import core
from apache_beam.transforms import util
# Make this a local to narrow what's captured in the closure.
source = ptransform.source
class JrhRead(core.PTransform):
def expand(self, pbegin):
return (
pbegin
| core.Impulse()
| 'Split' >> core.FlatMap(
lambda _: source.split(
Read.get_desired_chunk_size(source.estimate_size())))
| util.Reshuffle()
| 'ReadSplits' >> core.FlatMap(
lambda split: split.source.read(
split.source.get_range_tracker(
split.start_position, split.stop_position))))
return JrhRead().with_output_types(
ptransform.get_type_hints().simple_output_type('Read'))