Source code for apache_beam.dataframe.frame_base

#
# Licensed to the Apache Software Foundation (ASF) under one or more
# contributor license agreements.  See the NOTICE file distributed with
# this work for additional information regarding copyright ownership.
# The ASF licenses this file to You under the Apache License, Version 2.0
# (the "License"); you may not use this file except in compliance with
# the License.  You may obtain a copy of the License at
#
#    http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from __future__ import absolute_import

import inspect
from typing import Dict

import pandas as pd

from apache_beam.dataframe import expressions


[docs]class DeferredFrame(object): _pandas_type_map = {} # type: Dict[type, type] def __init__(self, expr): self._expr = expr @classmethod def _register_for(cls, pandas_type): def wrapper(deferred_type): cls._pandas_type_map[pandas_type] = deferred_type return deferred_type return wrapper
[docs] @classmethod def wrap(cls, expr): return cls._pandas_type_map[type(expr.proxy())](expr)
def _elementwise(self, func, name=None, other_args=(), inplace=False): return _elementwise_function(func, name, inplace=inplace)(self, *other_args) @property def dtypes(self): return self._expr.proxy().dtypes
[docs]def name_and_func(method): if isinstance(method, str): return method, lambda df, *args, **kwargs: getattr(df, method)(*args, ** kwargs) else: return method.__name__, method
def _elementwise_method(func, name=None, restrictions=None, inplace=False): if name is None: name, func = name_and_func(func) if restrictions is None: restrictions = {} return _elementwise_function(func, name, restrictions) def _elementwise_function(func, name=None, restrictions=None, inplace=False): if name is None: name = func.__name__ if restrictions is None: restrictions = {} def wrapper(*args, **kwargs): for key, values in restrictions.items(): if key in kwargs: value = kwargs[key] else: try: # pylint: disable=deprecated-method ix = inspect.getargspec(func).args.index(key) except ValueError: # TODO: fix for delegation? continue if len(args) <= ix: continue value = args[ix] if not isinstance(values, list): values = [values] if value not in values: raise NotImplementedError( '%s=%s not supported for %s' % (key, value, name)) deferred_arg_indices = [] deferred_arg_exprs = [] constant_args = [None] * len(args) for ix, arg in enumerate(args): if isinstance(arg, DeferredFrame): deferred_arg_indices.append(ix) deferred_arg_exprs.append(arg._expr) elif isinstance(arg, pd.core.generic.NDFrame): deferred_arg_indices.append(ix) deferred_arg_exprs.append(expressions.ConstantExpression(arg, arg[0:0])) else: constant_args[ix] = arg if inplace: actual_func = copy_and_mutate(func) else: actual_func = func def apply(*actual_args): full_args = list(constant_args) for ix, arg in zip(deferred_arg_indices, actual_args): full_args[ix] = arg return actual_func(*full_args, **kwargs) result_expr = expressions.elementwise_expression( name, apply, deferred_arg_exprs) if inplace: args[0]._expr = result_expr return args[0] else: return DeferredFrame.wrap(result_expr) return wrapper
[docs]def copy_and_mutate(func): def wrapper(self, *args, **kwargs): copy = self.copy() func(copy, *args, **kwargs) return copy return wrapper
[docs]class WontImplementError(NotImplementedError): """An subclass of NotImplementedError to raise indicating that implementing the given method is infeasible. Raising this error will also prevent this doctests from being validated when run with the beam dataframe validation doctest runner. """ pass