#
# Licensed to the Apache Software Foundation (ASF) under one or more
# contributor license agreements. See the NOTICE file distributed with
# this work for additional information regarding copyright ownership.
# The ASF licenses this file to You under the Apache License, Version 2.0
# (the "License"); you may not use this file except in compliance with
# the License. You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
"""Utilities to be used in Interactive Beam.
"""
from __future__ import absolute_import
import hashlib
import json
import logging
import pandas as pd
from apache_beam.portability.api.beam_runner_api_pb2 import TestStreamPayload
from apache_beam.testing.test_stream import WindowedValueHolder
[docs]def to_element_list(
reader, # type: Generator[Union[TestStreamPayload.Event, WindowedValueHolder]]
coder, # type: Coder
include_window_info, # type: bool
n=None # type: int
):
# type: (...) -> List[WindowedValue]
"""Returns an iterator that properly decodes the elements from the reader.
"""
# Defining a generator like this makes it easier to limit the count of
# elements read. Otherwise, the count limit would need to be duplicated.
def elements():
for e in reader:
if isinstance(e, TestStreamPayload.Event):
if (e.HasField('watermark_event') or
e.HasField('processing_time_event')):
continue
for tv in e.element_event.elements:
decoded = coder.decode(tv.encoded_element)
yield (
decoded.windowed_value
if include_window_info else decoded.windowed_value.value)
elif isinstance(e, WindowedValueHolder):
yield (
e.windowed_value if include_window_info else e.windowed_value.value)
else:
yield e
# Because we can yield multiple elements from a single TestStreamFileRecord,
# we have to limit the count here to ensure that `n` is fulfilled.
for count, e in enumerate(elements()):
if n and count >= n:
break
yield e
[docs]def elements_to_df(elements, include_window_info=False):
# type: (List[WindowedValue], bool) -> DataFrame
"""Parses the given elements into a Dataframe.
If the elements are a list of WindowedValues, then it will break out the
elements into their own DataFrame and return it. If include_window_info is
True, then it will concatenate the windowing information onto the elements
DataFrame.
"""
rows = []
windowed_info = []
for e in elements:
rows.append(e.value)
if include_window_info:
windowed_info.append([e.timestamp.micros, e.windows, e.pane_info])
rows_df = pd.DataFrame(rows)
if include_window_info:
windowed_info_df = pd.DataFrame(
windowed_info, columns=['event_time', 'windows', 'pane_info'])
final_df = pd.concat([rows_df, windowed_info_df], axis=1)
else:
final_df = rows_df
return final_df
[docs]def register_ipython_log_handler():
# type: () -> None
"""Adds the IPython handler to a dummy parent logger (named
'apache_beam.runners.interactive') of all interactive modules' loggers so that
if is_in_notebook, logging displays the logs as HTML in frontends.
"""
# apache_beam.runners.interactive is not a module, thus this "root" logger is
# a dummy one created to hold the IPython log handler. When children loggers
# have propagate as True (by default) and logging level as NOTSET (by default,
# so the "root" logger's logging level takes effect), the IPython log handler
# will be triggered at the "root"'s own logging level. And if a child logger
# sets its logging level, it can take control back.
interactive_root_logger = logging.getLogger('apache_beam.runners.interactive')
if any([isinstance(h, IPythonLogHandler)
for h in interactive_root_logger.handlers]):
return
interactive_root_logger.setLevel(logging.INFO)
interactive_root_logger.addHandler(IPythonLogHandler())
# Disable the propagation so that logs emitted from interactive modules should
# only be handled by loggers and handlers defined within interactive packages.
interactive_root_logger.propagate = False
[docs]class IPythonLogHandler(logging.Handler):
"""A logging handler to display logs as HTML in IPython backed frontends."""
# TODO(BEAM-7923): Switch to Google hosted CDN once
# https://code.google.com/archive/p/google-ajax-apis/issues/637 is resolved.
log_template = """
<link rel="stylesheet" href="https://stackpath.bootstrapcdn.com/bootstrap/4.4.1/css/bootstrap.min.css" integrity="sha384-Vkoo8x4CGsO3+Hhxv8T/Q5PaXtkKtu6ug5TOeNV6gBiFeWPGFN9MuhOf23Q9Ifjh" crossorigin="anonymous">
<div class="alert alert-{level}">{msg}</div>"""
logging_to_alert_level_map = {
logging.CRITICAL: 'danger',
logging.ERROR: 'danger',
logging.WARNING: 'warning',
logging.INFO: 'info',
logging.DEBUG: 'dark',
logging.NOTSET: 'light'
}
[docs] def emit(self, record):
try:
from html import escape
from IPython.core.display import HTML
from IPython.core.display import display
display(
HTML(
self.log_template.format(
level=self.logging_to_alert_level_map[record.levelno],
msg=escape(record.msg % record.args))))
except ImportError:
pass # NOOP when dependencies are not available.
[docs]def obfuscate(*inputs):
# type: (*Any) -> str
"""Obfuscates any inputs into a hexadecimal string."""
str_inputs = [str(input) for input in inputs]
merged_inputs = '_'.join(str_inputs)
return hashlib.md5(merged_inputs.encode('utf-8')).hexdigest()
[docs]class ProgressIndicator(object):
"""An indicator visualizing code execution in progress."""
# TODO(BEAM-7923): Switch to Google hosted CDN once
# https://code.google.com/archive/p/google-ajax-apis/issues/637 is resolved.
spinner_template = """
<link rel="stylesheet" href="https://stackpath.bootstrapcdn.com/bootstrap/4.4.1/css/bootstrap.min.css" integrity="sha384-Vkoo8x4CGsO3+Hhxv8T/Q5PaXtkKtu6ug5TOeNV6gBiFeWPGFN9MuhOf23Q9Ifjh" crossorigin="anonymous">
<div id="{id}" class="spinner-border text-info" role="status">
</div>"""
spinner_removal_template = """
$("#{id}").remove();"""
def __init__(self, enter_text, exit_text):
# type: (str, str) -> None
self._id = 'progress_indicator_{}'.format(obfuscate(id(self)))
self._enter_text = enter_text
self._exit_text = exit_text
def __enter__(self):
try:
from IPython.core.display import HTML
from IPython.core.display import display
from apache_beam.runners.interactive import interactive_environment as ie
if ie.current_env().is_in_notebook:
display(HTML(self.spinner_template.format(id=self._id)))
else:
display(self._enter_text)
except ImportError:
pass # NOOP when dependencies are not available.
def __exit__(self, exc_type, exc_value, traceback):
try:
from IPython.core.display import Javascript
from IPython.core.display import display
from IPython.core.display import display_javascript
from apache_beam.runners.interactive import interactive_environment as ie
if ie.current_env().is_in_notebook:
script = self.spinner_removal_template.format(id=self._id)
display_javascript(
Javascript(
ie._JQUERY_WITH_DATATABLE_TEMPLATE.format(
customized_script=script)))
else:
display(self._exit_text)
except ImportError:
pass # NOOP when dependencies are not avaialble.
[docs]def progress_indicated(func):
# type: (Callable[..., Any]) -> Callable[..., Any]
"""A decorator using a unique progress indicator as a context manager to
execute the given function within."""
def run_within_progress_indicator(*args, **kwargs):
with ProgressIndicator('Processing...', 'Done.'):
return func(*args, **kwargs)
return run_within_progress_indicator
[docs]def as_json(func):
# type: (Callable[..., Any]) -> Callable[..., str]
"""A decorator convert python objects returned by callables to json
string.
The decorated function should always return an object parsable by json.dumps.
If the object is not parsable, the str() of original object is returned
instead.
"""
def return_as_json(*args, **kwargs):
try:
return_value = func(*args, **kwargs)
return json.dumps(return_value)
except TypeError:
return str(return_value)
return return_as_json