Source code for apache_beam.dataframe.frames

#
# Licensed to the Apache Software Foundation (ASF) under one or more
# contributor license agreements.  See the NOTICE file distributed with
# this work for additional information regarding copyright ownership.
# The ASF licenses this file to You under the Apache License, Version 2.0
# (the "License"); you may not use this file except in compliance with
# the License.  You may obtain a copy of the License at
#
#    http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from __future__ import absolute_import

import collections
import inspect
import math

import numpy as np
import pandas as pd

from apache_beam.dataframe import expressions
from apache_beam.dataframe import frame_base
from apache_beam.dataframe import io
from apache_beam.dataframe import partitionings


[docs]def populate_not_implemented(pd_type): def wrapper(deferred_type): for attr in dir(pd_type): # Don't auto-define hidden methods or dunders if attr.startswith('_'): continue if not hasattr(deferred_type, attr): pd_value = getattr(pd_type, attr) if isinstance(pd_value, property) or inspect.isclass(pd_value): # Some of the properties on pandas types (cat, dt, sparse), are # actually attributes with class values, not properties setattr( deferred_type, attr, property(frame_base.not_implemented_method(attr))) elif callable(pd_value): setattr(deferred_type, attr, frame_base.not_implemented_method(attr)) return deferred_type return wrapper
[docs]class DeferredDataFrameOrSeries(frame_base.DeferredFrame): def __array__(self, dtype=None): raise frame_base.WontImplementError( 'Conversion to a non-deferred a numpy array.')
[docs] @frame_base.args_to_kwargs(pd.DataFrame) @frame_base.populate_defaults(pd.DataFrame) def droplevel(self, level, axis): return frame_base.DeferredFrame.wrap( expressions.ComputedExpression( 'droplevel', lambda df: df.droplevel(level, axis=axis), [self._expr], requires_partition_by=partitionings.Nothing(), preserves_partition_by=partitionings.Index() if axis in (1, 'column') else partitionings.Nothing()))
[docs] @frame_base.args_to_kwargs(pd.DataFrame) @frame_base.populate_defaults(pd.DataFrame) @frame_base.maybe_inplace def fillna(self, value, method, axis, **kwargs): if method is not None and axis in (0, 'index'): raise frame_base.WontImplementError('order-sensitive') if isinstance(value, frame_base.DeferredBase): value_expr = value._expr else: value_expr = expressions.ConstantExpression(value) return frame_base.DeferredFrame.wrap( # yapf: disable expressions.ComputedExpression( 'fillna', lambda df, value: df.fillna(value, method=method, axis=axis, **kwargs), [self._expr, value_expr], preserves_partition_by=partitionings.Singleton(), requires_partition_by=partitionings.Nothing()))
[docs] @frame_base.args_to_kwargs(pd.DataFrame) @frame_base.populate_defaults(pd.DataFrame) def ffill(self, **kwargs): return self.fillna(method='ffill', **kwargs)
pad = ffill
[docs] @frame_base.args_to_kwargs(pd.DataFrame) @frame_base.populate_defaults(pd.DataFrame) def groupby(self, by, level, axis, as_index, group_keys, **kwargs): if not as_index: raise NotImplementedError('groupby(as_index=False)') if not group_keys: raise NotImplementedError('groupby(group_keys=False)') if axis in (1, 'columns'): return _DeferredGroupByCols( expressions.ComputedExpression( 'groupbycols', lambda df: df.groupby(by, axis=axis, **kwargs), [self._expr], requires_partition_by=partitionings.Nothing(), preserves_partition_by=partitionings.Index())) if level is None and by is None: raise TypeError("You have to supply one of 'by' and 'level'") elif level is not None: if isinstance(level, (list, tuple)): levels = level else: levels = [level] all_levels = self._expr.proxy().index.names levels = [all_levels[i] if isinstance(i, int) else i for i in levels] levels_to_drop = self._expr.proxy().index.names.difference(levels) if levels_to_drop: to_group = self.droplevel(levels_to_drop)._expr else: to_group = self._expr elif callable(by): def map_index(df): df = df.copy() df.index = df.index.map(by) return df to_group = expressions.ComputedExpression( 'map_index', map_index, [self._expr], requires_partition_by=partitionings.Nothing(), preserves_partition_by=partitionings.Nothing()) elif isinstance(by, DeferredSeries): raise NotImplementedError( "grouping by a Series is not yet implemented. You can group by a " "DataFrame column by specifying its name.") elif isinstance(by, np.ndarray): raise frame_base.WontImplementError('order sensitive') elif isinstance(self, DeferredDataFrame): if not isinstance(by, list): by = [by] index_names = self._expr.proxy().index.names index_names_in_by = list(set(by).intersection(index_names)) if index_names_in_by: if set(by) == set(index_names): to_group = self._expr elif set(by).issubset(index_names): to_group = self.droplevel(index_names.difference(by))._expr else: to_group = self.reset_index(index_names_in_by).set_index(by)._expr else: to_group = self.set_index(by)._expr else: raise NotImplementedError(by) return DeferredGroupBy( expressions.ComputedExpression( 'groupbyindex', lambda df: df.groupby( level=list(range(df.index.nlevels)), **kwargs), [to_group], requires_partition_by=partitionings.Index(), preserves_partition_by=partitionings.Singleton()), kwargs)
abs = frame_base._elementwise_method('abs') astype = frame_base._elementwise_method('astype') copy = frame_base._elementwise_method('copy') @property def dtype(self): return self._expr.proxy().dtype dtypes = dtype def _get_index(self): return _DeferredIndex(self) index = property( _get_index, frame_base.not_implemented_method('index (setter)'))
[docs]@populate_not_implemented(pd.Series) @frame_base.DeferredFrame._register_for(pd.Series) class DeferredSeries(DeferredDataFrameOrSeries): def __getitem__(self, key): if _is_null_slice(key) or key is Ellipsis: return self elif (isinstance(key, int) or _is_integer_slice(key) ) and self._expr.proxy().index._should_fallback_to_positional(): raise frame_base.WontImplementError('order sensitive') elif isinstance(key, slice) or callable(key): return frame_base.DeferredFrame.wrap( expressions.ComputedExpression( # yapf: disable 'getitem', lambda df: df[key], [self._expr], requires_partition_by=partitionings.Nothing(), preserves_partition_by=partitionings.Singleton())) elif isinstance(key, DeferredSeries) and key._expr.proxy().dtype == bool: return frame_base.DeferredFrame.wrap( expressions.ComputedExpression( # yapf: disable 'getitem', lambda df, indexer: df[indexer], [self._expr, key._expr], requires_partition_by=partitionings.Index(), preserves_partition_by=partitionings.Singleton())) elif pd.core.series.is_iterator(key) or pd.core.common.is_bool_indexer(key): raise frame_base.WontImplementError('order sensitive') else: # We could consider returning a deferred scalar, but that might # be more surprising than a clear error. raise frame_base.WontImplementError('non-deferred')
[docs] @frame_base.args_to_kwargs(pd.Series) @frame_base.populate_defaults(pd.Series) def align(self, other, join, axis, level, method, **kwargs): if level is not None: raise NotImplementedError('per-level align') if method is not None: raise frame_base.WontImplementError('order-sensitive') # We're using pd.concat here as expressions don't yet support # multiple return values. aligned = frame_base.DeferredFrame.wrap( expressions.ComputedExpression( 'align', lambda x, y: pd.concat([x, y], axis=1, join='inner'), [self._expr, other._expr], requires_partition_by=partitionings.Index(), preserves_partition_by=partitionings.Index())) return aligned.iloc[:, 0], aligned.iloc[:, 1]
array = property(frame_base.wont_implement_method('non-deferred value')) between = frame_base._elementwise_method('between')
[docs] def dot(self, other): left = self._expr if isinstance(other, DeferredSeries): right = expressions.ComputedExpression( 'to_dataframe', pd.DataFrame, [other._expr], requires_partition_by=partitionings.Nothing(), preserves_partition_by=partitionings.Index()) right_is_series = True elif isinstance(other, DeferredDataFrame): right = other._expr right_is_series = False else: raise frame_base.WontImplementError('non-deferred result') dots = expressions.ComputedExpression( 'dot', # Transpose so we can sum across rows. (lambda left, right: pd.DataFrame(left @ right).T), [left, right], requires_partition_by=partitionings.Index()) with expressions.allow_non_parallel_operations(True): sums = expressions.ComputedExpression( 'sum', lambda dots: dots.sum(), # [dots], requires_partition_by=partitionings.Singleton()) if right_is_series: result = expressions.ComputedExpression( 'extract', lambda df: df[0], [sums], requires_partition_by=partitionings.Singleton()) else: result = sums return frame_base.DeferredFrame.wrap(result)
__matmul__ = dot
[docs] @frame_base.args_to_kwargs(pd.Series) @frame_base.populate_defaults(pd.Series) def std(self, axis, skipna, level, ddof, **kwargs): if level is not None: raise NotImplementedError("per-level aggregation") if skipna is None or skipna: self = self.dropna() # pylint: disable=self-cls-assignment # See the online, numerically stable formulae at # https://en.wikipedia.org/wiki/Algorithms_for_calculating_variance#Parallel_algorithm # and # https://en.wikipedia.org/wiki/Algorithms_for_calculating_variance#Welford's_online_algorithm def compute_moments(x): n = len(x) m = x.std(ddof=0)**2 * n s = x.sum() return pd.DataFrame(dict(m=[m], s=[s], n=[n])) def combine_moments(data): m = s = n = 0.0 for datum in data.itertuples(): if datum.n == 0: continue elif n == 0: m, s, n = datum.m, datum.s, datum.n else: delta = s / n - datum.s / datum.n m += datum.m + delta**2 * n * datum.n / (n + datum.n) s += datum.s n += datum.n if n <= ddof: return float('nan') else: return math.sqrt(m / (n - ddof)) moments = expressions.ComputedExpression( 'compute_moments', compute_moments, [self._expr], requires_partition_by=partitionings.Nothing()) with expressions.allow_non_parallel_operations(True): return frame_base.DeferredFrame.wrap( expressions.ComputedExpression( 'combine_moments', combine_moments, [moments], requires_partition_by=partitionings.Singleton()))
[docs] @frame_base.args_to_kwargs(pd.Series) @frame_base.populate_defaults(pd.Series) def corr(self, other, method, min_periods): if method == 'pearson': # Note that this is the default. x, y = self.dropna().align(other.dropna(), 'inner') return x._corr_aligned(y, min_periods) else: # The rank-based correlations are not obviously parallelizable, though # perhaps an approximation could be done with a knowledge of quantiles # and custom partitioning. return frame_base.DeferredFrame.wrap( expressions.ComputedExpression( 'corr', lambda df, other: df.corr(other, method=method, min_periods=min_periods), [self._expr, other._expr], requires_partition_by=partitionings.Singleton()))
def _corr_aligned(self, other, min_periods): std_x = self.std() std_y = other.std() cov = self._cov_aligned(other, min_periods) return cov.apply( lambda cov, std_x, std_y: cov / (std_x * std_y), args=[std_x, std_y])
[docs] @frame_base.args_to_kwargs(pd.Series) @frame_base.populate_defaults(pd.Series) def cov(self, other, min_periods, ddof): x, y = self.dropna().align(other.dropna(), 'inner') return x._cov_aligned(y, min_periods, ddof)
def _cov_aligned(self, other, min_periods, ddof=1): # Use the formulae from # https://en.wikipedia.org/wiki/Algorithms_for_calculating_variance#Covariance def compute_co_moments(x, y): n = len(x) if n <= 1: c = 0 else: c = x.cov(y) * (n - 1) sx = x.sum() sy = y.sum() return pd.DataFrame(dict(c=[c], sx=[sx], sy=[sy], n=[n])) def combine_co_moments(data): c = sx = sy = n = 0.0 for datum in data.itertuples(): if datum.n == 0: continue elif n == 0: c, sx, sy, n = datum.c, datum.sx, datum.sy, datum.n else: c += ( datum.c + (sx / n - datum.sx / datum.n) * (sy / n - datum.sy / datum.n) * n * datum.n / (n + datum.n)) sx += datum.sx sy += datum.sy n += datum.n if n < max(2, ddof, min_periods or 0): return float('nan') else: return c / (n - ddof) moments = expressions.ComputedExpression( 'compute_co_moments', compute_co_moments, [self._expr, other._expr], requires_partition_by=partitionings.Index()) with expressions.allow_non_parallel_operations(True): return frame_base.DeferredFrame.wrap( expressions.ComputedExpression( 'combine_co_moments', combine_co_moments, [moments], requires_partition_by=partitionings.Singleton()))
[docs] @frame_base.args_to_kwargs(pd.Series) @frame_base.populate_defaults(pd.Series) @frame_base.maybe_inplace def dropna(self, **kwargs): return frame_base.DeferredFrame.wrap( expressions.ComputedExpression( 'dropna', lambda df: df.dropna(**kwargs), [self._expr], preserves_partition_by=partitionings.Singleton(), requires_partition_by=partitionings.Nothing()))
items = iteritems = frame_base.wont_implement_method('non-lazy') isin = frame_base._elementwise_method('isin') isna = frame_base._elementwise_method('isna') notnull = notna = frame_base._elementwise_method('notna') to_numpy = to_string = frame_base.wont_implement_method('non-deferred value') transform = frame_base._elementwise_method( 'transform', restrictions={'axis': 0})
[docs] def aggregate(self, func, axis=0, *args, **kwargs): if isinstance(func, list) and len(func) > 1: # Aggregate each column separately, then stick them all together. rows = [self.agg([f], *args, **kwargs) for f in func] return frame_base.DeferredFrame.wrap( expressions.ComputedExpression( 'join_aggregate', lambda *rows: pd.concat(rows), [row._expr for row in rows])) else: # We're only handling a single column. base_func = func[0] if isinstance(func, list) else func if _is_associative(base_func) and not args and not kwargs: intermediate = expressions.ComputedExpression( 'pre_aggregate', lambda s: s.agg([base_func], *args, **kwargs), [self._expr], requires_partition_by=partitionings.Nothing(), preserves_partition_by=partitionings.Nothing()) allow_nonparallel_final = True else: intermediate = self._expr allow_nonparallel_final = None # i.e. don't change the value with expressions.allow_non_parallel_operations(allow_nonparallel_final): return frame_base.DeferredFrame.wrap( expressions.ComputedExpression( 'aggregate', lambda s: s.agg(func, *args, **kwargs), [intermediate], preserves_partition_by=partitionings.Singleton(), requires_partition_by=partitionings.Singleton()))
agg = aggregate @property def axes(self): return [self.index] clip = frame_base._elementwise_method('clip') all = frame_base._agg_method('all') any = frame_base._agg_method('any') min = frame_base._agg_method('min') max = frame_base._agg_method('max') prod = product = frame_base._agg_method('prod') sum = frame_base._agg_method('sum') cummax = cummin = cumsum = cumprod = frame_base.wont_implement_method( 'order-sensitive') diff = frame_base.wont_implement_method('order-sensitive') head = tail = frame_base.wont_implement_method('order-sensitive') filter = frame_base._elementwise_method('filter') memory_usage = frame_base.wont_implement_method('non-deferred value') # In Series __contains__ checks the index __contains__ = frame_base.wont_implement_method('non-deferred value')
[docs] @frame_base.args_to_kwargs(pd.Series) @frame_base.populate_defaults(pd.Series) def nlargest(self, keep, **kwargs): # TODO(robertwb): Document 'any' option. # TODO(robertwb): Consider (conditionally) defaulting to 'any' if no # explicit keep parameter is requested. if keep == 'any': keep = 'first' elif keep != 'all': raise frame_base.WontImplementError('order-sensitive') kwargs['keep'] = keep per_partition = expressions.ComputedExpression( 'nlargest-per-partition', lambda df: df.nlargest(**kwargs), [self._expr], preserves_partition_by=partitionings.Singleton(), requires_partition_by=partitionings.Nothing()) with expressions.allow_non_parallel_operations(True): return frame_base.DeferredFrame.wrap( expressions.ComputedExpression( 'nlargest', lambda df: df.nlargest(**kwargs), [per_partition], preserves_partition_by=partitionings.Singleton(), requires_partition_by=partitionings.Singleton()))
[docs] @frame_base.args_to_kwargs(pd.Series) @frame_base.populate_defaults(pd.Series) def nsmallest(self, keep, **kwargs): if keep == 'any': keep = 'first' elif keep != 'all': raise frame_base.WontImplementError('order-sensitive') kwargs['keep'] = keep per_partition = expressions.ComputedExpression( 'nsmallest-per-partition', lambda df: df.nsmallest(**kwargs), [self._expr], preserves_partition_by=partitionings.Singleton(), requires_partition_by=partitionings.Nothing()) with expressions.allow_non_parallel_operations(True): return frame_base.DeferredFrame.wrap( expressions.ComputedExpression( 'nsmallest', lambda df: df.nsmallest(**kwargs), [per_partition], preserves_partition_by=partitionings.Singleton(), requires_partition_by=partitionings.Singleton()))
plot = property(frame_base.wont_implement_method('plot')) pop = frame_base.wont_implement_method('non-lazy') rename_axis = frame_base._elementwise_method('rename_axis')
[docs] @frame_base.args_to_kwargs(pd.Series) @frame_base.populate_defaults(pd.Series) @frame_base.maybe_inplace def replace(self, limit, **kwargs): if limit is None: requires_partition_by = partitionings.Nothing() else: requires_partition_by = partitionings.Singleton() return frame_base.DeferredFrame.wrap( expressions.ComputedExpression( 'replace', lambda df: df.replace(limit=limit, **kwargs), [self._expr], preserves_partition_by=partitionings.Singleton(), requires_partition_by=requires_partition_by))
round = frame_base._elementwise_method('round') searchsorted = frame_base.wont_implement_method('order-sensitive') shift = frame_base.wont_implement_method('order-sensitive') take = frame_base.wont_implement_method('deprecated') to_dict = frame_base.wont_implement_method('non-deferred') to_frame = frame_base._elementwise_method('to_frame')
[docs] def unique(self, as_series=False): if not as_series: raise frame_base.WontImplementError( 'pass as_series=True to get the result as a (deferred) Series') return frame_base.DeferredFrame.wrap( expressions.ComputedExpression( 'unique', lambda df: pd.Series(df.unique()), [self._expr], preserves_partition_by=partitionings.Singleton(), requires_partition_by=partitionings.Singleton()))
[docs] def update(self, other): self._expr = expressions.ComputedExpression( 'update', lambda df, other: df.update(other) or df, [self._expr, other._expr], preserves_partition_by=partitionings.Singleton(), requires_partition_by=partitionings.Index())
unstack = frame_base.wont_implement_method('non-deferred column values') values = property(frame_base.wont_implement_method('non-deferred')) view = frame_base.wont_implement_method('memory sharing semantics') @property def str(self): return _DeferredStringMethods(self._expr)
for name in ['apply', 'map', 'transform']: setattr(DeferredSeries, name, frame_base._elementwise_method(name))
[docs]@populate_not_implemented(pd.DataFrame) @frame_base.DeferredFrame._register_for(pd.DataFrame) class DeferredDataFrame(DeferredDataFrameOrSeries): @property def T(self): return self.transpose() @property def columns(self): return self._expr.proxy().columns @columns.setter def columns(self, columns): def set_columns(df): df = df.copy() df.columns = columns return df return frame_base.DeferredFrame.wrap( expressions.ComputedExpression( 'set_columns', set_columns, [self._expr], requires_partition_by=partitionings.Nothing(), preserves_partition_by=partitionings.Singleton())) def __getattr__(self, name): # Column attribute access. if name in self._expr.proxy().columns: return self[name] else: return object.__getattribute__(self, name) def __getitem__(self, key): # TODO: Replicate pd.DataFrame.__getitem__ logic if isinstance(key, DeferredSeries) and key._expr.proxy().dtype == bool: return self.loc[key] elif isinstance(key, frame_base.DeferredBase): # Fail early if key is a DeferredBase as it interacts surprisingly with # key in self._expr.proxy().columns raise NotImplementedError( "Indexing with a non-bool deferred frame is not yet supported. " "Consider using df.loc[...]") elif isinstance(key, slice): if _is_null_slice(key): return self elif _is_integer_slice(key): # This depends on the contents of the index. raise frame_base.WontImplementError( 'Use iloc or loc with integer slices.') else: return self.loc[key] elif (isinstance(key, list) and all(key_column in self._expr.proxy().columns for key_column in key)) or key in self._expr.proxy().columns: return self._elementwise(lambda df: df[key], 'get_column') else: raise NotImplementedError(key) def __contains__(self, key): # Checks if proxy has the given column return self._expr.proxy().__contains__(key) def __setitem__(self, key, value): if isinstance( key, str) or (isinstance(key, list) and all(isinstance(c, str) for c in key)) or (isinstance(key, DeferredSeries) and key._expr.proxy().dtype == bool): # yapf: disable return self._elementwise( lambda df, key, value: df.__setitem__(key, value), 'set_column', (key, value), inplace=True) else: raise NotImplementedError(key)
[docs] @frame_base.args_to_kwargs(pd.DataFrame) @frame_base.populate_defaults(pd.DataFrame) def align(self, other, join, axis, copy, level, method, **kwargs): if not copy: raise frame_base.WontImplementError('align(copy=False)') if method is not None: raise frame_base.WontImplementError('order-sensitive') if kwargs: raise NotImplementedError('align(%s)' % ', '.join(kwargs.keys())) if level is not None: # Could probably get by partitioning on the used levels. requires_partition_by = partitionings.Singleton() elif axis in ('columns', 1): requires_partition_by = partitionings.Nothing() else: requires_partition_by = partitionings.Index() return frame_base.DeferredFrame.wrap( expressions.ComputedExpression( 'align', lambda df, other: df.align(other, join=join, axis=axis), [self._expr, other._expr], requires_partition_by=requires_partition_by, preserves_partition_by=partitionings.Index()))
[docs] @frame_base.args_to_kwargs(pd.DataFrame) @frame_base.populate_defaults(pd.DataFrame) @frame_base.maybe_inplace def set_index(self, keys, **kwargs): if isinstance(keys, str): keys = [keys] if not set(keys).issubset(self._expr.proxy().columns): raise NotImplementedError(keys) return frame_base.DeferredFrame.wrap( expressions.ComputedExpression( 'set_index', lambda df: df.set_index(keys, **kwargs), [self._expr], requires_partition_by=partitionings.Nothing(), preserves_partition_by=partitionings.Nothing()))
@property def loc(self): return _DeferredLoc(self) @property def iloc(self): return _DeferredILoc(self) @property def axes(self): return (self.index, self.columns) @property def dtypes(self): return self._expr.proxy().dtypes
[docs] def assign(self, **kwargs): for name, value in kwargs.items(): if not callable(value) and not isinstance(value, DeferredSeries): raise frame_base.WontImplementError("Unsupported value for new " f"column '{name}': '{value}'. " "Only callables and Series " "instances are supported.") return frame_base._elementwise_method('assign')(self, **kwargs)
[docs] @frame_base.args_to_kwargs(pd.DataFrame) @frame_base.populate_defaults(pd.DataFrame) def explode(self, column, ignore_index): # ignoring the index will not preserve it preserves = (partitionings.Nothing() if ignore_index else partitionings.Singleton()) return frame_base.DeferredFrame.wrap( expressions.ComputedExpression( 'explode', lambda df: df.explode(column, ignore_index), [self._expr], preserves_partition_by=preserves, requires_partition_by=partitionings.Nothing()))
[docs] @frame_base.args_to_kwargs(pd.DataFrame) @frame_base.populate_defaults(pd.DataFrame) @frame_base.maybe_inplace def drop(self, labels, axis, index, columns, errors, **kwargs): if labels is not None: if index is not None or columns is not None: raise ValueError("Cannot specify both 'labels' and 'index'/'columns'") if axis in (0, 'index'): index = labels columns = None elif axis in (1, 'columns'): index = None columns = labels else: raise ValueError("axis must be one of (0, 1, 'index', 'columns'), " "got '%s'" % axis) if columns is not None: # Compute the proxy based on just the columns that are dropped. proxy = self._expr.proxy().drop(columns=columns, errors=errors) else: proxy = self._expr.proxy() if index is not None and errors == 'raise': # In order to raise an error about missing index values, we'll # need to collect the entire dataframe. requires = partitionings.Singleton() else: requires = partitionings.Nothing() return frame_base.DeferredFrame.wrap(expressions.ComputedExpression( 'drop', lambda df: df.drop(axis=axis, index=index, columns=columns, errors=errors, **kwargs), [self._expr], proxy=proxy, requires_partition_by=requires))
[docs] def aggregate(self, func, axis=0, *args, **kwargs): if axis is None: # Aggregate across all elements by first aggregating across columns, # then across rows. return self.agg(func, *args, **dict(kwargs, axis=1)).agg( func, *args, **dict(kwargs, axis=0)) elif axis in (1, 'columns'): # This is an easy elementwise aggregation. return frame_base.DeferredFrame.wrap( expressions.ComputedExpression( 'aggregate', lambda df: df.agg(func, axis=1, *args, **kwargs), [self._expr], requires_partition_by=partitionings.Nothing())) elif len(self._expr.proxy().columns) == 0 or args or kwargs: # For these corner cases, just colocate everything. return frame_base.DeferredFrame.wrap( expressions.ComputedExpression( 'aggregate', lambda df: df.agg(func, *args, **kwargs), [self._expr], requires_partition_by=partitionings.Singleton())) else: # In the general case, compute the aggregation of each column separately, # then recombine. if not isinstance(func, dict): col_names = list(self._expr.proxy().columns) func = {col: func for col in col_names} else: col_names = list(func.keys()) aggregated_cols = [] for col in col_names: funcs = func[col] if not isinstance(funcs, list): funcs = [funcs] aggregated_cols.append(self[col].agg(funcs, *args, **kwargs)) # The final shape is different depending on whether any of the columns # were aggregated by a list of aggregators. with expressions.allow_non_parallel_operations(): if any(isinstance(funcs, list) for funcs in func.values()): return frame_base.DeferredFrame.wrap( expressions.ComputedExpression( 'join_aggregate', lambda *cols: pd.DataFrame( {col: value for col, value in zip(col_names, cols)}), [col._expr for col in aggregated_cols], requires_partition_by=partitionings.Singleton())) else: return frame_base.DeferredFrame.wrap( expressions.ComputedExpression( 'join_aggregate', lambda *cols: pd.Series( {col: value[0] for col, value in zip(col_names, cols)}), [col._expr for col in aggregated_cols], requires_partition_by=partitionings.Singleton(), proxy=self._expr.proxy().agg(func, *args, **kwargs)))
agg = aggregate applymap = frame_base._elementwise_method('applymap') memory_usage = frame_base.wont_implement_method('non-deferred value') info = frame_base.wont_implement_method('non-deferred value') all = frame_base._agg_method('all') any = frame_base._agg_method('any') clip = frame_base._elementwise_method( 'clip', restrictions={'axis': lambda axis: axis in (0, 'index')})
[docs] @frame_base.args_to_kwargs(pd.DataFrame) @frame_base.populate_defaults(pd.DataFrame) def corr(self, method, min_periods): if method == 'pearson': proxy = self._expr.proxy().corr() columns = list(proxy.columns) args = [] arg_indices = [] for ix, col1 in enumerate(columns): for col2 in columns[ix+1:]: arg_indices.append((col1, col2)) # Note that this set may be different for each pair. no_na = self.loc[self[col1].notna() & self[col2].notna()] args.append( no_na[col1]._corr_aligned(no_na[col2], min_periods)) def fill_matrix(*args): data = collections.defaultdict(dict) for col in columns: data[col][col] = 1.0 for ix, (col1, col2) in enumerate(arg_indices): data[col1][col2] = data[col2][col1] = args[ix] return pd.DataFrame(data, columns=columns, index=columns) with expressions.allow_non_parallel_operations(True): return frame_base.DeferredFrame.wrap( expressions.ComputedExpression( 'fill_matrix', fill_matrix, [arg._expr for arg in args], requires_partition_by=partitionings.Singleton(), proxy=proxy)) else: return frame_base.DeferredFrame.wrap( expressions.ComputedExpression( 'corr', lambda df: df.corr(method=method, min_periods=min_periods), [self._expr], requires_partition_by=partitionings.Singleton()))
[docs] @frame_base.args_to_kwargs(pd.DataFrame) @frame_base.populate_defaults(pd.DataFrame) def cov(self, min_periods, ddof): proxy = self._expr.proxy().corr() columns = list(proxy.columns) args = [] arg_indices = [] for col in columns: arg_indices.append((col, col)) std = self[col].std(ddof) args.append(std.apply(lambda x: x*x, 'square')) for ix, col1 in enumerate(columns): for col2 in columns[ix+1:]: arg_indices.append((col1, col2)) # Note that this set may be different for each pair. no_na = self.loc[self[col1].notna() & self[col2].notna()] args.append(no_na[col1]._cov_aligned(no_na[col2], min_periods, ddof)) def fill_matrix(*args): data = collections.defaultdict(dict) for ix, (col1, col2) in enumerate(arg_indices): data[col1][col2] = data[col2][col1] = args[ix] return pd.DataFrame(data, columns=columns, index=columns) with expressions.allow_non_parallel_operations(True): return frame_base.DeferredFrame.wrap( expressions.ComputedExpression( 'fill_matrix', fill_matrix, [arg._expr for arg in args], requires_partition_by=partitionings.Singleton(), proxy=proxy))
[docs] @frame_base.args_to_kwargs(pd.DataFrame) @frame_base.populate_defaults(pd.DataFrame) def corrwith(self, other, axis, drop, method): if axis not in (0, 'index'): raise NotImplementedError('corrwith(axis=%r)' % axis) if not isinstance(other, frame_base.DeferredFrame): other = frame_base.DeferredFrame.wrap( expressions.ConstantExpression(other)) if isinstance(other, DeferredSeries): proxy = self._expr.proxy().corrwith(other._expr.proxy(), method=method) self, other = self.align(other, axis=0, join='inner') col_names = proxy.index other_cols = [other] * len(col_names) elif isinstance(other, DeferredDataFrame): proxy = self._expr.proxy().corrwith( other._expr.proxy(), method=method, drop=drop) self, other = self.align(other, axis=0, join='inner') col_names = list( set(self.columns) .intersection(other.columns) .intersection(proxy.index)) other_cols = [other[col_name] for col_name in col_names] else: # Raise the right error. self._expr.proxy().corrwith(other._expr.proxy()) # Just in case something else becomes valid. raise NotImplementedError('corrwith(%s)' % type(other._expr.proxy)) # Generate expressions to compute the actual correlations. corrs = [ self[col_name].corr(other_col, method) for col_name, other_col in zip(col_names, other_cols)] # Combine the results def fill_dataframe(*args): result = proxy.copy(deep=True) for col, value in zip(proxy.index, args): result[col] = value return result with expressions.allow_non_parallel_operations(True): return frame_base.DeferredFrame.wrap( expressions.ComputedExpression( 'fill_dataframe', fill_dataframe, [corr._expr for corr in corrs], requires_partition_by=partitionings.Singleton(), proxy=proxy))
cummax = cummin = cumsum = cumprod = frame_base.wont_implement_method( 'order-sensitive') diff = frame_base.wont_implement_method('order-sensitive')
[docs] def dot(self, other): # We want to broadcast the right hand side to all partitions of the left. # This is OK, as its index must be the same size as the columns set of self, # so cannot be too large. class AsScalar(object): def __init__(self, value): self.value = value if isinstance(other, frame_base.DeferredFrame): proxy = other._expr.proxy() with expressions.allow_non_parallel_operations(): side = expressions.ComputedExpression( 'as_scalar', lambda df: AsScalar(df), [other._expr], requires_partition_by=partitionings.Singleton()) else: proxy = pd.DataFrame(columns=range(len(other[0]))) side = expressions.ConstantExpression(AsScalar(other)) return frame_base.DeferredFrame.wrap( expressions.ComputedExpression( 'dot', lambda left, right: left @ right.value, [self._expr, side], requires_partition_by=partitionings.Nothing(), preserves_partition_by=partitionings.Index(), proxy=proxy))
__matmul__ = dot head = tail = frame_base.wont_implement_method('order-sensitive') max = frame_base._agg_method('max') min = frame_base._agg_method('min')
[docs] def mode(self, axis=0, *args, **kwargs): if axis == 1 or axis == 'columns': # Number of columns is max(number mode values for each row), so we can't # determine how many there will be before looking at the data. raise frame_base.WontImplementError('non-deferred column values') return frame_base.DeferredFrame.wrap( expressions.ComputedExpression( 'mode', lambda df: df.mode(*args, **kwargs), [self._expr], #TODO(robertwb): Approximate? requires_partition_by=partitionings.Singleton(), preserves_partition_by=partitionings.Singleton()))
[docs] @frame_base.args_to_kwargs(pd.DataFrame) @frame_base.populate_defaults(pd.DataFrame) @frame_base.maybe_inplace def dropna(self, axis, **kwargs): # TODO(robertwb): This is a common pattern. Generalize? if axis == 1 or axis == 'columns': requires_partition_by = partitionings.Singleton() else: requires_partition_by = partitionings.Nothing() return frame_base.DeferredFrame.wrap( expressions.ComputedExpression( 'dropna', lambda df: df.dropna(axis=axis, **kwargs), [self._expr], preserves_partition_by=partitionings.Singleton(), requires_partition_by=requires_partition_by))
isna = frame_base._elementwise_method('isna') notnull = notna = frame_base._elementwise_method('notna') items = itertuples = iterrows = iteritems = frame_base.wont_implement_method( 'non-lazy') def _cols_as_temporary_index(self, cols, suffix=''): original_index_names = list(self._expr.proxy().index.names) new_index_names = [ '__apache_beam_temp_%d_%s' % (ix, suffix) for (ix, _) in enumerate(original_index_names)] def reindex(df): return frame_base.DeferredFrame.wrap( expressions.ComputedExpression( 'reindex', lambda df: df.rename_axis(index=new_index_names, copy=False) .reset_index().set_index(cols), [df._expr], preserves_partition_by=partitionings.Nothing(), requires_partition_by=partitionings.Nothing())) def revert(df): return frame_base.DeferredFrame.wrap( expressions.ComputedExpression( 'join_restoreindex', lambda df: df.reset_index().set_index(new_index_names) .rename_axis(index=original_index_names, copy=False), [df._expr], preserves_partition_by=partitionings.Nothing(), requires_partition_by=partitionings.Nothing())) return reindex, revert
[docs] @frame_base.args_to_kwargs(pd.DataFrame) @frame_base.populate_defaults(pd.DataFrame) def join(self, other, on, **kwargs): if on is not None: reindex, revert = self._cols_as_temporary_index(on) return revert(reindex(self).join(other, **kwargs)) if isinstance(other, list): other_is_list = True else: other = [other] other_is_list = False placeholder = object() other_exprs = [ df._expr for df in other if isinstance(df, frame_base.DeferredFrame)] const_others = [ placeholder if isinstance(df, frame_base.DeferredFrame) else df for df in other] def fill_placeholders(values): values = iter(values) filled = [ next(values) if df is placeholder else df for df in const_others] if other_is_list: return filled else: return filled[0] return frame_base.DeferredFrame.wrap( expressions.ComputedExpression( 'join', lambda df, *deferred_others: df.join( fill_placeholders(deferred_others), **kwargs), [self._expr] + other_exprs, preserves_partition_by=partitionings.Singleton(), requires_partition_by=partitionings.Index()))
[docs] @frame_base.args_to_kwargs(pd.DataFrame) @frame_base.populate_defaults(pd.DataFrame) def merge( self, right, on, left_on, right_on, left_index, right_index, **kwargs): self_proxy = self._expr.proxy() right_proxy = right._expr.proxy() # Validate with a pandas call. _ = self_proxy.merge( right_proxy, on=on, left_on=left_on, right_on=right_on, left_index=left_index, right_index=right_index, **kwargs) if not any([on, left_on, right_on, left_index, right_index]): on = [col for col in self_proxy.columns() if col in right_proxy.columns()] if not left_on: left_on = on elif not isinstance(left_on, list): left_on = [left_on] if not right_on: right_on = on elif not isinstance(right_on, list): right_on = [right_on] if left_index: indexed_left = self else: indexed_left = self.set_index(left_on, drop=False) if right_index: indexed_right = right else: indexed_right = right.set_index(right_on, drop=False) merged = frame_base.DeferredFrame.wrap( expressions.ComputedExpression( 'merge', lambda left, right: left.merge( right, left_index=True, right_index=True, **kwargs), [indexed_left._expr, indexed_right._expr], preserves_partition_by=partitionings.Singleton(), requires_partition_by=partitionings.Index())) if left_index or right_index: return merged else: return merged.reset_index(drop=True)
[docs] @frame_base.args_to_kwargs(pd.DataFrame) @frame_base.populate_defaults(pd.DataFrame) def nlargest(self, keep, **kwargs): if keep == 'any': keep = 'first' elif keep != 'all': raise frame_base.WontImplementError('order-sensitive') kwargs['keep'] = keep per_partition = expressions.ComputedExpression( 'nlargest-per-partition', lambda df: df.nlargest(**kwargs), [self._expr], preserves_partition_by=partitionings.Singleton(), requires_partition_by=partitionings.Nothing()) with expressions.allow_non_parallel_operations(True): return frame_base.DeferredFrame.wrap( expressions.ComputedExpression( 'nlargest', lambda df: df.nlargest(**kwargs), [per_partition], preserves_partition_by=partitionings.Singleton(), requires_partition_by=partitionings.Singleton()))
[docs] @frame_base.args_to_kwargs(pd.DataFrame) @frame_base.populate_defaults(pd.DataFrame) def nsmallest(self, keep, **kwargs): if keep == 'any': keep = 'first' elif keep != 'all': raise frame_base.WontImplementError('order-sensitive') kwargs['keep'] = keep per_partition = expressions.ComputedExpression( 'nsmallest-per-partition', lambda df: df.nsmallest(**kwargs), [self._expr], preserves_partition_by=partitionings.Singleton(), requires_partition_by=partitionings.Nothing()) with expressions.allow_non_parallel_operations(True): return frame_base.DeferredFrame.wrap( expressions.ComputedExpression( 'nsmallest', lambda df: df.nsmallest(**kwargs), [per_partition], preserves_partition_by=partitionings.Singleton(), requires_partition_by=partitionings.Singleton()))
[docs] @frame_base.args_to_kwargs(pd.DataFrame) def nunique(self, **kwargs): if kwargs.get('axis', None) in (1, 'columns'): requires_partition_by = partitionings.Nothing() else: requires_partition_by = partitionings.Singleton() return frame_base.DeferredFrame.wrap( expressions.ComputedExpression( 'nunique', lambda df: df.nunique(**kwargs), [self._expr], preserves_partition_by=partitionings.Singleton(), requires_partition_by=requires_partition_by))
plot = property(frame_base.wont_implement_method('plot'))
[docs] def pop(self, item): result = self[item] self._expr = expressions.ComputedExpression( 'popped', lambda df: (df.pop(item), df)[-1], [self._expr], preserves_partition_by=partitionings.Singleton(), requires_partition_by=partitionings.Nothing()) return result
prod = product = frame_base._agg_method('prod')
[docs] @frame_base.args_to_kwargs(pd.DataFrame) @frame_base.populate_defaults(pd.DataFrame) def quantile(self, axis, **kwargs): if axis == 1 or axis == 'columns': raise frame_base.WontImplementError('non-deferred column values') return frame_base.DeferredFrame.wrap( expressions.ComputedExpression( 'quantile', lambda df: df.quantile(axis=axis, **kwargs), [self._expr], #TODO(robertwb): Approximate quantiles? requires_partition_by=partitionings.Singleton(), preserves_partition_by=partitionings.Singleton()))
query = frame_base._elementwise_method('query')
[docs] @frame_base.args_to_kwargs(pd.DataFrame) @frame_base.maybe_inplace def rename(self, **kwargs): rename_index = ( 'index' in kwargs or kwargs.get('axis', None) in (0, 'index') or ('columns' not in kwargs and 'axis' not in kwargs)) rename_columns = ( 'columns' in kwargs or kwargs.get('axis', None) in (1, 'columns')) if rename_index: # Technically, it's still partitioned by index, but it's no longer # partitioned by the hash of the index. preserves_partition_by = partitionings.Nothing() else: preserves_partition_by = partitionings.Singleton() if kwargs.get('errors', None) == 'raise' and rename_index: # Renaming index with checking requires global index. requires_partition_by = partitionings.Singleton() else: requires_partition_by = partitionings.Nothing() proxy = None if rename_index: # The proxy can't be computed by executing rename, it will error # renaming the index. if rename_columns: # Note if both are being renamed, index and columns must be specified # (not axis) proxy = self._expr.proxy().rename(**{k: v for (k, v) in kwargs.items() if not k == 'index'}) else: # No change in columns, reuse proxy proxy = self._expr.proxy() return frame_base.DeferredFrame.wrap( expressions.ComputedExpression( 'rename', lambda df: df.rename(**kwargs), [self._expr], proxy=proxy, preserves_partition_by=preserves_partition_by, requires_partition_by=requires_partition_by))
rename_axis = frame_base._elementwise_method('rename_axis')
[docs] @frame_base.args_to_kwargs(pd.DataFrame) @frame_base.populate_defaults(pd.DataFrame) @frame_base.maybe_inplace def replace(self, limit, **kwargs): if limit is None: requires_partition_by = partitionings.Nothing() else: requires_partition_by = partitionings.Singleton() return frame_base.DeferredFrame.wrap( expressions.ComputedExpression( 'replace', lambda df: df.replace(limit=limit, **kwargs), [self._expr], preserves_partition_by=partitionings.Singleton(), requires_partition_by=requires_partition_by))
[docs] @frame_base.args_to_kwargs(pd.DataFrame) @frame_base.populate_defaults(pd.DataFrame) @frame_base.maybe_inplace def reset_index(self, level=None, **kwargs): if level is not None and not isinstance(level, (tuple, list)): level = [level] if level is None or len(level) == self._expr.proxy().index.nlevels: # TODO: Could do distributed re-index with offsets. requires_partition_by = partitionings.Singleton() else: requires_partition_by = partitionings.Nothing() return frame_base.DeferredFrame.wrap( expressions.ComputedExpression( 'reset_index', lambda df: df.reset_index(level=level, **kwargs), [self._expr], preserves_partition_by=partitionings.Nothing(), requires_partition_by=requires_partition_by))
round = frame_base._elementwise_method('round') select_dtypes = frame_base._elementwise_method('select_dtypes')
[docs] @frame_base.args_to_kwargs(pd.DataFrame) @frame_base.populate_defaults(pd.DataFrame) def shift(self, axis, **kwargs): if 'freq' in kwargs: raise frame_base.WontImplementError('data-dependent') if axis == 1 or axis == 'columns': requires_partition_by = partitionings.Nothing() else: requires_partition_by = partitionings.Singleton() return frame_base.DeferredFrame.wrap( expressions.ComputedExpression( 'shift', lambda df: df.shift(axis=axis, **kwargs), [self._expr], preserves_partition_by=partitionings.Singleton(), requires_partition_by=requires_partition_by))
@property def shape(self): raise frame_base.WontImplementError('scalar value')
[docs] @frame_base.args_to_kwargs(pd.DataFrame) @frame_base.populate_defaults(pd.DataFrame) @frame_base.maybe_inplace def sort_values(self, axis, **kwargs): if axis == 1 or axis == 'columns': requires_partition_by = partitionings.Nothing() else: requires_partition_by = partitionings.Singleton() return frame_base.DeferredFrame.wrap( expressions.ComputedExpression( 'sort_values', lambda df: df.sort_values(axis=axis, **kwargs), [self._expr], preserves_partition_by=partitionings.Singleton(), requires_partition_by=requires_partition_by))
stack = frame_base._elementwise_method('stack') sum = frame_base._agg_method('sum') take = frame_base.wont_implement_method('deprecated') to_records = to_dict = to_numpy = to_string = ( frame_base.wont_implement_method('non-deferred value')) to_sparse = to_string # frame_base._elementwise_method('to_sparse') transform = frame_base._elementwise_method( 'transform', restrictions={'axis': 0}) transpose = frame_base.wont_implement_method('non-deferred column values')
[docs] def unstack(self, *args, **kwargs): if self._expr.proxy().index.nlevels == 1: return frame_base.DeferredFrame.wrap( expressions.ComputedExpression( 'unstack', lambda df: df.unstack(*args, **kwargs), [self._expr], requires_partition_by=partitionings.Index())) else: raise frame_base.WontImplementError('non-deferred column values')
update = frame_base._proxy_method( 'update', inplace=True, requires_partition_by=partitionings.Index(), preserves_partition_by=partitionings.Index()) values = property(frame_base.wont_implement_method('non-deferred value'))
for io_func in dir(io): if io_func.startswith('to_'): setattr(DeferredDataFrame, io_func, getattr(io, io_func)) for meth in ('filter', ): setattr(DeferredDataFrame, meth, frame_base._elementwise_method(meth))
[docs]@populate_not_implemented(pd.core.groupby.generic.DataFrameGroupBy) class DeferredGroupBy(frame_base.DeferredFrame): def __init__(self, expr, kwargs): super(DeferredGroupBy, self).__init__(expr) self._kwargs = kwargs
[docs] def agg(self, fn): if not callable(fn): # TODO: Add support for strings in (UN)LIFTABLE_AGGREGATIONS. Test by # running doctests for pandas.core.groupby.generic raise NotImplementedError('GroupBy.agg currently only supports callable ' 'arguments') return DeferredDataFrame( expressions.ComputedExpression( 'agg', lambda df: df.agg(fn), [self._expr], requires_partition_by=partitionings.Index(), preserves_partition_by=partitionings.Singleton()))
aggregate = agg first = last = head = tail = frame_base.wont_implement_method( 'order sensitive') # TODO(robertwb): Consider allowing this for categorical keys. __len__ = frame_base.wont_implement_method('non-deferred') __getitem__ = frame_base.not_implemented_method('__getitem__') groups = property(frame_base.wont_implement_method('non-deferred'))
def _liftable_agg(meth, postagg_meth=None): name, func = frame_base.name_and_func(meth) if postagg_meth is None: post_agg_name, post_agg_func = name, func else: post_agg_name, post_agg_func = frame_base.name_and_func(postagg_meth) def wrapper(self, *args, **kwargs): assert isinstance(self, DeferredGroupBy) ungrouped = self._expr.args()[0] to_group = ungrouped.proxy().index is_categorical_grouping = any(to_group.get_level_values(i).is_categorical() for i in range(to_group.nlevels)) groupby_kwargs = self._kwargs # Don't include un-observed categorical values in the preagg preagg_groupby_kwargs = groupby_kwargs.copy() preagg_groupby_kwargs['observed'] = True pre_agg = expressions.ComputedExpression( 'pre_combine_' + name, lambda df: func( df.groupby(level=list(range(df.index.nlevels)), **preagg_groupby_kwargs), **kwargs), [ungrouped], requires_partition_by=partitionings.Nothing(), preserves_partition_by=partitionings.Singleton()) post_agg = expressions.ComputedExpression( 'post_combine_' + post_agg_name, lambda df: post_agg_func( df.groupby(level=list(range(df.index.nlevels)), **groupby_kwargs), **kwargs), [pre_agg], requires_partition_by=(partitionings.Singleton() if is_categorical_grouping else partitionings.Index()), preserves_partition_by=partitionings.Singleton()) return frame_base.DeferredFrame.wrap(post_agg) return wrapper def _unliftable_agg(meth): name, func = frame_base.name_and_func(meth) def wrapper(self, *args, **kwargs): assert isinstance(self, DeferredGroupBy) ungrouped = self._expr.args()[0] to_group = ungrouped.proxy().index is_categorical_grouping = any(to_group.get_level_values(i).is_categorical() for i in range(to_group.nlevels)) groupby_kwargs = self._kwargs post_agg = expressions.ComputedExpression( name, lambda df: func( df.groupby(level=list(range(df.index.nlevels)), **groupby_kwargs), **kwargs), [ungrouped], requires_partition_by=(partitionings.Singleton() if is_categorical_grouping else partitionings.Index()), preserves_partition_by=partitionings.Singleton()) return frame_base.DeferredFrame.wrap(post_agg) return wrapper LIFTABLE_AGGREGATIONS = ['all', 'any', 'max', 'min', 'prod', 'sum'] LIFTABLE_WITH_SUM_AGGREGATIONS = ['size', 'count'] UNLIFTABLE_AGGREGATIONS = ['mean', 'median', 'std', 'var'] for meth in LIFTABLE_AGGREGATIONS: setattr(DeferredGroupBy, meth, _liftable_agg(meth)) for meth in LIFTABLE_WITH_SUM_AGGREGATIONS: setattr(DeferredGroupBy, meth, _liftable_agg(meth, postagg_meth='sum')) for meth in UNLIFTABLE_AGGREGATIONS: setattr(DeferredGroupBy, meth, _unliftable_agg(meth)) def _is_associative(func): return func in LIFTABLE_AGGREGATIONS or ( getattr(func, '__name__', None) in LIFTABLE_AGGREGATIONS and func.__module__ in ('numpy', 'builtins')) @populate_not_implemented(pd.core.groupby.generic.DataFrameGroupBy) class _DeferredGroupByCols(frame_base.DeferredFrame): # It's not clear that all of these make sense in Pandas either... agg = aggregate = frame_base._elementwise_method('agg') any = frame_base._elementwise_method('any') all = frame_base._elementwise_method('all') boxplot = frame_base.wont_implement_method('plot') describe = frame_base.wont_implement_method('describe') diff = frame_base._elementwise_method('diff') fillna = frame_base._elementwise_method('fillna') filter = frame_base._elementwise_method('filter') first = frame_base.wont_implement_method('order sensitive') get_group = frame_base._elementwise_method('group') head = frame_base.wont_implement_method('order sensitive') hist = frame_base.wont_implement_method('plot') idxmax = frame_base._elementwise_method('idxmax') idxmin = frame_base._elementwise_method('idxmin') last = frame_base.wont_implement_method('order sensitive') mad = frame_base._elementwise_method('mad') max = frame_base._elementwise_method('max') mean = frame_base._elementwise_method('mean') median = frame_base._elementwise_method('median') min = frame_base._elementwise_method('min') nunique = frame_base._elementwise_method('nunique') plot = frame_base.wont_implement_method('plot') prod = frame_base._elementwise_method('prod') quantile = frame_base._elementwise_method('quantile') shift = frame_base._elementwise_method('shift') size = frame_base._elementwise_method('size') skew = frame_base._elementwise_method('skew') std = frame_base._elementwise_method('std') sum = frame_base._elementwise_method('sum') tail = frame_base.wont_implement_method('order sensitive') take = frame_base.wont_implement_method('deprectated') tshift = frame_base._elementwise_method('tshift') var = frame_base._elementwise_method('var') @property def groups(self): return self._expr.proxy().groups @property def indices(self): return self._expr.proxy().indices @property def ndim(self): return self._expr.proxy().ndim @property def ngroups(self): return self._expr.proxy().ngroups @populate_not_implemented(pd.core.indexes.base.Index) class _DeferredIndex(object): def __init__(self, frame): self._frame = frame @property def names(self): return self._frame._expr.proxy().index.names @property def ndim(self): return self._frame._expr.proxy().index.ndim @property def nlevels(self): return self._frame._expr.proxy().index.nlevels def __getattr__(self, name): raise NotImplementedError('index.%s' % name) @populate_not_implemented(pd.core.indexing._LocIndexer) class _DeferredLoc(object): def __init__(self, frame): self._frame = frame def __getitem__(self, index): if isinstance(index, tuple): rows, cols = index return self[rows][cols] elif isinstance(index, list) and index and isinstance(index[0], bool): # Aligned by numerical index. raise NotImplementedError(type(index)) elif isinstance(index, list): # Select rows, but behaves poorly on missing values. raise NotImplementedError(type(index)) elif isinstance(index, slice): args = [self._frame._expr] func = lambda df: df.loc[index] elif isinstance(index, frame_base.DeferredFrame): args = [self._frame._expr, index._expr] func = lambda df, index: df.loc[index] elif callable(index): def checked_callable_index(df): computed_index = index(df) if isinstance(computed_index, tuple): row_index, _ = computed_index else: row_index = computed_index if isinstance(row_index, list) and row_index and isinstance( row_index[0], bool): raise NotImplementedError(type(row_index)) elif not isinstance(row_index, (slice, pd.Series)): raise NotImplementedError(type(row_index)) return computed_index args = [self._frame._expr] func = lambda df: df.loc[checked_callable_index] else: raise NotImplementedError(type(index)) return frame_base.DeferredFrame.wrap( expressions.ComputedExpression( 'loc', func, args, requires_partition_by=( partitionings.Index() if len(args) > 1 else partitionings.Nothing()), preserves_partition_by=partitionings.Singleton())) __setitem__ = frame_base.not_implemented_method('loc.setitem') @populate_not_implemented(pd.core.indexing._iLocIndexer) class _DeferredILoc(object): def __init__(self, frame): self._frame = frame def __getitem__(self, index): if isinstance(index, tuple): rows, _ = index if rows != slice(None, None, None): raise frame_base.WontImplementError('order-sensitive') return frame_base.DeferredFrame.wrap( expressions.ComputedExpression( 'iloc', lambda df: df.iloc[index], [self._frame._expr], requires_partition_by=partitionings.Nothing(), preserves_partition_by=partitionings.Singleton())) else: raise frame_base.WontImplementError('order-sensitive') __setitem__ = frame_base.wont_implement_method('iloc.setitem') class _DeferredStringMethods(frame_base.DeferredBase): @frame_base.args_to_kwargs(pd.core.strings.StringMethods) @frame_base.populate_defaults(pd.core.strings.StringMethods) def cat(self, others, join, **kwargs): if others is None: # Concatenate series into a single String requires = partitionings.Singleton() func = lambda df: df.str.cat(join=join, **kwargs) args = [self._expr] elif (isinstance(others, frame_base.DeferredBase) or (isinstance(others, list) and all(isinstance(other, frame_base.DeferredBase) for other in others))): if join is None: raise frame_base.WontImplementError("cat with others=Series or " "others=List[Series] requires " "join to be specified.") if isinstance(others, frame_base.DeferredBase): others = [others] requires = partitionings.Index() def func(*args): return args[0].str.cat(others=args[1:], join=join, **kwargs) args = [self._expr] + [other._expr for other in others] else: raise frame_base.WontImplementError("others must be None, Series, or " "List[Series]. List[str] is not " "supported.") return frame_base.DeferredFrame.wrap( expressions.ComputedExpression( 'cat', func, args, requires_partition_by=requires, preserves_partition_by=partitionings.Singleton())) @frame_base.args_to_kwargs(pd.core.strings.StringMethods) def repeat(self, repeats): if isinstance(repeats, int): return frame_base.DeferredFrame.wrap( expressions.ComputedExpression( 'repeat', lambda series: series.str.repeat(repeats), [self._expr], # TODO(BEAM-11155): Defer to pandas to compute this proxy. # Currently it incorrectly infers dtype bool, may require upstream # fix. proxy=self._expr.proxy(), requires_partition_by=partitionings.Nothing(), preserves_partition_by=partitionings.Singleton())) elif isinstance(repeats, frame_base.DeferredBase): return frame_base.DeferredFrame.wrap( expressions.ComputedExpression( 'repeat', lambda series, repeats_series: series.str.repeat(repeats_series), [self._expr, repeats._expr], # TODO(BEAM-11155): Defer to pandas to compute this proxy. # Currently it incorrectly infers dtype bool, may require upstream # fix. proxy=self._expr.proxy(), requires_partition_by=partitionings.Index(), preserves_partition_by=partitionings.Singleton())) elif isinstance(repeats, list): raise frame_base.WontImplementError("repeats must be an integer or a " "Series.") ELEMENTWISE_STRING_METHODS = [ 'capitalize', 'casefold', 'contains', 'count', 'endswith', 'extract', 'extractall', 'findall', 'fullmatch', 'get', 'get_dummies', 'isalnum', 'isalpha', 'isdecimal', 'isdigit', 'islower', 'isnumeric', 'isspace', 'istitle', 'isupper', 'join', 'len', 'lower', 'lstrip', 'match', 'pad', 'partition', 'replace', 'rpartition', 'rsplit', 'rstrip', 'slice', 'slice_replace', 'split', 'startswith', 'strip', 'swapcase', 'title', 'upper', 'wrap', 'zfill', '__getitem__', ]
[docs]def make_str_func(method): def func(df, *args, **kwargs): return getattr(df.str, method)(*args, **kwargs) return func
for method in ELEMENTWISE_STRING_METHODS: setattr(_DeferredStringMethods, method, frame_base._elementwise_method(make_str_func(method))) for base in ['add', 'sub', 'mul', 'div', 'truediv', 'floordiv', 'mod', 'divmod', 'pow', 'and', 'or']: for p in ['%s', 'r%s', '__%s__', '__r%s__']: # TODO: non-trivial level? name = p % base setattr( DeferredSeries, name, frame_base._elementwise_method(name, restrictions={'level': None})) setattr( DeferredDataFrame, name, frame_base._elementwise_method(name, restrictions={'level': None})) setattr( DeferredSeries, '__i%s__' % base, frame_base._elementwise_method('__i%s__' % base, inplace=True)) setattr( DeferredDataFrame, '__i%s__' % base, frame_base._elementwise_method('__i%s__' % base, inplace=True)) for name in ['__lt__', '__le__', '__gt__', '__ge__', '__eq__', '__ne__']: setattr(DeferredSeries, name, frame_base._elementwise_method(name)) setattr(DeferredDataFrame, name, frame_base._elementwise_method(name)) for name in ['__neg__', '__pos__', '__invert__']: setattr(DeferredSeries, name, frame_base._elementwise_method(name)) setattr(DeferredDataFrame, name, frame_base._elementwise_method(name)) DeferredSeries.multiply = DeferredSeries.mul # type: ignore DeferredDataFrame.multiply = DeferredDataFrame.mul # type: ignore def _slice_parts(s): yield s.start yield s.stop yield s.step def _is_null_slice(s): return isinstance(s, slice) and all(x is None for x in _slice_parts(s)) def _is_integer_slice(s): return isinstance(s, slice) and all( x is None or isinstance(x, int) for x in _slice_parts(s)) and not _is_null_slice(s)