#
# Licensed to the Apache Software Foundation (ASF) under one or more
# contributor license agreements. See the NOTICE file distributed with
# this work for additional information regarding copyright ownership.
# The ASF licenses this file to You under the Apache License, Version 2.0
# (the "License"); you may not use this file except in compliance with
# the License. You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
"""
Internal library for reading data from BigQuery.
NOTHING IN THIS FILE HAS BACKWARDS COMPATIBILITY GUARANTEES.
"""
import collections
import decimal
import json
import logging
import random
import time
import uuid
from typing import TYPE_CHECKING
from typing import Any
from typing import Dict
from typing import Iterable
from typing import List
from typing import Optional
from typing import Union
import apache_beam as beam
from apache_beam.coders import coders
from apache_beam.io.avroio import _create_avro_source
from apache_beam.io.filesystem import CompressionTypes
from apache_beam.io.filesystems import FileSystems
from apache_beam.io.gcp import bigquery_tools
from apache_beam.io.gcp.bigquery_io_metadata import create_bigquery_io_metadata
from apache_beam.io.iobase import BoundedSource
from apache_beam.io.textio import _TextSource
from apache_beam.options.pipeline_options import GoogleCloudOptions
from apache_beam.options.pipeline_options import PipelineOptions
from apache_beam.options.value_provider import ValueProvider
from apache_beam.transforms import PTransform
if TYPE_CHECKING:
from apache_beam.io.gcp.bigquery import ReadFromBigQueryRequest
try:
from apache_beam.io.gcp.internal.clients.bigquery import DatasetReference
from apache_beam.io.gcp.internal.clients.bigquery import TableReference
except ImportError:
DatasetReference = None
TableReference = None
_LOGGER = logging.getLogger(__name__)
[docs]def bigquery_export_destination_uri(
gcs_location_vp: Optional[ValueProvider],
temp_location: Optional[str],
unique_id: str,
directory_only: bool = False,
) -> str:
"""Returns the fully qualified Google Cloud Storage URI where the
extracted table should be written.
"""
file_pattern = 'bigquery-table-dump-*.json'
gcs_location = None
if gcs_location_vp is not None:
gcs_location = gcs_location_vp.get()
if gcs_location is not None:
gcs_base = gcs_location
elif temp_location is not None:
gcs_base = temp_location
_LOGGER.debug("gcs_location is empty, using temp_location instead")
else:
raise ValueError(
'ReadFromBigQuery requires a GCS location to be provided. Neither '
'gcs_location in the constructor nor the fallback option '
'--temp_location is set.')
if not unique_id:
unique_id = uuid.uuid4().hex
if directory_only:
return FileSystems.join(gcs_base, unique_id)
else:
return FileSystems.join(gcs_base, unique_id, file_pattern)
class _PassThroughThenCleanup(PTransform):
"""A PTransform that invokes a DoFn after the input PCollection has been
processed.
DoFn should have arguments (element, side_input, cleanup_signal).
Utilizes readiness of PCollection to trigger DoFn.
"""
def __init__(self, side_input=None):
self.side_input = side_input
def expand(self, input):
class PassThrough(beam.DoFn):
def process(self, element):
yield element
class RemoveExtractedFiles(beam.DoFn):
def process(self, unused_element, unused_signal, gcs_locations):
FileSystems.delete(list(gcs_locations))
main_output, cleanup_signal = input | beam.ParDo(
PassThrough()).with_outputs(
'cleanup_signal', main='main')
cleanup_input = input.pipeline | beam.Create([None])
_ = cleanup_input | beam.ParDo(
RemoveExtractedFiles(),
beam.pvalue.AsSingleton(cleanup_signal),
self.side_input,
)
return main_output
class _BigQueryReadSplit(beam.transforms.DoFn):
"""Starts the process of reading from BigQuery.
This transform will start a BigQuery export job, and output a number of
file sources that are consumed downstream.
"""
def __init__(
self,
options: PipelineOptions,
gcs_location: Union[str, ValueProvider] = None,
use_json_exports: bool = False,
bigquery_job_labels: Dict[str, str] = None,
step_name: str = None,
job_name: str = None,
unique_id: str = None,
kms_key: str = None,
project: str = None,
temp_dataset: Union[str, DatasetReference] = None):
self.options = options
self.use_json_exports = use_json_exports
self.gcs_location = gcs_location
self.bigquery_job_labels = bigquery_job_labels or {}
self._step_name = step_name
self._job_name = job_name or 'BQ_READ_SPLIT'
self._source_uuid = unique_id
self.kms_key = kms_key
self.project = project
self.temp_dataset = temp_dataset or 'bq_read_all_%s' % uuid.uuid4().hex
self.bq_io_metadata = None
def display_data(self):
return {
'use_json_exports': str(self.use_json_exports),
'gcs_location': str(self.gcs_location),
'bigquery_job_labels': json.dumps(self.bigquery_job_labels),
'kms_key': str(self.kms_key),
'project': str(self.project),
'temp_dataset': str(self.temp_dataset)
}
def _get_temp_dataset(self):
if isinstance(self.temp_dataset, str):
return DatasetReference(
datasetId=self.temp_dataset, projectId=self._get_project())
else:
return self.temp_dataset
def process(self,
element: 'ReadFromBigQueryRequest') -> Iterable[BoundedSource]:
bq = bigquery_tools.BigQueryWrapper(
temp_dataset_id=self._get_temp_dataset().datasetId)
# TODO(BEAM-11359): Clean up temp dataset at pipeline completion.
if element.query is not None:
self._setup_temporary_dataset(bq, element)
table_reference = self._execute_query(bq, element)
else:
assert element.table
table_reference = bigquery_tools.parse_table_reference(
element.table, project=self._get_project())
if not table_reference.projectId:
table_reference.projectId = self._get_project()
schema, metadata_list = self._export_files(bq, element, table_reference)
for metadata in metadata_list:
yield self._create_source(metadata.path, schema)
if element.query is not None:
bq._delete_table(
table_reference.projectId,
table_reference.datasetId,
table_reference.tableId)
def _get_bq_metadata(self):
if not self.bq_io_metadata:
self.bq_io_metadata = create_bigquery_io_metadata(self._step_name)
return self.bq_io_metadata
def _create_source(self, path, schema):
if not self.use_json_exports:
return _create_avro_source(path, use_fastavro=True)
else:
return _TextSource(
path,
min_bundle_size=0,
compression_type=CompressionTypes.UNCOMPRESSED,
strip_trailing_newlines=True,
coder=_JsonToDictCoder(schema))
def _setup_temporary_dataset(
self,
bq: bigquery_tools.BigQueryWrapper,
element: 'ReadFromBigQueryRequest'):
location = bq.get_query_location(
self._get_project(), element.query, not element.use_standard_sql)
bq.create_temporary_dataset(self._get_project(), location)
def _execute_query(
self,
bq: bigquery_tools.BigQueryWrapper,
element: 'ReadFromBigQueryRequest'):
query_job_name = bigquery_tools.generate_bq_job_name(
self._job_name,
self._source_uuid,
bigquery_tools.BigQueryJobTypes.QUERY,
'%s_%s' % (int(time.time()), random.randint(0, 1000)))
job = bq._start_query_job(
self._get_project(),
element.query,
not element.use_standard_sql,
element.flatten_results,
job_id=query_job_name,
kms_key=self.kms_key,
job_labels=self._get_bq_metadata().add_additional_bq_job_labels(
self.bigquery_job_labels))
job_ref = job.jobReference
bq.wait_for_bq_job(job_ref, max_retries=0)
return bq._get_temp_table(self._get_project())
def _export_files(
self,
bq: bigquery_tools.BigQueryWrapper,
element: 'ReadFromBigQueryRequest',
table_reference: TableReference):
"""Runs a BigQuery export job.
Returns:
bigquery.TableSchema instance, a list of FileMetadata instances
"""
job_labels = self._get_bq_metadata().add_additional_bq_job_labels(
self.bigquery_job_labels)
export_job_name = bigquery_tools.generate_bq_job_name(
self._job_name,
self._source_uuid,
bigquery_tools.BigQueryJobTypes.EXPORT,
element.obj_id)
temp_location = self.options.view_as(GoogleCloudOptions).temp_location
gcs_location = bigquery_export_destination_uri(
self.gcs_location,
temp_location,
'%s%s' % (self._source_uuid, element.obj_id))
if self.use_json_exports:
job_ref = bq.perform_extract_job([gcs_location],
export_job_name,
table_reference,
bigquery_tools.FileFormat.JSON,
project=self._get_project(),
job_labels=job_labels,
include_header=False)
else:
job_ref = bq.perform_extract_job([gcs_location],
export_job_name,
table_reference,
bigquery_tools.FileFormat.AVRO,
project=self._get_project(),
include_header=False,
job_labels=job_labels,
use_avro_logical_types=True)
bq.wait_for_bq_job(job_ref)
metadata_list = FileSystems.match([gcs_location])[0].metadata_list
if isinstance(table_reference, ValueProvider):
table_ref = bigquery_tools.parse_table_reference(
element.table, project=self._get_project())
else:
table_ref = table_reference
table = bq.get_table(
table_ref.projectId, table_ref.datasetId, table_ref.tableId)
return table.schema, metadata_list
def _get_project(self):
"""Returns the project that queries and exports will be billed to."""
project = self.options.view_as(GoogleCloudOptions).project
if isinstance(project, ValueProvider):
project = project.get()
if not project:
project = self.project
return project
FieldSchema = collections.namedtuple('FieldSchema', 'fields mode name type')
class _JsonToDictCoder(coders.Coder):
"""A coder for a JSON string to a Python dict."""
def __init__(self, table_schema):
self.fields = self._convert_to_tuple(table_schema.fields)
self._converters = {
'INTEGER': int,
'INT64': int,
'FLOAT': float,
'FLOAT64': float,
'NUMERIC': self._to_decimal,
'BYTES': self._to_bytes,
}
@staticmethod
def _to_decimal(value):
return decimal.Decimal(value)
@staticmethod
def _to_bytes(value):
"""Converts value from str to bytes."""
return value.encode('utf-8')
@classmethod
def _convert_to_tuple(cls, table_field_schemas):
"""Recursively converts the list of TableFieldSchema instances to the
list of tuples to prevent errors when pickling and unpickling
TableFieldSchema instances.
"""
if not table_field_schemas:
return []
return [
FieldSchema(cls._convert_to_tuple(x.fields), x.mode, x.name, x.type)
for x in table_field_schemas
]
def decode(self, value):
value = json.loads(value.decode('utf-8'))
return self._decode_row(value, self.fields)
def _decode_row(self, row: Dict[str, Any], schema_fields: List[FieldSchema]):
for field in schema_fields:
if field.name not in row:
# The field exists in the schema, but it doesn't exist in this row.
# It probably means its value was null, as the extract to JSON job
# doesn't preserve null fields
row[field.name] = None
continue
if field.mode == 'REPEATED':
for i, elem in enumerate(row[field.name]):
row[field.name][i] = self._decode_data(elem, field)
else:
row[field.name] = self._decode_data(row[field.name], field)
return row
def _decode_data(self, obj: Any, field: FieldSchema):
if not field.fields:
try:
return self._converters[field.type](obj)
except KeyError:
# No need to do any conversion
return obj
return self._decode_row(obj, field.fields)
def is_deterministic(self):
return True
def to_type_hint(self):
return dict