Source code for apache_beam.metrics.monitoring_infos

#
# Licensed to the Apache Software Foundation (ASF) under one or more
# contributor license agreements.  See the NOTICE file distributed with
# this work for additional information regarding copyright ownership.
# The ASF licenses this file to You under the Apache License, Version 2.0
# (the "License"); you may not use this file except in compliance with
# the License.  You may obtain a copy of the License at
#
#    http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#

# cython: language_level=3
# cython: profile=True

# pytype: skip-file

import collections
import time
from functools import reduce
from typing import FrozenSet
from typing import Hashable
from typing import List
from typing import Union

from apache_beam.coders import coder_impl
from apache_beam.coders import coders
from apache_beam.metrics.cells import DistributionData
from apache_beam.metrics.cells import DistributionResult
from apache_beam.metrics.cells import GaugeData
from apache_beam.metrics.cells import GaugeResult
from apache_beam.portability import common_urns
from apache_beam.portability.api import metrics_pb2

SAMPLED_BYTE_SIZE_URN = (
    common_urns.monitoring_info_specs.SAMPLED_BYTE_SIZE.spec.urn)
ELEMENT_COUNT_URN = common_urns.monitoring_info_specs.ELEMENT_COUNT.spec.urn
START_BUNDLE_MSECS_URN = (
    common_urns.monitoring_info_specs.START_BUNDLE_MSECS.spec.urn)
PROCESS_BUNDLE_MSECS_URN = (
    common_urns.monitoring_info_specs.PROCESS_BUNDLE_MSECS.spec.urn)
FINISH_BUNDLE_MSECS_URN = (
    common_urns.monitoring_info_specs.FINISH_BUNDLE_MSECS.spec.urn)
TOTAL_MSECS_URN = common_urns.monitoring_info_specs.TOTAL_MSECS.spec.urn
USER_COUNTER_URN = common_urns.monitoring_info_specs.USER_SUM_INT64.spec.urn
USER_DISTRIBUTION_URN = (
    common_urns.monitoring_info_specs.USER_DISTRIBUTION_INT64.spec.urn)
USER_GAUGE_URN = common_urns.monitoring_info_specs.USER_LATEST_INT64.spec.urn
USER_METRIC_URNS = set(
    [USER_COUNTER_URN, USER_DISTRIBUTION_URN, USER_GAUGE_URN])
WORK_REMAINING_URN = common_urns.monitoring_info_specs.WORK_REMAINING.spec.urn
WORK_COMPLETED_URN = common_urns.monitoring_info_specs.WORK_COMPLETED.spec.urn
DATA_CHANNEL_READ_INDEX = (
    common_urns.monitoring_info_specs.DATA_CHANNEL_READ_INDEX.spec.urn)
API_REQUEST_COUNT_URN = (
    common_urns.monitoring_info_specs.API_REQUEST_COUNT.spec.urn)

# TODO(ajamato): Implement the remaining types, i.e. Double types
# Extrema types, etc. See:
# https://s.apache.org/beam-fn-api-metrics
SUM_INT64_TYPE = common_urns.monitoring_info_types.SUM_INT64_TYPE.urn
DISTRIBUTION_INT64_TYPE = (
    common_urns.monitoring_info_types.DISTRIBUTION_INT64_TYPE.urn)
LATEST_INT64_TYPE = common_urns.monitoring_info_types.LATEST_INT64_TYPE.urn
PROGRESS_TYPE = common_urns.monitoring_info_types.PROGRESS_TYPE.urn

COUNTER_TYPES = set([SUM_INT64_TYPE])
DISTRIBUTION_TYPES = set([DISTRIBUTION_INT64_TYPE])
GAUGE_TYPES = set([LATEST_INT64_TYPE])

# TODO(migryz) extract values from beam_fn_api.proto::MonitoringInfoLabels
PCOLLECTION_LABEL = (
    common_urns.monitoring_info_labels.PCOLLECTION.label_props.name)
PTRANSFORM_LABEL = (
    common_urns.monitoring_info_labels.TRANSFORM.label_props.name)
NAMESPACE_LABEL = (
    common_urns.monitoring_info_labels.NAMESPACE.label_props.name)
NAME_LABEL = (common_urns.monitoring_info_labels.NAME.label_props.name)
SERVICE_LABEL = (common_urns.monitoring_info_labels.SERVICE.label_props.name)
METHOD_LABEL = (common_urns.monitoring_info_labels.METHOD.label_props.name)
RESOURCE_LABEL = (common_urns.monitoring_info_labels.RESOURCE.label_props.name)
STATUS_LABEL = (common_urns.monitoring_info_labels.STATUS.label_props.name)
BIGQUERY_PROJECT_ID_LABEL = (
    common_urns.monitoring_info_labels.BIGQUERY_PROJECT_ID.label_props.name)
BIGQUERY_DATASET_LABEL = (
    common_urns.monitoring_info_labels.BIGQUERY_DATASET.label_props.name)
BIGQUERY_TABLE_LABEL = (
    common_urns.monitoring_info_labels.BIGQUERY_TABLE.label_props.name)
BIGQUERY_VIEW_LABEL = (
    common_urns.monitoring_info_labels.BIGQUERY_VIEW.label_props.name)
BIGQUERY_QUERY_NAME_LABEL = (
    common_urns.monitoring_info_labels.BIGQUERY_QUERY_NAME.label_props.name)
GCS_PROJECT_ID_LABEL = (
    common_urns.monitoring_info_labels.GCS_PROJECT_ID.label_props.name)
GCS_BUCKET_LABEL = (
    common_urns.monitoring_info_labels.GCS_BUCKET.label_props.name)


[docs]def extract_counter_value(monitoring_info_proto): """Returns the counter value of the monitoring info.""" if not is_counter(monitoring_info_proto): raise ValueError('Unsupported type %s' % monitoring_info_proto.type) # Only SUM_INT64_TYPE is currently supported. return coders.VarIntCoder().decode(monitoring_info_proto.payload)
[docs]def extract_gauge_value(monitoring_info_proto): """Returns a tuple containing (timestamp, value)""" if not is_gauge(monitoring_info_proto): raise ValueError('Unsupported type %s' % monitoring_info_proto.type) # Only LATEST_INT64_TYPE is currently supported. return _decode_gauge(coders.VarIntCoder(), monitoring_info_proto.payload)
[docs]def extract_distribution(monitoring_info_proto): """Returns a tuple of (count, sum, min, max). Args: proto: The monitoring info for the distribution. """ if not is_distribution(monitoring_info_proto): raise ValueError('Unsupported type %s' % monitoring_info_proto.type) # Only DISTRIBUTION_INT64_TYPE is currently supported. return _decode_distribution( coders.VarIntCoder(), monitoring_info_proto.payload)
[docs]def create_labels(ptransform=None, namespace=None, name=None, pcollection=None): """Create the label dictionary based on the provided values. Args: ptransform: The ptransform id used as a label. pcollection: The pcollection id used as a label. """ labels = {} if ptransform: labels[PTRANSFORM_LABEL] = ptransform if namespace: labels[NAMESPACE_LABEL] = namespace if name: labels[NAME_LABEL] = name if pcollection: labels[PCOLLECTION_LABEL] = pcollection return labels
[docs]def int64_user_counter(namespace, name, metric, ptransform=None): # type: (...) -> metrics_pb2.MonitoringInfo """Return the counter monitoring info for the specifed URN, metric and labels. Args: urn: The URN of the monitoring info/metric. metric: The payload field to use in the monitoring info or an int value. ptransform: The ptransform id used as a label. """ labels = create_labels(ptransform=ptransform, namespace=namespace, name=name) if isinstance(metric, int): metric = coders.VarIntCoder().encode(metric) return create_monitoring_info( USER_COUNTER_URN, SUM_INT64_TYPE, metric, labels)
[docs]def int64_counter(urn, metric, ptransform=None, pcollection=None, labels=None): # type: (...) -> metrics_pb2.MonitoringInfo """Return the counter monitoring info for the specifed URN, metric and labels. Args: urn: The URN of the monitoring info/metric. metric: The payload field to use in the monitoring info or an int value. ptransform: The ptransform id used as a label. pcollection: The pcollection id used as a label. """ labels = labels or dict() labels.update(create_labels(ptransform=ptransform, pcollection=pcollection)) if isinstance(metric, int): metric = coders.VarIntCoder().encode(metric) return create_monitoring_info(urn, SUM_INT64_TYPE, metric, labels)
[docs]def int64_user_distribution(namespace, name, metric, ptransform=None): # type: (...) -> metrics_pb2.MonitoringInfo """Return the distribution monitoring info for the URN, metric and labels. Args: urn: The URN of the monitoring info/metric. metric: The DistributionData for the metric. ptransform: The ptransform id used as a label. """ labels = create_labels(ptransform=ptransform, namespace=namespace, name=name) payload = _encode_distribution( coders.VarIntCoder(), metric.count, metric.sum, metric.min, metric.max) return create_monitoring_info( USER_DISTRIBUTION_URN, DISTRIBUTION_INT64_TYPE, payload, labels)
[docs]def int64_distribution(urn, metric, ptransform=None, pcollection=None): # type: (...) -> metrics_pb2.MonitoringInfo """Return a distribution monitoring info for the URN, metric and labels. Args: urn: The URN of the monitoring info/metric. metric: The DistributionData for the metric. ptransform: The ptransform id used as a label. pcollection: The pcollection id used as a label. """ labels = create_labels(ptransform=ptransform, pcollection=pcollection) payload = _encode_distribution( coders.VarIntCoder(), metric.count, metric.sum, metric.min, metric.max) return create_monitoring_info(urn, DISTRIBUTION_INT64_TYPE, payload, labels)
[docs]def int64_user_gauge(namespace, name, metric, ptransform=None): # type: (...) -> metrics_pb2.MonitoringInfo """Return the gauge monitoring info for the URN, metric and labels. Args: namespace: User-defined namespace of counter. name: Name of counter. metric: The GaugeData containing the metrics. ptransform: The ptransform id used as a label. """ labels = create_labels(ptransform=ptransform, namespace=namespace, name=name) if isinstance(metric, GaugeData): coder = coders.VarIntCoder() value = metric.value timestamp = metric.timestamp else: raise TypeError( 'Expected GaugeData metric type but received %s with value %s' % (type(metric), metric)) payload = _encode_gauge(coder, timestamp, value) return create_monitoring_info( USER_GAUGE_URN, LATEST_INT64_TYPE, payload, labels)
[docs]def int64_gauge(urn, metric, ptransform=None): # type: (...) -> metrics_pb2.MonitoringInfo """Return the gauge monitoring info for the URN, metric and labels. Args: urn: The URN of the monitoring info/metric. metric: An int representing the value. The current time will be used for the timestamp. ptransform: The ptransform id used as a label. """ labels = create_labels(ptransform=ptransform) if isinstance(metric, int): value = metric time_ms = int(time.time()) * 1000 else: raise TypeError( 'Expected int metric type but received %s with value %s' % (type(metric), metric)) coder = coders.VarIntCoder() payload = coder.encode(time_ms) + coder.encode(value) return create_monitoring_info(urn, LATEST_INT64_TYPE, payload, labels)
[docs]def create_monitoring_info(urn, type_urn, payload, labels=None): # type: (...) -> metrics_pb2.MonitoringInfo """Return the gauge monitoring info for the URN, type, metric and labels. Args: urn: The URN of the monitoring info/metric. type_urn: The URN of the type of the monitoring info/metric. i.e. beam:metrics:sum_int_64, beam:metrics:latest_int_64. payload: The payload field to use in the monitoring info. labels: The label dictionary to use in the MonitoringInfo. """ return metrics_pb2.MonitoringInfo( urn=urn, type=type_urn, labels=labels or dict(), payload=payload)
[docs]def is_counter(monitoring_info_proto): """Returns true if the monitoring info is a coutner metric.""" return monitoring_info_proto.type in COUNTER_TYPES
[docs]def is_gauge(monitoring_info_proto): """Returns true if the monitoring info is a gauge metric.""" return monitoring_info_proto.type in GAUGE_TYPES
[docs]def is_distribution(monitoring_info_proto): """Returns true if the monitoring info is a distrbution metric.""" return monitoring_info_proto.type in DISTRIBUTION_TYPES
[docs]def is_user_monitoring_info(monitoring_info_proto): """Returns true if the monitoring info is a user metric.""" return monitoring_info_proto.urn in USER_METRIC_URNS
[docs]def extract_metric_result_map_value(monitoring_info_proto): # type: (...) -> Union[None, int, DistributionResult, GaugeResult] """Returns the relevant GaugeResult, DistributionResult or int value. These are the proper format for use in the MetricResult.query() result. """ # Returns a metric result (AKA the legacy format). # from the MonitoringInfo if is_counter(monitoring_info_proto): return extract_counter_value(monitoring_info_proto) if is_distribution(monitoring_info_proto): (count, sum, min, max) = extract_distribution(monitoring_info_proto) return DistributionResult(DistributionData(sum, count, min, max)) if is_gauge(monitoring_info_proto): (timestamp, value) = extract_gauge_value(monitoring_info_proto) return GaugeResult(GaugeData(value, timestamp)) return None
[docs]def parse_namespace_and_name(monitoring_info_proto): """Returns the (namespace, name) tuple of the URN in the monitoring info.""" # Remove the URN prefix which indicates that it is a user counter. if is_user_monitoring_info(monitoring_info_proto): labels = monitoring_info_proto.labels return labels[NAMESPACE_LABEL], labels[NAME_LABEL] # If it is not a user counter, just use the first part of the URN, i.e. 'beam' split = monitoring_info_proto.urn.split(':', 1) return split[0], split[1]
[docs]def get_step_name(monitoring_info_proto): """Returns a step name for the given monitoring info or None if step name cannot be specified.""" # Right now only metrics that have a PTRANSFORM are taken into account return monitoring_info_proto.labels.get(PTRANSFORM_LABEL)
[docs]def to_key(monitoring_info_proto): # type: (metrics_pb2.MonitoringInfo) -> FrozenSet[Hashable] """Returns a key based on the URN and labels. This is useful in maps to prevent reporting the same MonitoringInfo twice. """ key_items = list(monitoring_info_proto.labels.items()) # type: List[Hashable] key_items.append(monitoring_info_proto.urn) return frozenset(key_items)
[docs]def sum_payload_combiner(payload_a, payload_b): coder = coders.VarIntCoder() return coder.encode(coder.decode(payload_a) + coder.decode(payload_b))
[docs]def distribution_payload_combiner(payload_a, payload_b): coder = coders.VarIntCoder() (count_a, sum_a, min_a, max_a) = _decode_distribution(coder, payload_a) (count_b, sum_b, min_b, max_b) = _decode_distribution(coder, payload_b) return _encode_distribution( coder, count_a + count_b, sum_a + sum_b, min(min_a, min_b), max(max_a, max_b))
_KNOWN_COMBINERS = { SUM_INT64_TYPE: sum_payload_combiner, DISTRIBUTION_INT64_TYPE: distribution_payload_combiner, }
[docs]def consolidate(metrics, key=to_key): grouped = collections.defaultdict(list) for metric in metrics: grouped[key(metric)].append(metric) for values in grouped.values(): if len(values) == 1: yield values[0] else: combiner = _KNOWN_COMBINERS.get(values[0].type) if combiner: def merge(a, b): # pylint: disable=cell-var-from-loop return metrics_pb2.MonitoringInfo( urn=a.urn, type=a.type, labels=dict((label, value) for label, value in a.labels.items() if b.labels.get(label) == value), payload=combiner(a.payload, b.payload)) yield reduce(merge, values) else: for value in values: yield value
def _decode_gauge(coder, payload): """Returns a tuple of (timestamp, value).""" timestamp_coder = coders.VarIntCoder().get_impl() stream = coder_impl.create_InputStream(payload) time_ms = timestamp_coder.decode_from_stream(stream, True) return (time_ms / 1000.0, coder.get_impl().decode_from_stream(stream, True)) def _encode_gauge(coder, timestamp, value): timestamp_coder = coders.VarIntCoder().get_impl() stream = coder_impl.create_OutputStream() timestamp_coder.encode_to_stream(int(timestamp * 1000), stream, True) coder.get_impl().encode_to_stream(value, stream, True) return stream.get() def _decode_distribution(value_coder, payload): """Returns a tuple of (count, sum, min, max).""" count_coder = coders.VarIntCoder().get_impl() value_coder = value_coder.get_impl() stream = coder_impl.create_InputStream(payload) return ( count_coder.decode_from_stream(stream, True), value_coder.decode_from_stream(stream, True), value_coder.decode_from_stream(stream, True), value_coder.decode_from_stream(stream, True)) def _encode_distribution(value_coder, count, sum, min, max): count_coder = coders.VarIntCoder().get_impl() value_coder = value_coder.get_impl() stream = coder_impl.create_OutputStream() count_coder.encode_to_stream(count, stream, True) value_coder.encode_to_stream(sum, stream, True) value_coder.encode_to_stream(min, stream, True) value_coder.encode_to_stream(max, stream, True) return stream.get()