Source code for apache_beam.pvalue

#
# Licensed to the Apache Software Foundation (ASF) under one or more
# contributor license agreements.  See the NOTICE file distributed with
# this work for additional information regarding copyright ownership.
# The ASF licenses this file to You under the Apache License, Version 2.0
# (the "License"); you may not use this file except in compliance with
# the License.  You may obtain a copy of the License at
#
#    http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#

"""PValue, PCollection: one node of a dataflow graph.

A node of a dataflow processing graph is a PValue. Currently, there is only
one type: PCollection (a potentially very large set of arbitrary values).
Once created, a PValue belongs to a pipeline and has an associated
transform (of type PTransform), which describes how the value will be
produced when the pipeline gets executed.
"""

# pytype: skip-file

import collections
import itertools
from typing import TYPE_CHECKING
from typing import Any
from typing import Dict
from typing import Generic
from typing import Iterator
from typing import Optional
from typing import Sequence
from typing import TypeVar
from typing import Union

from apache_beam import coders
from apache_beam import typehints
from apache_beam.internal import pickler
from apache_beam.portability import common_urns
from apache_beam.portability import python_urns
from apache_beam.portability.api import beam_runner_api_pb2

if TYPE_CHECKING:
  from apache_beam.transforms import sideinputs
  from apache_beam.transforms.core import ParDo
  from apache_beam.transforms.core import Windowing
  from apache_beam.pipeline import AppliedPTransform
  from apache_beam.pipeline import Pipeline
  from apache_beam.runners.pipeline_context import PipelineContext

__all__ = [
    'PCollection',
    'TaggedOutput',
    'AsSideInput',
    'AsSingleton',
    'AsIter',
    'AsList',
    'AsDict',
    'EmptySideInput',
    'Row',
]

T = TypeVar('T')


class PValue(object):
  """Base class for PCollection.

  Dataflow users should not construct PValue objects directly in their
  pipelines.

  A PValue has the following main characteristics:
    (1) Belongs to a pipeline. Added during object initialization.
    (2) Has a transform that can compute the value if executed.
    (3) Has a value which is meaningful if the transform was executed.
  """

  def __init__(self,
               pipeline,  # type: Pipeline
               tag=None,  # type: Optional[str]
               element_type=None,  # type: Optional[Union[type,typehints.TypeConstraint]]
               windowing=None,  # type: Optional[Windowing]
               is_bounded=True,
              ):
    """Initializes a PValue with all arguments hidden behind keyword arguments.

    Args:
      pipeline: Pipeline object for this PValue.
      tag: Tag of this PValue.
      element_type: The type of this PValue.
    """
    self.pipeline = pipeline
    self.tag = tag
    self.element_type = element_type
    # The AppliedPTransform instance for the application of the PTransform
    # generating this PValue. The field gets initialized when a transform
    # gets applied.
    self.producer = None  # type: Optional[AppliedPTransform]
    self.is_bounded = is_bounded
    if windowing:
      self._windowing = windowing
    self.requires_deterministic_key_coder = None

  def __str__(self):
    return self._str_internal()

  def __repr__(self):
    return '<%s at %s>' % (self._str_internal(), hex(id(self)))

  def _str_internal(self):
    return "%s[%s.%s]" % (
        self.__class__.__name__,
        self.producer.full_label if self.producer else None,
        self.tag)

  def apply(self, *args, **kwargs):
    """Applies a transform or callable to a PValue.

    Args:
      *args: positional arguments.
      **kwargs: keyword arguments.

    The method will insert the pvalue as the next argument following an
    optional first label and a transform/callable object. It will call the
    pipeline.apply() method with this modified argument list.
    """
    arglist = list(args)
    arglist.insert(1, self)
    return self.pipeline.apply(*arglist, **kwargs)

  def __or__(self, ptransform):
    return self.pipeline.apply(ptransform, self)


[docs]class PCollection(PValue, Generic[T]): """A multiple values (potentially huge) container. Dataflow users should not construct PCollection objects directly in their pipelines. """ def __eq__(self, other): if isinstance(other, PCollection): return self.tag == other.tag and self.producer == other.producer def __hash__(self): return hash((self.tag, self.producer)) @property def windowing(self): # type: () -> Windowing if not hasattr(self, '_windowing'): assert self.producer is not None and self.producer.transform is not None self._windowing = self.producer.transform.get_windowing( self.producer.inputs) return self._windowing def __reduce_ex__(self, unused_version): # Pickling a PCollection is almost always the wrong thing to do, but we # can't prohibit it as it often gets implicitly picked up (e.g. as part # of a closure). return _InvalidUnpickledPCollection, ()
[docs] @staticmethod def from_(pcoll): # type: (PValue) -> PCollection """Create a PCollection, using another PCollection as a starting point. Transfers relevant attributes. """ return PCollection(pcoll.pipeline, is_bounded=pcoll.is_bounded)
[docs] def to_runner_api(self, context): # type: (PipelineContext) -> beam_runner_api_pb2.PCollection return beam_runner_api_pb2.PCollection( unique_name=self._unique_name(), coder_id=context.coder_id_from_element_type( self.element_type, self.requires_deterministic_key_coder), is_bounded=beam_runner_api_pb2.IsBounded.BOUNDED if self.is_bounded else beam_runner_api_pb2.IsBounded.UNBOUNDED, windowing_strategy_id=context.windowing_strategies.get_id( self.windowing))
def _unique_name(self): # type: () -> str if self.producer: return '%d%s.%s' % ( len(self.producer.full_label), self.producer.full_label, self.tag) else: return 'PCollection%s' % id(self)
[docs] @staticmethod def from_runner_api(proto, context): # type: (beam_runner_api_pb2.PCollection, PipelineContext) -> PCollection # Producer and tag will be filled in later, the key point is that the same # object is returned for the same pcollection id. # We pass None for the PCollection's Pipeline to avoid a cycle during # deserialization. It will be populated soon after this call, in # Pipeline.from_runner_api(). This brief period is the only time that # PCollection.pipeline is allowed to be None. return PCollection( None, # type: ignore[arg-type] element_type=context.element_type_from_coder_id(proto.coder_id), windowing=context.windowing_strategies.get_by_id( proto.windowing_strategy_id), is_bounded=proto.is_bounded == beam_runner_api_pb2.IsBounded.BOUNDED)
class _InvalidUnpickledPCollection(object): pass class PBegin(PValue): """A pipeline begin marker used as input to create/read transforms. The class is used internally to represent inputs to Create and Read transforms. This allows us to have transforms that uniformly take PValue(s) as inputs. """ pass class PDone(PValue): """PDone is the output of a transform that has a trivial result such as Write. """ pass class DoOutputsTuple(object): """An object grouping the multiple outputs of a ParDo or FlatMap transform.""" def __init__(self, pipeline, # type: Pipeline transform, # type: ParDo tags, # type: Sequence[str] main_tag # type: Optional[str] ): self._pipeline = pipeline self._tags = tags self._main_tag = main_tag self._transform = transform # The ApplyPTransform instance for the application of the multi FlatMap # generating this value. The field gets initialized when a transform # gets applied. self.producer = None # type: Optional[AppliedPTransform] # Dictionary of PCollections already associated with tags. self._pcolls = {} # type: Dict[Optional[str], PCollection] def __str__(self): return '<%s>' % self._str_internal() def __repr__(self): return '<%s at %s>' % (self._str_internal(), hex(id(self))) def _str_internal(self): return '%s main_tag=%s tags=%s transform=%s' % ( self.__class__.__name__, self._main_tag, self._tags, self._transform) def __iter__(self): # type: () -> Iterator[PCollection] """Iterates over tags returning for each call a (tag, pcollection) pair.""" if self._main_tag is not None: yield self[self._main_tag] for tag in self._tags: yield self[tag] def __getattr__(self, tag): # type: (str) -> PCollection # Special methods which may be accessed before the object is # fully constructed (e.g. in unpickling). if tag[:2] == tag[-2:] == '__': return object.__getattr__(self, tag) # type: ignore return self[tag] def __getitem__(self, tag): # type: (Union[int, str, None]) -> PCollection # Accept int tags so that we can look at Partition tags with the # same ints that we used in the partition function. # TODO(gildea): Consider requiring string-based tags everywhere. # This will require a partition function that does not return ints. if isinstance(tag, int): tag = str(tag) if tag == self._main_tag: tag = None elif self._tags and tag not in self._tags: raise ValueError( "Tag '%s' is neither the main tag '%s' " "nor any of the tags %s" % (tag, self._main_tag, self._tags)) # Check if we accessed this tag before. if tag in self._pcolls: return self._pcolls[tag] assert self.producer is not None if tag is not None: self._transform.output_tags.add(tag) pcoll = PCollection(self._pipeline, tag=tag, element_type=typehints.Any) # Transfer the producer from the DoOutputsTuple to the resulting # PCollection. pcoll.producer = self.producer.parts[0] # Add this as an output to both the inner ParDo and the outer _MultiParDo # PTransforms. if tag not in self.producer.parts[0].outputs: self.producer.parts[0].add_output(pcoll, tag) self.producer.add_output(pcoll, tag) else: # Main output is output of inner ParDo. pval = self.producer.parts[0].outputs[None] assert isinstance(pval, PCollection), ("DoOutputsTuple should follow a ParDo.") pcoll = pval self._pcolls[tag] = pcoll return pcoll
[docs]class TaggedOutput(object): """An object representing a tagged value. ParDo, Map, and FlatMap transforms can emit values on multiple outputs which are distinguished by string tags. The DoFn will return plain values if it wants to emit on the main output and TaggedOutput objects if it wants to emit a value on a specific tagged output. """ def __init__(self, tag, value): # type: (str, Any) -> None if not isinstance(tag, str): raise TypeError( 'Attempting to create a TaggedOutput with non-string tag %s' % (tag, )) self.tag = tag self.value = value
[docs]class AsSideInput(object): """Marker specifying that a PCollection will be used as a side input. When a PCollection is supplied as a side input to a PTransform, it is necessary to indicate how the PCollection should be made available as a PTransform side argument (e.g. in the form of an iterable, mapping, or single value). This class is the superclass of all the various options, and should not be instantiated directly. (See instead AsSingleton, AsIter, etc.) """ def __init__(self, pcoll): # type: (PCollection) -> None from apache_beam.transforms import sideinputs self.pvalue = pcoll self._window_mapping_fn = sideinputs.default_window_mapping_fn( pcoll.windowing.windowfn) def _view_options(self): """Internal options corresponding to specific view. Intended for internal use by runner implementations. Returns: Tuple of options for the given view. """ return { 'window_mapping_fn': self._window_mapping_fn, 'coder': self._windowed_coder(), } @property def element_type(self): return typehints.Any def _windowed_coder(self): return coders.WindowedValueCoder( coders.registry.get_coder( self.pvalue.element_type or self.element_type), self.pvalue.windowing.windowfn.get_window_coder()) # TODO(robertwb): Get rid of _from_runtime_iterable and _view_options # in favor of _side_input_data(). def _side_input_data(self): # type: () -> SideInputData view_options = self._view_options() from_runtime_iterable = type(self)._from_runtime_iterable return SideInputData( common_urns.side_inputs.ITERABLE.urn, self._window_mapping_fn, lambda iterable: from_runtime_iterable(iterable, view_options))
[docs] def to_runner_api(self, context): # type: (PipelineContext) -> beam_runner_api_pb2.SideInput return self._side_input_data().to_runner_api(context)
[docs] @staticmethod def from_runner_api(proto, # type: beam_runner_api_pb2.SideInput context # type: PipelineContext ): # type: (...) -> _UnpickledSideInput return _UnpickledSideInput(SideInputData.from_runner_api(proto, context))
@staticmethod def _from_runtime_iterable(it, options): raise NotImplementedError
[docs] def requires_keyed_input(self): return False
class _UnpickledSideInput(AsSideInput): def __init__(self, side_input_data): # type: (SideInputData) -> None self._data = side_input_data self._window_mapping_fn = side_input_data.window_mapping_fn @staticmethod def _from_runtime_iterable(it, options): access_pattern = options['data'].access_pattern if access_pattern == common_urns.side_inputs.ITERABLE.urn: raw_view = it elif access_pattern == common_urns.side_inputs.MULTIMAP.urn: raw_view = collections.defaultdict(list) for k, v in it: raw_view[k].append(v) else: raise ValueError('Unknown access_pattern: %s' % access_pattern) return options['data'].view_fn(raw_view) def _view_options(self): return { 'data': self._data, # For non-fn-api runners. 'window_mapping_fn': self._data.window_mapping_fn, 'coder': self._windowed_coder(), } def _side_input_data(self): return self._data class SideInputData(object): """All of the data about a side input except for the bound PCollection.""" def __init__(self, access_pattern, # type: str window_mapping_fn, # type: sideinputs.WindowMappingFn view_fn ): self.access_pattern = access_pattern self.window_mapping_fn = window_mapping_fn self.view_fn = view_fn def to_runner_api(self, context): # type: (PipelineContext) -> beam_runner_api_pb2.SideInput return beam_runner_api_pb2.SideInput( access_pattern=beam_runner_api_pb2.FunctionSpec( urn=self.access_pattern), view_fn=beam_runner_api_pb2.FunctionSpec( urn=python_urns.PICKLED_VIEWFN, payload=pickler.dumps(self.view_fn)), window_mapping_fn=beam_runner_api_pb2.FunctionSpec( urn=python_urns.PICKLED_WINDOW_MAPPING_FN, payload=pickler.dumps(self.window_mapping_fn))) @staticmethod def from_runner_api(proto, unused_context): # type: (beam_runner_api_pb2.SideInput, PipelineContext) -> SideInputData assert proto.view_fn.urn == python_urns.PICKLED_VIEWFN assert ( proto.window_mapping_fn.urn == python_urns.PICKLED_WINDOW_MAPPING_FN) return SideInputData( proto.access_pattern.urn, pickler.loads(proto.window_mapping_fn.payload), pickler.loads(proto.view_fn.payload))
[docs]class AsSingleton(AsSideInput): """Marker specifying that an entire PCollection is to be used as a side input. When a PCollection is supplied as a side input to a PTransform, it is necessary to indicate whether the entire PCollection should be made available as a PTransform side argument (in the form of an iterable), or whether just one value should be pulled from the PCollection and supplied as the side argument (as an ordinary value). Wrapping a PCollection side input argument to a PTransform in this container (e.g., data.apply('label', MyPTransform(), AsSingleton(my_side_input) ) selects the latter behavior. The input PCollection must contain exactly one value per window, unless a default is given, in which case it may be empty. """ _NO_DEFAULT = object() def __init__(self, pcoll, default_value=_NO_DEFAULT): # type: (PCollection, Any) -> None super(AsSingleton, self).__init__(pcoll) self.default_value = default_value def __repr__(self): return 'AsSingleton(%s)' % self.pvalue def _view_options(self): base = super(AsSingleton, self)._view_options() if self.default_value != AsSingleton._NO_DEFAULT: return dict(base, default=self.default_value) return base @staticmethod def _from_runtime_iterable(it, options): head = list(itertools.islice(it, 2)) if not head: return options.get('default', EmptySideInput()) elif len(head) == 1: return head[0] raise ValueError( 'PCollection of size %d with more than one element accessed as a ' 'singleton view. First two elements encountered are "%s", "%s".' % (len(head), str(head[0]), str(head[1]))) @property def element_type(self): return self.pvalue.element_type
[docs]class AsIter(AsSideInput): """Marker specifying that an entire PCollection is to be used as a side input. When a PCollection is supplied as a side input to a PTransform, it is necessary to indicate whether the entire PCollection should be made available as a PTransform side argument (in the form of an iterable), or whether just one value should be pulled from the PCollection and supplied as the side argument (as an ordinary value). Wrapping a PCollection side input argument to a PTransform in this container (e.g., data.apply('label', MyPTransform(), AsIter(my_side_input) ) selects the former behavor. """ def __repr__(self): return 'AsIter(%s)' % self.pvalue @staticmethod def _from_runtime_iterable(it, options): return it def _side_input_data(self): # type: () -> SideInputData return SideInputData( common_urns.side_inputs.ITERABLE.urn, self._window_mapping_fn, lambda iterable: iterable) @property def element_type(self): return typehints.Iterable[self.pvalue.element_type]
[docs]class AsList(AsSideInput): """Marker specifying that an entire PCollection is to be used as a side input. Intended for use in side-argument specification---the same places where AsSingleton and AsIter are used, but forces materialization of this PCollection as a list. Args: pcoll: Input pcollection. Returns: An AsList-wrapper around a PCollection whose one element is a list containing all elements in pcoll. """ @staticmethod def _from_runtime_iterable(it, options): return list(it) def _side_input_data(self): # type: () -> SideInputData return SideInputData( common_urns.side_inputs.ITERABLE.urn, self._window_mapping_fn, list)
[docs]class AsDict(AsSideInput): """Marker specifying a PCollection to be used as an indexable side input. Intended for use in side-argument specification---the same places where AsSingleton and AsIter are used, but returns an interface that allows key lookup. Args: pcoll: Input pcollection. All elements should be key-value pairs (i.e. 2-tuples) with unique keys. Returns: An AsDict-wrapper around a PCollection whose one element is a dict with entries for uniquely-keyed pairs in pcoll. """ @staticmethod def _from_runtime_iterable(it, options): return dict(it) def _side_input_data(self): # type: () -> SideInputData return SideInputData( common_urns.side_inputs.ITERABLE.urn, self._window_mapping_fn, dict)
class AsMultiMap(AsSideInput): """Marker specifying a PCollection to be used as an indexable side input. Similar to AsDict, but multiple values may be associated per key, and the keys are fetched lazily rather than all having to fit in memory. Intended for use in side-argument specification---the same places where AsSingleton and AsIter are used, but returns an interface that allows key lookup. """ @staticmethod def _from_runtime_iterable(it, options): # Legacy implementation. result = collections.defaultdict(list) for k, v in it: result[k].append(v) return result def _side_input_data(self): # type: () -> SideInputData return SideInputData( common_urns.side_inputs.MULTIMAP.urn, self._window_mapping_fn, lambda x: x) def requires_keyed_input(self): return True
[docs]class EmptySideInput(object): """Value indicating when a singleton side input was empty. If a PCollection was furnished as a singleton side input to a PTransform, and that PCollection was empty, then this value is supplied to the DoFn in the place where a value from a non-empty PCollection would have gone. This alerts the DoFn that the side input PCollection was empty. Users may want to check whether side input values are EmptySideInput, but they will very likely never want to create new instances of this class themselves. """ pass
[docs]class Row(object): """A dynamic schema'd row object. This objects attributes are initialized from the keywords passed into its constructor, e.g. Row(x=3, y=4) will create a Row with two attributes x and y. More importantly, when a Row object is returned from a `Map`, `FlatMap`, or `DoFn` type inference is able to deduce the schema of the resulting PCollection, e.g. pc | beam.Map(lambda x: Row(x=x, y=0.5 * x)) when applied to a PCollection of ints will produce a PCollection with schema `(x=int, y=float)`. Note that in Beam 2.30.0 and later, Row objects are sensitive to field order. So `Row(x=3, y=4)` is not considered equal to `Row(y=4, x=3)`. """ def __init__(self, **kwargs): self.__dict__.update(kwargs)
[docs] def as_dict(self): return dict(self.__dict__)
def __iter__(self): for _, value in self.__dict__.items(): yield value def __repr__(self): return 'Row(%s)' % ', '.join('%s=%r' % kv for kv in self.__dict__.items()) def __hash__(self): return hash(self.__dict__.items()) def __eq__(self, other): return type(self) == type(other) and all( s == o for s, o in zip(self.__dict__.items(), other.__dict__.items())) def __reduce__(self): return _make_Row, tuple(self.__dict__.items())
def _make_Row(*items): return Row(**dict(items))