Source code for apache_beam.dataframe.partitionings

#
# Licensed to the Apache Software Foundation (ASF) under one or more
# contributor license agreements.  See the NOTICE file distributed with
# this work for additional information regarding copyright ownership.
# The ASF licenses this file to You under the Apache License, Version 2.0
# (the "License"); you may not use this file except in compliance with
# the License.  You may obtain a copy of the License at
#
#    http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import random
from typing import Any
from typing import Iterable
from typing import Tuple
from typing import TypeVar

import numpy as np
import pandas as pd

Frame = TypeVar('Frame', bound=pd.core.generic.NDFrame)


[docs]class Partitioning(object): """A class representing a (consistent) partitioning of dataframe objects. """ def __repr__(self): return self.__class__.__name__
[docs] def is_subpartitioning_of(self, other): # type: (Partitioning) -> bool """Returns whether self is a sub-partition of other. Specifically, returns whether something partitioned by self is necissarily also partitioned by other. """ raise NotImplementedError
def __lt__(self, other): return self != other and self <= other def __le__(self, other): return not self.is_subpartitioning_of(other)
[docs] def partition_fn(self, df, num_partitions): # type: (Frame, int) -> Iterable[Tuple[Any, Frame]] """A callable that actually performs the partitioning of a Frame df. This will be invoked via a FlatMap in conjunction with a GroupKey to achieve the desired partitioning. """ raise NotImplementedError
[docs] def test_partition_fn(self, df): return self.partition_fn(df, 5)
[docs]class Index(Partitioning): """A partitioning by index (either fully or partially). If the set of "levels" of the index to consider is not specified, the entire index is used. These form a partial order, given by Singleton() < Index([i]) < Index([i, j]) < ... < Index() < Arbitrary() The ordering is implemented via the is_subpartitioning_of method, where the examples on the right are subpartitionings of the examples on the left above. """ def __init__(self, levels=None): self._levels = levels def __repr__(self): if self._levels: return 'Index%s' % self._levels else: return 'Index' def __eq__(self, other): return type(self) == type(other) and self._levels == other._levels def __hash__(self): if self._levels: return hash(tuple(sorted(self._levels))) else: return hash(type(self))
[docs] def is_subpartitioning_of(self, other): if isinstance(other, Singleton): return True elif isinstance(other, Index): if self._levels is None: return True elif other._levels is None: return False else: return all(level in self._levels for level in other._levels) elif isinstance(other, Arbitrary): return False else: raise ValueError(f"Encountered unknown type {other!r}")
def _hash_index(self, df): if self._levels is None: levels = list(range(df.index.nlevels)) else: levels = self._levels return sum( pd.util.hash_array(np.asarray(df.index.get_level_values(level))) for level in levels)
[docs] def partition_fn(self, df, num_partitions): hashes = self._hash_index(df) for key in range(num_partitions): yield key, df[hashes % num_partitions == key]
[docs] def check(self, dfs): # Drop empty DataFrames dfs = [df for df in dfs if len(df)] if not len(dfs): return True def apply_consistent_order(dfs): # Apply consistent order between dataframes by using sum of the index's # hash. # Apply consistent order within dataframe with sort_index() # Also drops any empty dataframes. return sorted((df.sort_index() for df in dfs if len(df)), key=lambda df: sum(self._hash_index(df))) dfs = apply_consistent_order(dfs) repartitioned_dfs = apply_consistent_order( df for _, df in self.test_partition_fn(pd.concat(dfs))) # Assert that each index is identical for df, repartitioned_df in zip(dfs, repartitioned_dfs): if not df.index.equals(repartitioned_df.index): return False return True
[docs]class Singleton(Partitioning): """A partitioning of all the data into a single partition. """ def __init__(self, reason=None): self._reason = reason @property def reason(self): return self._reason def __eq__(self, other): return type(self) == type(other) def __hash__(self): return hash(type(self))
[docs] def is_subpartitioning_of(self, other): return isinstance(other, Singleton)
[docs] def partition_fn(self, df, num_partitions): yield None, df
[docs] def check(self, dfs): return len(dfs) <= 1
[docs]class Arbitrary(Partitioning): """A partitioning imposing no constraints on the actual partitioning. """ def __eq__(self, other): return type(self) == type(other) def __hash__(self): return hash(type(self))
[docs] def is_subpartitioning_of(self, other): return True
[docs] def test_partition_fn(self, df): num_partitions = 10 def shuffled(seq): seq = list(seq) random.shuffle(seq) return seq part = pd.Series(shuffled(range(len(df))), index=df.index) % num_partitions for k in range(num_partitions): yield k, df[part == k]
[docs] def check(self, dfs): return True