#
# Licensed to the Apache Software Foundation (ASF) under one or more
# contributor license agreements. See the NOTICE file distributed with
# this work for additional information regarding copyright ownership.
# The ASF licenses this file to You under the Apache License, Version 2.0
# (the "License"); you may not use this file except in compliance with
# the License. You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
"""
DataflowRunner implementation of MetricResults. It is in charge of
responding to queries of current metrics by going to the dataflow
service.
"""
# pytype: skip-file
import argparse
import logging
import numbers
import sys
from collections import defaultdict
from apache_beam.metrics.cells import DistributionData
from apache_beam.metrics.cells import DistributionResult
from apache_beam.metrics.execution import MetricKey
from apache_beam.metrics.execution import MetricResult
from apache_beam.metrics.metric import MetricResults
from apache_beam.metrics.metricbase import MetricName
from apache_beam.options.pipeline_options import GoogleCloudOptions
from apache_beam.options.pipeline_options import PipelineOptions
_LOGGER = logging.getLogger(__name__)
def _get_match(proto, filter_fn):
"""Finds and returns the first element that matches a query.
If no element matches the query, it throws ValueError.
If more than one element matches the query, it returns only the first.
"""
query = [elm for elm in proto if filter_fn(elm)]
if len(query) == 0:
raise ValueError('Could not find element')
elif len(query) > 1:
raise ValueError('Too many matches')
return query[0]
# V1b3 MetricStructuredName keys to accept and copy to the MetricKey labels.
STEP_LABEL = 'step'
STRUCTURED_NAME_LABELS = set(
['execution_step', 'original_name', 'output_user_name'])
[docs]class DataflowMetrics(MetricResults):
"""Implementation of MetricResults class for the Dataflow runner."""
def __init__(self, dataflow_client=None, job_result=None, job_graph=None):
"""Initialize the Dataflow metrics object.
Args:
dataflow_client: apiclient.DataflowApplicationClient to interact with the
dataflow service.
job_result: DataflowPipelineResult with the state and id information of
the job.
job_graph: apiclient.Job instance to be able to translate between internal
step names (e.g. "s2"), and user step names (e.g. "split").
"""
super().__init__()
self._dataflow_client = dataflow_client
self.job_result = job_result
self._queried_after_termination = False
self._cached_metrics = None
self._job_graph = job_graph
@staticmethod
def _is_counter(metric_result):
return isinstance(metric_result.attempted, numbers.Number)
@staticmethod
def _is_distribution(metric_result):
return isinstance(metric_result.attempted, DistributionResult)
def _translate_step_name(self, internal_name):
"""Translate between internal step names (e.g. "s1") and user step names."""
if not self._job_graph:
raise ValueError(
'Could not translate the internal step name %r since job graph is '
'not available.' % internal_name)
user_step_name = None
if (self._job_graph and internal_name in
self._job_graph.proto_pipeline.components.transforms.keys()):
# Dataflow Runner v2 with portable job submission uses proto transform map
# IDs for step names. Also PTransform.unique_name maps to user step names.
# Hence we lookup user step names based on the proto.
user_step_name = self._job_graph.proto_pipeline.components.transforms[
internal_name].unique_name
else:
try:
step = _get_match(
self._job_graph.proto.steps, lambda x: x.name == internal_name)
user_step_name = _get_match(
step.properties.additionalProperties,
lambda x: x.key == 'user_name').value.string_value
except ValueError:
pass # Exception is handled below.
if not user_step_name:
raise ValueError(
'Could not translate the internal step name %r.' % internal_name)
return user_step_name
def _get_metric_key(self, metric):
"""Populate the MetricKey object for a queried metric result."""
step = ""
name = metric.name.name # Always extract a name
labels = {}
try: # Try to extract the user step name.
# If ValueError is thrown within this try-block, it is because of
# one of the following:
# 1. Unable to translate the step name. Only happening with improperly
# formatted job graph (unlikely), or step name not being the internal
# step name (only happens for unstructured-named metrics).
# 2. Unable to unpack [step] or [namespace]; which should only happen
# for unstructured names.
step = _get_match(
metric.name.context.additionalProperties,
lambda x: x.key == STEP_LABEL).value
step = self._translate_step_name(step)
except ValueError:
pass
namespace = "dataflow/v1b3" # Try to extract namespace or add a default.
try:
namespace = _get_match(
metric.name.context.additionalProperties,
lambda x: x.key == 'namespace').value
except ValueError:
pass
for kv in metric.name.context.additionalProperties:
if kv.key in STRUCTURED_NAME_LABELS:
labels[kv.key] = kv.value
# Package everything besides namespace and name the labels as well,
# including unmodified step names to assist in integration the exact
# unmodified values which come from dataflow.
return MetricKey(step, MetricName(namespace, name), labels=labels)
def _populate_metrics(self, response, result, user_metrics=False):
"""Move metrics from response to results as MetricResults."""
if user_metrics:
metrics = [
metric for metric in response.metrics if metric.name.origin == 'user'
]
else:
metrics = [
metric for metric in response.metrics
if metric.name.origin == 'dataflow/v1b3'
]
# Get the tentative/committed versions of every metric together.
metrics_by_name = defaultdict(lambda: {})
for metric in metrics:
if (metric.name.name.endswith('_MIN') or
metric.name.name.endswith('_MAX') or
metric.name.name.endswith('_MEAN') or
metric.name.name.endswith('_COUNT')):
# The Dataflow Service presents distribution metrics in two ways:
# One way is as a single distribution object with all its fields, and
# another way is as four different scalar metrics labeled as _MIN,
# _MAX, _COUNT_, _MEAN.
# TODO(pabloem) remove these when distributions are not being broken up
# in the service.
# The second way is only useful for the UI, and should be ignored.
continue
is_tentative = [
prop for prop in metric.name.context.additionalProperties
if prop.key == 'tentative' and prop.value == 'true'
]
tentative_or_committed = 'tentative' if is_tentative else 'committed'
metric_key = self._get_metric_key(metric)
if metric_key is None:
continue
metrics_by_name[metric_key][tentative_or_committed] = metric
# Now we create the MetricResult elements.
for metric_key, metric in metrics_by_name.items():
attempted = self._get_metric_value(metric['tentative'])
committed = self._get_metric_value(metric['committed'])
result.append(
MetricResult(metric_key, attempted=attempted, committed=committed))
def _get_metric_value(self, metric):
"""Get a metric result object from a MetricUpdate from Dataflow API."""
if metric is None:
return None
if metric.scalar is not None:
return metric.scalar.integer_value
elif metric.distribution is not None:
dist_count = _get_match(
metric.distribution.object_value.properties,
lambda x: x.key == 'count').value.integer_value
dist_min = _get_match(
metric.distribution.object_value.properties,
lambda x: x.key == 'min').value.integer_value
dist_max = _get_match(
metric.distribution.object_value.properties,
lambda x: x.key == 'max').value.integer_value
dist_sum = _get_match(
metric.distribution.object_value.properties,
lambda x: x.key == 'sum').value.integer_value
if not dist_sum:
# distribution metric is not meant to use on large values, but in case
# it is, the value can overflow and become double_value, the correctness
# of the value may not be guaranteed.
_LOGGER.info(
"Distribution metric sum value seems to have "
"overflowed integer_value range, the correctness of sum or mean "
"value may not be guaranteed: %s" % metric.distribution)
dist_sum = int(
_get_match(
metric.distribution.object_value.properties,
lambda x: x.key == 'sum').value.double_value)
return DistributionResult(
DistributionData(dist_sum, dist_count, dist_min, dist_max))
else:
return None
def _get_metrics_from_dataflow(self, job_id=None):
"""Return cached metrics or query the dataflow service."""
if not job_id:
try:
job_id = self.job_result.job_id()
except AttributeError:
job_id = None
if not job_id:
raise ValueError('Can not query metrics. Job id is unknown.')
if self._cached_metrics:
return self._cached_metrics
job_metrics = self._dataflow_client.get_job_metrics(job_id)
# If we cannot determine that the job has terminated,
# then metrics will not change and we can cache them.
if self.job_result and self.job_result.is_in_terminal_state():
self._cached_metrics = job_metrics
return job_metrics
[docs] def all_metrics(self, job_id=None):
"""Return all user and system metrics from the dataflow service."""
metric_results = []
response = self._get_metrics_from_dataflow(job_id=job_id)
self._populate_metrics(response, metric_results, user_metrics=True)
self._populate_metrics(response, metric_results, user_metrics=False)
return metric_results
[docs] def query(self, filter=None):
metric_results = []
response = self._get_metrics_from_dataflow()
self._populate_metrics(response, metric_results, user_metrics=True)
return {
self.COUNTERS: [
elm for elm in metric_results if self.matches(filter, elm.key) and
DataflowMetrics._is_counter(elm)
],
self.DISTRIBUTIONS: [
elm for elm in metric_results if self.matches(filter, elm.key) and
DataflowMetrics._is_distribution(elm)
],
self.GAUGES: []
} # TODO(pabloem): Add Gauge support for dataflow.
[docs]def main(argv):
"""Print the metric results for a the dataflow --job_id and --project.
Instead of running an entire pipeline which takes several minutes, use this
main method to display MetricResults for a specific --job_id and --project
which takes only a few seconds.
"""
# TODO(BEAM-6833): The MetricResults do not show translated step names as the
# job_graph is not provided to DataflowMetrics.
# Import here to avoid adding the dependency for local running scenarios.
try:
# pylint: disable=wrong-import-order, wrong-import-position
from apache_beam.runners.dataflow.internal import apiclient
except ImportError:
raise ImportError(
'Google Cloud Dataflow runner not available, '
'please install apache_beam[gcp]')
if argv[0] == __file__:
argv = argv[1:]
parser = argparse.ArgumentParser()
parser.add_argument(
'-j', '--job_id', type=str, help='The job id to query metrics for.')
parser.add_argument(
'-p',
'--project',
type=str,
help='The project name to query metrics for.')
flags = parser.parse_args(argv)
# Get a Dataflow API client and set its project and job_id in the options.
options = PipelineOptions()
gcloud_options = options.view_as(GoogleCloudOptions)
gcloud_options.project = flags.project
dataflow_client = apiclient.DataflowApplicationClient(options)
df_metrics = DataflowMetrics(dataflow_client)
all_metrics = df_metrics.all_metrics(job_id=flags.job_id)
_LOGGER.info(
'Printing all MetricResults for %s in %s', flags.job_id, flags.project)
for metric_result in all_metrics:
_LOGGER.info(metric_result)
if __name__ == '__main__':
logging.getLogger().setLevel(logging.INFO)
main(sys.argv)