Source code for apache_beam.runners.dataflow.dataflow_metrics

#
# Licensed to the Apache Software Foundation (ASF) under one or more
# contributor license agreements.  See the NOTICE file distributed with
# this work for additional information regarding copyright ownership.
# The ASF licenses this file to You under the Apache License, Version 2.0
# (the "License"); you may not use this file except in compliance with
# the License.  You may obtain a copy of the License at
#
#    http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#

"""
DataflowRunner implementation of MetricResults. It is in charge of
responding to queries of current metrics by going to the dataflow
service.
"""

import numbers
from collections import defaultdict

from apache_beam.metrics.cells import DistributionData
from apache_beam.metrics.cells import DistributionResult
from apache_beam.metrics.execution import MetricKey
from apache_beam.metrics.execution import MetricResult
from apache_beam.metrics.metric import MetricResults
from apache_beam.metrics.metricbase import MetricName


def _get_match(proto, filter_fn):
  """Finds and returns the first element that matches a query.

  If no element matches the query, it throws ValueError.
  If more than one element matches the query, it returns only the first.
  """
  query = [elm for elm in proto if filter_fn(elm)]
  if len(query) == 0:
    raise ValueError('Could not find element')
  elif len(query) > 1:
    raise ValueError('Too many matches')

  return query[0]


[docs]class DataflowMetrics(MetricResults): """Implementation of MetricResults class for the Dataflow runner.""" def __init__(self, dataflow_client=None, job_result=None, job_graph=None): """Initialize the Dataflow metrics object. Args: dataflow_client: apiclient.DataflowApplicationClient to interact with the dataflow service. job_result: DataflowPipelineResult with the state and id information of the job. job_graph: apiclient.Job instance to be able to translate between internal step names (e.g. "s2"), and user step names (e.g. "split"). """ super(DataflowMetrics, self).__init__() self._dataflow_client = dataflow_client self.job_result = job_result self._queried_after_termination = False self._cached_metrics = None self._job_graph = job_graph @staticmethod def _is_counter(metric_result): return isinstance(metric_result.attempted, numbers.Number) @staticmethod def _is_distribution(metric_result): return isinstance(metric_result.attempted, DistributionResult) def _translate_step_name(self, internal_name): """Translate between internal step names (e.g. "s1") and user step names.""" if not self._job_graph: raise ValueError('Could not translate the internal step name.') try: step = _get_match(self._job_graph.proto.steps, lambda x: x.name == internal_name) user_step_name = _get_match( step.properties.additionalProperties, lambda x: x.key == 'user_name').value.string_value except ValueError: raise ValueError('Could not translate the internal step name.') return user_step_name def _get_metric_key(self, metric): """Populate the MetricKey object for a queried metric result.""" try: # If ValueError is thrown within this try-block, it is because of # one of the following: # 1. Unable to translate the step name. Only happening with improperly # formatted job graph (unlikely), or step name not being the internal # step name (only happens for unstructured-named metrics). # 2. Unable to unpack [step] or [namespace]; which should only happen # for unstructured names. step = _get_match(metric.name.context.additionalProperties, lambda x: x.key == 'step').value step = self._translate_step_name(step) namespace = _get_match(metric.name.context.additionalProperties, lambda x: x.key == 'namespace').value name = metric.name.name except ValueError: return None return MetricKey(step, MetricName(namespace, name)) def _populate_metric_results(self, response): """Take a list of metrics, and convert it to a list of MetricResult.""" user_metrics = [metric for metric in response.metrics if metric.name.origin == 'user'] # Get the tentative/committed versions of every metric together. metrics_by_name = defaultdict(lambda: {}) for metric in user_metrics: if (metric.name.name.endswith('[MIN]') or metric.name.name.endswith('[MAX]') or metric.name.name.endswith('[MEAN]') or metric.name.name.endswith('[COUNT]')): # The Dataflow Service presents distribution metrics in two ways: # One way is as a single distribution object with all its fields, and # another way is as four different scalar metrics labeled as [MIN], # [MAX], [COUNT], [MEAN]. # TODO(pabloem) remove these when distributions are not being broken up # in the service. # The second way is only useful for the UI, and should be ignored. continue is_tentative = [prop for prop in metric.name.context.additionalProperties if prop.key == 'tentative' and prop.value == 'true'] tentative_or_committed = 'tentative' if is_tentative else 'committed' metric_key = self._get_metric_key(metric) if metric_key is None: continue metrics_by_name[metric_key][tentative_or_committed] = metric # Now we create the MetricResult elements. result = [] for metric_key, metric in metrics_by_name.iteritems(): attempted = self._get_metric_value(metric['tentative']) committed = self._get_metric_value(metric['committed']) if attempted is None or committed is None: continue result.append(MetricResult(metric_key, attempted=attempted, committed=committed)) return result def _get_metric_value(self, metric): """Get a metric result object from a MetricUpdate from Dataflow API.""" if metric is None: return None if metric.scalar is not None: return metric.scalar.integer_value elif metric.distribution is not None: dist_count = _get_match(metric.distribution.object_value.properties, lambda x: x.key == 'count').value.integer_value dist_min = _get_match(metric.distribution.object_value.properties, lambda x: x.key == 'min').value.integer_value dist_max = _get_match(metric.distribution.object_value.properties, lambda x: x.key == 'max').value.integer_value dist_sum = _get_match(metric.distribution.object_value.properties, lambda x: x.key == 'sum').value.integer_value return DistributionResult( DistributionData( dist_sum, dist_count, dist_min, dist_max)) else: return None def _get_metrics_from_dataflow(self): """Return cached metrics or query the dataflow service.""" try: job_id = self.job_result.job_id() except AttributeError: job_id = None if not job_id: raise ValueError('Can not query metrics. Job id is unknown.') if self._cached_metrics: return self._cached_metrics job_metrics = self._dataflow_client.get_job_metrics(job_id) # If the job has terminated, metrics will not change and we can cache them. if self.job_result._is_in_terminal_state(): self._cached_metrics = job_metrics return job_metrics
[docs] def query(self, filter=None): response = self._get_metrics_from_dataflow() metric_results = self._populate_metric_results(response) return {'counters': [elm for elm in metric_results if self.matches(filter, elm.key) and DataflowMetrics._is_counter(elm)], 'distributions': [elm for elm in metric_results if self.matches(filter, elm.key) and DataflowMetrics._is_distribution(elm)], 'gauges': []} # TODO(pabloem): Add Gauge support for dataflow.