Source code for apache_beam.ml.gcp.cloud_dlp

#
# Licensed to the Apache Software Foundation (ASF) under one or more
# contributor license agreements.  See the NOTICE file distributed with
# this work for additional information regarding copyright ownership.
# The ASF licenses this file to You under the Apache License, Version 2.0
# (the "License"); you may not use this file except in compliance with
# the License.  You may obtain a copy of the License at
#
#    http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#

"""``PTransforms`` that implement Google Cloud Data Loss Prevention
functionality.
"""

import logging
from typing import List

from google.cloud import dlp_v2

from apache_beam import typehints
from apache_beam.options.pipeline_options import GoogleCloudOptions
from apache_beam.transforms import DoFn
from apache_beam.transforms import ParDo
from apache_beam.transforms import PTransform
from apache_beam.utils.annotations import experimental

__all__ = ['MaskDetectedDetails', 'InspectForDetails']

_LOGGER = logging.getLogger(__name__)


[docs]@experimental() @typehints.with_input_types(str) @typehints.with_output_types(str) class MaskDetectedDetails(PTransform): """Scrubs sensitive information detected in text. The ``PTransform`` returns a ``PCollection`` of ``str`` Example usage:: pipeline | MaskDetectedDetails(project='example-gcp-project', deidentification_config={ 'info_type_transformations: { 'transformations': [{ 'primitive_transformation': { 'character_mask_config': { 'masking_character': '#' } } }] } }, inspection_config={'info_types': [{'name': 'EMAIL_ADDRESS'}]}) """ def __init__( self, project=None, deidentification_template_name=None, deidentification_config=None, inspection_template_name=None, inspection_config=None, timeout=None): """Initializes a :class:`MaskDetectedDetails` transform. Args: project: Optional. GCP project name in which inspection will be performed deidentification_template_name (str): Either this or `deidentification_config` required. Name of deidentification template to be used on detected sensitive information instances in text. deidentification_config (``Union[dict, google.cloud.dlp_v2.types.DeidentifyConfig]``): Configuration for the de-identification of the content item. If both template name and config are supplied, config is more important. inspection_template_name (str): This or `inspection_config` required. Name of inspection template to be used to detect sensitive data in text. inspection_config (``Union[dict, google.cloud.dlp_v2.types.InspectConfig]``): Configuration for the inspector used to detect sensitive data in text. If both template name and config are supplied, config takes precedence. timeout (float): Optional. The amount of time, in seconds, to wait for the request to complete. """ self.config = {} self.project = project self.timeout = timeout if deidentification_template_name is not None \ and deidentification_config is not None: raise ValueError( 'Both deidentification_template_name and ' 'deidentification_config were specified.' ' Please specify only one of these.') elif deidentification_template_name is None \ and deidentification_config is None: raise ValueError( 'deidentification_template_name or ' 'deidentification_config must be specified.') elif deidentification_template_name is not None: self.config['deidentify_template_name'] = deidentification_template_name else: self.config['deidentify_config'] = deidentification_config if inspection_config is None and inspection_template_name is None: raise ValueError( 'inspection_template_name or inspection_config must be specified') if inspection_template_name is not None: self.config['inspect_template_name'] = inspection_template_name if inspection_config is not None: self.config['inspect_config'] = inspection_config
[docs] def expand(self, pcoll): if self.project is None: self.project = pcoll.pipeline.options.view_as(GoogleCloudOptions).project if self.project is None: raise ValueError( 'GCP project name needs to be specified in "project" pipeline option') return ( pcoll | ParDo(_DeidentifyFn(self.config, self.timeout, self.project)))
[docs]@experimental() @typehints.with_input_types(str) @typehints.with_output_types(List[dlp_v2.types.dlp.Finding]) class InspectForDetails(PTransform): """Inspects input text for sensitive information. the ``PTransform`` returns a ``PCollection`` of ``List[google.cloud.dlp_v2.proto.dlp_pb2.Finding]`` Example usage:: pipeline | InspectForDetails(project='example-gcp-project', inspection_config={'info_types': [{'name': 'EMAIL_ADDRESS'}]}) """ def __init__( self, project=None, inspection_template_name=None, inspection_config=None, timeout=None): """Initializes a :class:`InspectForDetails` transform. Args: project: Optional. GCP project name in which inspection will be performed inspection_template_name (str): This or `inspection_config` required. Name of inspection template to be used to detect sensitive data in text. inspection_config (``Union[dict, google.cloud.dlp_v2.types.InspectConfig]``): Configuration for the inspector used to detect sensitive data in text. If both template name and config are supplied, config takes precedence. timeout (float): Optional. The amount of time, in seconds, to wait for the request to complete. """ self.timeout = timeout self.config = {} self.project = project if inspection_config is None and inspection_template_name is None: raise ValueError( 'inspection_template_name or inspection_config must be specified') if inspection_template_name is not None: self.config['inspect_template_name'] = inspection_template_name if inspection_config is not None: self.config['inspect_config'] = inspection_config
[docs] def expand(self, pcoll): if self.project is None: self.project = pcoll.pipeline.options.view_as(GoogleCloudOptions).project if self.project is None: raise ValueError( 'GCP project name needs to be specified in "project" pipeline option') return pcoll | ParDo(_InspectFn(self.config, self.timeout, self.project))
class _DeidentifyFn(DoFn): def __init__(self, config=None, timeout=None, project=None, client=None): self.config = config self.timeout = timeout self.client = client self.project = project self.params = {} def setup(self): if self.client is None: self.client = dlp_v2.DlpServiceClient() self.params = { 'timeout': self.timeout, } self.parent = self.client.common_project_path(self.project) def process(self, element, **kwargs): request = {'item': {'value': element}, 'parent': self.parent} request.update(self.config) operation = self.client.deidentify_content(request=request, **self.params) yield operation.item.value class _InspectFn(DoFn): def __init__(self, config=None, timeout=None, project=None): self.config = config self.timeout = timeout self.client = None self.project = project self.params = {} def setup(self): if self.client is None: self.client = dlp_v2.DlpServiceClient() self.params = { 'timeout': self.timeout, } self.parent = self.client.common_project_path(self.project) def process(self, element, **kwargs): request = {'item': {'value': element}, 'parent': self.parent} request.update(self.config) operation = self.client.inspect_content(request=request, **self.params) hits = [x for x in operation.result.findings] yield hits