#
# Licensed to the Apache Software Foundation (ASF) under one or more
# contributor license agreements. See the NOTICE file distributed with
# this work for additional information regarding copyright ownership.
# The ASF licenses this file to You under the Apache License, Version 2.0
# (the "License"); you may not use this file except in compliance with
# the License. You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
import enum
import pickle
import sys
from typing import Any
from typing import Dict
from typing import Iterable
from typing import Optional
from typing import Sequence
import numpy
import pandas
from sklearn.base import BaseEstimator
from apache_beam.io.filesystems import FileSystems
from apache_beam.ml.inference.base import ModelHandler
from apache_beam.ml.inference.base import PredictionResult
try:
import joblib
except ImportError:
# joblib is an optional dependency.
pass
[docs]class ModelFileType(enum.Enum):
"""Defines how a model file is serialized. Options are pickle or joblib."""
PICKLE = 1
JOBLIB = 2
def _load_model(model_uri, file_type):
file = FileSystems.open(model_uri, 'rb')
if file_type == ModelFileType.PICKLE:
return pickle.load(file)
elif file_type == ModelFileType.JOBLIB:
if not joblib:
raise ImportError(
'Could not import joblib in this execution environment. '
'For help with managing dependencies on Python workers.'
'see https://beam.apache.org/documentation/sdks/python-pipeline-dependencies/' # pylint: disable=line-too-long
)
return joblib.load(file)
raise AssertionError('Unsupported serialization type.')
def _validate_inference_args(inference_args):
"""Confirms that inference_args is None.
scikit-learn models do not need extra arguments in their predict() call.
However, since inference_args is an argument in the RunInference interface,
we want to make sure it is not passed here in Sklearn's implementation of
RunInference.
"""
if inference_args:
raise ValueError(
'inference_args were provided, but should be None because scikit-learn '
'models do not need extra arguments in their predict() call.')
[docs]class SklearnModelHandlerNumpy(ModelHandler[numpy.ndarray,
PredictionResult,
BaseEstimator]):
def __init__(
self,
model_uri: str,
model_file_type: ModelFileType = ModelFileType.PICKLE):
""" Implementation of the ModelHandler interface for scikit-learn
using numpy arrays as input.
Example Usage::
pcoll | RunInference(SklearnModelHandlerNumpy(model_uri="my_uri"))
Args:
model_uri: The URI to where the model is saved.
model_file_type: The method of serialization of the argument.
default=pickle
"""
self._model_uri = model_uri
self._model_file_type = model_file_type
[docs] def load_model(self) -> BaseEstimator:
"""Loads and initializes a model for processing."""
return _load_model(self._model_uri, self._model_file_type)
[docs] def run_inference(
self,
batch: Sequence[numpy.ndarray],
model: BaseEstimator,
inference_args: Optional[Dict[str, Any]] = None
) -> Iterable[PredictionResult]:
"""Runs inferences on a batch of numpy arrays.
Args:
batch: A sequence of examples as numpy arrays. They should
be single examples.
model: A numpy model or pipeline. Must implement predict(X).
Where the parameter X is a numpy array.
inference_args: Any additional arguments for an inference.
Returns:
An Iterable of type PredictionResult.
"""
_validate_inference_args(inference_args)
# vectorize data for better performance
vectorized_batch = numpy.stack(batch, axis=0)
predictions = model.predict(vectorized_batch)
return [PredictionResult(x, y) for x, y in zip(batch, predictions)]
[docs] def get_num_bytes(self, batch: Sequence[pandas.DataFrame]) -> int:
"""
Returns:
The number of bytes of data for a batch.
"""
return sum(sys.getsizeof(element) for element in batch)
[docs]class SklearnModelHandlerPandas(ModelHandler[pandas.DataFrame,
PredictionResult,
BaseEstimator]):
def __init__(
self,
model_uri: str,
model_file_type: ModelFileType = ModelFileType.PICKLE):
"""Implementation of the ModelHandler interface for scikit-learn that
supports pandas dataframes.
Example Usage::
pcoll | RunInference(SklearnModelHandlerPandas(model_uri="my_uri"))
**NOTE:** This API and its implementation are under development and
do not provide backward compatibility guarantees.
Args:
model_uri: The URI to where the model is saved.
model_file_type: The method of serialization of the argument.
default=pickle
"""
self._model_uri = model_uri
self._model_file_type = model_file_type
[docs] def load_model(self) -> BaseEstimator:
"""Loads and initializes a model for processing."""
return _load_model(self._model_uri, self._model_file_type)
[docs] def run_inference(
self,
batch: Sequence[pandas.DataFrame],
model: BaseEstimator,
inference_args: Optional[Dict[str, Any]] = None
) -> Iterable[PredictionResult]:
"""
Runs inferences on a batch of pandas dataframes.
Args:
batch: A sequence of examples as numpy arrays. They should
be single examples.
model: A dataframe model or pipeline. Must implement predict(X).
Where the parameter X is a pandas dataframe.
inference_args: Any additional arguments for an inference.
Returns:
An Iterable of type PredictionResult.
"""
_validate_inference_args(inference_args)
# sklearn_inference currently only supports single rowed dataframes.
for dataframe in iter(batch):
if dataframe.shape[0] != 1:
raise ValueError('Only dataframes with single rows are supported.')
# vectorize data for better performance
vectorized_batch = pandas.concat(batch, axis=0)
predictions = model.predict(vectorized_batch)
splits = [
vectorized_batch.iloc[[i]] for i in range(vectorized_batch.shape[0])
]
return [
PredictionResult(example, inference) for example,
inference in zip(splits, predictions)
]
[docs] def get_num_bytes(self, batch: Sequence[pandas.DataFrame]) -> int:
"""
Returns:
The number of bytes of data for a batch.
"""
return sum(df.memory_usage(deep=True).sum() for df in batch)