#
# Licensed to the Apache Software Foundation (ASF) under one or more
# contributor license agreements. See the NOTICE file distributed with
# this work for additional information regarding copyright ownership.
# The ASF licenses this file to You under the Apache License, Version 2.0
# (the "License"); you may not use this file except in compliance with
# the License. You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
"""Tools used tool work with Schema types in the context of BigQuery.
Classes, constants and functions in this file are experimental and have no
backwards compatibility guarantees.
NOTHING IN THIS FILE HAS BACKWARDS COMPATIBILITY GUARANTEES.
"""
import datetime
from typing import Optional
from typing import Sequence
import numpy as np
import apache_beam as beam
import apache_beam.io.gcp.bigquery_tools
import apache_beam.typehints.schemas
import apache_beam.utils.proto_utils
import apache_beam.utils.timestamp
from apache_beam.io.gcp.internal.clients import bigquery
from apache_beam.portability.api import schema_pb2
from apache_beam.transforms import DoFn
# BigQuery types as listed in
# https://cloud.google.com/bigquery/docs/reference/standard-sql/data-types
# with aliases (RECORD, BOOLEAN, FLOAT, INTEGER) as defined in
# https://developers.google.com/resources/api-libraries/documentation/bigquery/v2/java/latest/com/google/api/services/bigquery/model/TableFieldSchema.html#setType-java.lang.String-
BIG_QUERY_TO_PYTHON_TYPES = {
"STRING": str,
"INTEGER": np.int64,
"FLOAT64": np.float64,
"FLOAT": np.float64,
"BOOLEAN": bool,
"BYTES": bytes,
"TIMESTAMP": apache_beam.utils.timestamp.Timestamp
#TODO(https://github.com/apache/beam/issues/20810):
# Finish mappings for all BQ types
}
[docs]def generate_user_type_from_bq_schema(the_table_schema):
#type: (bigquery.TableSchema) -> type
"""Convert a schema of type TableSchema into a pcollection element.
Args:
the_table_schema: A BQ schema of type TableSchema
Returns:
type: type that can be used to work with pCollections.
"""
the_schema = beam.io.gcp.bigquery_tools.get_dict_table_schema(
the_table_schema)
if the_schema == {}:
raise ValueError("Encountered an empty schema")
dict_of_tuples = []
for i in range(len(the_schema['fields'])):
if the_schema['fields'][i]['type'] in BIG_QUERY_TO_PYTHON_TYPES:
typ = bq_field_to_type(
the_schema['fields'][i]['type'], the_schema['fields'][i]['mode'])
else:
raise ValueError(
f"Encountered "
f"an unsupported type: {the_schema['fields'][i]['type']!r}")
# TODO svetaksundhar@: Map remaining BQ types
dict_of_tuples.append((the_schema['fields'][i]['name'], typ))
sample_schema = beam.typehints.schemas.named_fields_to_schema(dict_of_tuples)
usertype = beam.typehints.schemas.named_tuple_from_schema(sample_schema)
return usertype
[docs]def bq_field_to_type(field, mode):
if mode == 'NULLABLE' or mode is None or mode == '':
return Optional[BIG_QUERY_TO_PYTHON_TYPES[field]]
elif mode == 'REPEATED':
return Sequence[BIG_QUERY_TO_PYTHON_TYPES[field]]
elif mode == 'REQUIRED':
return BIG_QUERY_TO_PYTHON_TYPES[field]
else:
raise ValueError(f"Encountered an unsupported mode: {mode!r}")
[docs]def convert_to_usertype(table_schema):
usertype = generate_user_type_from_bq_schema(table_schema)
return beam.ParDo(BeamSchemaConversionDoFn(usertype))
[docs]class BeamSchemaConversionDoFn(DoFn):
def __init__(self, pcoll_val_ctor):
self._pcoll_val_ctor = pcoll_val_ctor
[docs] def process(self, dict_of_tuples):
for k, v in dict_of_tuples.items():
if isinstance(v, datetime.datetime):
dict_of_tuples[k] = beam.utils.timestamp.Timestamp.from_utc_datetime(v)
yield self._pcoll_val_ctor(**dict_of_tuples)
[docs] def infer_output_type(self, input_type):
return self._pcoll_val_ctor
@classmethod
def _from_serialized_schema(cls, schema_str):
return cls(
apache_beam.typehints.schemas.named_tuple_from_schema(
apache_beam.utils.proto_utils.parse_Bytes(
schema_str, schema_pb2.Schema)))
def __reduce__(self):
# when pickling, use bytes representation of the schema.
return (
self._from_serialized_schema,
(
beam.typehints.schemas.named_tuple_to_schema(
self._pcoll_val_ctor).SerializeToString(), ))