Source code for apache_beam.metrics.cells

#
# Licensed to the Apache Software Foundation (ASF) under one or more
# contributor license agreements.  See the NOTICE file distributed with
# this work for additional information regarding copyright ownership.
# The ASF licenses this file to You under the Apache License, Version 2.0
# (the "License"); you may not use this file except in compliance with
# the License.  You may obtain a copy of the License at
#
#    http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#

# cython: language_level=3

"""
This file contains metric cell classes. A metric cell is used to accumulate
in-memory changes to a metric. It represents a specific metric in a single
context.
"""

# pytype: skip-file

import threading
import time
from datetime import datetime
from typing import Any
from typing import Optional
from typing import SupportsInt

try:
  import cython
except ImportError:

  class fake_cython:
    compiled = False

  globals()['cython'] = fake_cython

__all__ = [
    'MetricAggregator',
    'MetricCell',
    'MetricCellFactory',
    'DistributionResult',
    'GaugeResult'
]


[docs]class MetricCell(object): """For internal use only; no backwards-compatibility guarantees. Accumulates in-memory changes to a metric. A MetricCell represents a specific metric in a single context and bundle. All subclasses must be thread safe, as these are used in the pipeline runners, and may be subject to parallel/concurrent updates. Cells should only be used directly within a runner. """ def __init__(self): self._lock = threading.Lock() self._start_time = None
[docs] def update(self, value): raise NotImplementedError
[docs] def get_cumulative(self): raise NotImplementedError
[docs] def to_runner_api_monitoring_info(self, name, transform_id): if not self._start_time: self._start_time = datetime.utcnow() mi = self.to_runner_api_monitoring_info_impl(name, transform_id) mi.start_time.FromDatetime(self._start_time) return mi
[docs] def to_runner_api_monitoring_info_impl(self, name, transform_id): raise NotImplementedError
[docs] def reset(self): # type: () -> None raise NotImplementedError
def __reduce__(self): raise NotImplementedError
[docs]class MetricCellFactory(object): def __call__(self): # type: () -> MetricCell raise NotImplementedError
class CounterCell(MetricCell): """For internal use only; no backwards-compatibility guarantees. Tracks the current value and delta of a counter metric. Each cell tracks the state of an integer metric independently per context per bundle. Therefore, each metric has a different cell in each bundle, cells are aggregated by the runner. This class is thread safe. """ def __init__(self, *args): super().__init__(*args) self.value = CounterAggregator.identity_element() def reset(self): # type: () -> None self.value = CounterAggregator.identity_element() def combine(self, other): # type: (CounterCell) -> CounterCell result = CounterCell() result.inc(self.value + other.value) return result def inc(self, n=1): self.update(n) def dec(self, n=1): self.update(-n) def update(self, value): # type: (int) -> None if cython.compiled: ivalue = value # Since We hold the GIL, no need for another lock. # And because the C threads won't preempt and interleave # each other. # Assuming there is no code trying to access the counters # directly by circumventing the GIL. self.value += ivalue else: with self._lock: self.value += value def get_cumulative(self): # type: () -> int with self._lock: return self.value def to_runner_api_monitoring_info_impl(self, name, transform_id): from apache_beam.metrics import monitoring_infos if not name.urn: # User counter case. return monitoring_infos.int64_user_counter( name.namespace, name.name, self.get_cumulative(), ptransform=transform_id) else: # Arbitrary URN case. return monitoring_infos.int64_counter( name.urn, self.get_cumulative(), labels=name.labels) class DistributionCell(MetricCell): """For internal use only; no backwards-compatibility guarantees. Tracks the current value and delta for a distribution metric. Each cell tracks the state of a metric independently per context per bundle. Therefore, each metric has a different cell in each bundle, that is later aggregated. This class is thread safe. """ def __init__(self, *args): super().__init__(*args) self.data = DistributionAggregator.identity_element() def reset(self): # type: () -> None self.data = DistributionAggregator.identity_element() def combine(self, other): # type: (DistributionCell) -> DistributionCell result = DistributionCell() result.data = self.data.combine(other.data) return result def update(self, value): if cython.compiled: # We will hold the GIL throughout the entire _update. self._update(value) else: with self._lock: self._update(value) def _update(self, value): if cython.compiled: ivalue = value else: ivalue = int(value) self.data.count = self.data.count + 1 self.data.sum = self.data.sum + ivalue if ivalue < self.data.min: self.data.min = ivalue if ivalue > self.data.max: self.data.max = ivalue def get_cumulative(self): # type: () -> DistributionData with self._lock: return self.data.get_cumulative() def to_runner_api_monitoring_info_impl(self, name, transform_id): from apache_beam.metrics import monitoring_infos return monitoring_infos.int64_user_distribution( name.namespace, name.name, self.get_cumulative(), ptransform=transform_id) class GaugeCell(MetricCell): """For internal use only; no backwards-compatibility guarantees. Tracks the current value and delta for a gauge metric. Each cell tracks the state of a metric independently per context per bundle. Therefore, each metric has a different cell in each bundle, that is later aggregated. This class is thread safe. """ def __init__(self, *args): super().__init__(*args) self.data = GaugeAggregator.identity_element() def reset(self): self.data = GaugeAggregator.identity_element() def combine(self, other): # type: (GaugeCell) -> GaugeCell result = GaugeCell() result.data = self.data.combine(other.data) return result def set(self, value): self.update(value) def update(self, value): # type: (SupportsInt) -> None value = int(value) with self._lock: # Set the value directly without checking timestamp, because # this value is naturally the latest value. self.data.value = value self.data.timestamp = time.time() def get_cumulative(self): # type: () -> GaugeData with self._lock: return self.data.get_cumulative() def to_runner_api_monitoring_info_impl(self, name, transform_id): from apache_beam.metrics import monitoring_infos return monitoring_infos.int64_user_gauge( name.namespace, name.name, self.get_cumulative(), ptransform=transform_id)
[docs]class DistributionResult(object): """The result of a Distribution metric.""" def __init__(self, data): # type: (DistributionData) -> None self.data = data def __eq__(self, other): # type: (object) -> bool if isinstance(other, DistributionResult): return self.data == other.data else: return False def __hash__(self): # type: () -> int return hash(self.data) def __repr__(self): # type: () -> str return ( 'DistributionResult(sum={}, count={}, min={}, max={}, ' 'mean={})'.format(self.sum, self.count, self.min, self.max, self.mean)) @property def max(self): # type: () -> Optional[int] return self.data.max if self.data.count else None @property def min(self): # type: () -> Optional[int] return self.data.min if self.data.count else None @property def count(self): # type: () -> Optional[int] return self.data.count @property def sum(self): # type: () -> Optional[int] return self.data.sum @property def mean(self): # type: () -> Optional[float] """Returns the float mean of the distribution. If the distribution contains no elements, it returns None. """ if self.data.count == 0: return None return self.data.sum / self.data.count
[docs]class GaugeResult(object): def __init__(self, data): # type: (GaugeData) -> None self.data = data def __eq__(self, other): # type: (object) -> bool if isinstance(other, GaugeResult): return self.data == other.data else: return False def __hash__(self): # type: () -> int return hash(self.data) def __repr__(self): return '<GaugeResult(value={}, timestamp={})>'.format( self.value, self.timestamp) @property def value(self): # type: () -> Optional[int] return self.data.value @property def timestamp(self): # type: () -> Optional[int] return self.data.timestamp
class GaugeData(object): """For internal use only; no backwards-compatibility guarantees. The data structure that holds data about a gauge metric. Gauge metrics are restricted to integers only. This object is not thread safe, so it's not supposed to be modified by other than the GaugeCell that contains it. """ def __init__(self, value, timestamp=None): # type: (Optional[int], Optional[int]) -> None self.value = value self.timestamp = timestamp if timestamp is not None else 0 def __eq__(self, other): # type: (object) -> bool if isinstance(other, GaugeData): return self.value == other.value and self.timestamp == other.timestamp else: return False def __hash__(self): # type: () -> int return hash((self.value, self.timestamp)) def __repr__(self): # type: () -> str return '<GaugeData(value={}, timestamp={})>'.format( self.value, self.timestamp) def get_cumulative(self): # type: () -> GaugeData return GaugeData(self.value, timestamp=self.timestamp) def combine(self, other): # type: (Optional[GaugeData]) -> GaugeData if other is None: return self if other.timestamp > self.timestamp: return other else: return self @staticmethod def singleton(value, timestamp=None): # type: (Optional[int], Optional[int]) -> GaugeData return GaugeData(value, timestamp=timestamp) class DistributionData(object): """For internal use only; no backwards-compatibility guarantees. The data structure that holds data about a distribution metric. Distribution metrics are restricted to distributions of integers only. This object is not thread safe, so it's not supposed to be modified by other than the DistributionCell that contains it. """ def __init__(self, sum, count, min, max): # type: (int, int, int, int) -> None if count: self.sum = sum self.count = count self.min = min self.max = max else: self.sum = self.count = 0 self.min = 2**63 - 1 # Avoid Wimplicitly-unsigned-literal caused by -2**63. self.max = -self.min - 1 def __eq__(self, other): # type: (object) -> bool if isinstance(other, DistributionData): return ( self.sum == other.sum and self.count == other.count and self.min == other.min and self.max == other.max) else: return False def __hash__(self): # type: () -> int return hash((self.sum, self.count, self.min, self.max)) def __repr__(self): # type: () -> str return 'DistributionData(sum={}, count={}, min={}, max={})'.format( self.sum, self.count, self.min, self.max) def get_cumulative(self): # type: () -> DistributionData return DistributionData(self.sum, self.count, self.min, self.max) def combine(self, other): # type: (Optional[DistributionData]) -> DistributionData if other is None: return self return DistributionData( self.sum + other.sum, self.count + other.count, self.min if self.min < other.min else other.min, self.max if self.max > other.max else other.max) @staticmethod def singleton(value): # type: (int) -> DistributionData return DistributionData(value, 1, value, value)
[docs]class MetricAggregator(object): """For internal use only; no backwards-compatibility guarantees. Base interface for aggregating metric data during pipeline execution."""
[docs] def identity_element(self): # type: () -> Any """Returns the identical element of an Aggregation. For the identity element, it must hold that Aggregator.combine(any_element, identity_element) == any_element. """ raise NotImplementedError
[docs] def combine(self, x, y): # type: (Any, Any) -> Any raise NotImplementedError
[docs] def result(self, x): # type: (Any) -> Any raise NotImplementedError
class CounterAggregator(MetricAggregator): """For internal use only; no backwards-compatibility guarantees. Aggregator for Counter metric data during pipeline execution. Values aggregated should be ``int`` objects. """ @staticmethod def identity_element(): # type: () -> int return 0 def combine(self, x, y): # type: (SupportsInt, SupportsInt) -> int return int(x) + int(y) def result(self, x): # type: (SupportsInt) -> int return int(x) class DistributionAggregator(MetricAggregator): """For internal use only; no backwards-compatibility guarantees. Aggregator for Distribution metric data during pipeline execution. Values aggregated should be ``DistributionData`` objects. """ @staticmethod def identity_element(): # type: () -> DistributionData return DistributionData(0, 0, 2**63 - 1, -2**63) def combine(self, x, y): # type: (DistributionData, DistributionData) -> DistributionData return x.combine(y) def result(self, x): # type: (DistributionData) -> DistributionResult return DistributionResult(x.get_cumulative()) class GaugeAggregator(MetricAggregator): """For internal use only; no backwards-compatibility guarantees. Aggregator for Gauge metric data during pipeline execution. Values aggregated should be ``GaugeData`` objects. """ @staticmethod def identity_element(): # type: () -> GaugeData return GaugeData(0, timestamp=0) def combine(self, x, y): # type: (GaugeData, GaugeData) -> GaugeData result = x.combine(y) return result def result(self, x): # type: (GaugeData) -> GaugeResult return GaugeResult(x.get_cumulative())