Source code for apache_beam.transforms.core

#
# Licensed to the Apache Software Foundation (ASF) under one or more
# contributor license agreements.  See the NOTICE file distributed with
# this work for additional information regarding copyright ownership.
# The ASF licenses this file to You under the Apache License, Version 2.0
# (the "License"); you may not use this file except in compliance with
# the License.  You may obtain a copy of the License at
#
#    http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#

"""Core PTransform subclasses, such as FlatMap, GroupByKey, and Map."""

# pytype: skip-file

import concurrent.futures
import copy
import inspect
import logging
import random
import sys
import time
import traceback
import types
import typing
from itertools import dropwhile

from apache_beam import coders
from apache_beam import pvalue
from apache_beam import typehints
from apache_beam.coders import typecoders
from apache_beam.internal import pickler
from apache_beam.internal import util
from apache_beam.options.pipeline_options import TypeOptions
from apache_beam.portability import common_urns
from apache_beam.portability import python_urns
from apache_beam.portability.api import beam_runner_api_pb2
from apache_beam.transforms import ptransform
from apache_beam.transforms import userstate
from apache_beam.transforms.display import DisplayDataItem
from apache_beam.transforms.display import HasDisplayData
from apache_beam.transforms.ptransform import PTransform
from apache_beam.transforms.ptransform import PTransformWithSideInputs
from apache_beam.transforms.sideinputs import SIDE_INPUT_PREFIX
from apache_beam.transforms.sideinputs import get_sideinput_index
from apache_beam.transforms.userstate import StateSpec
from apache_beam.transforms.userstate import TimerSpec
from apache_beam.transforms.window import GlobalWindows
from apache_beam.transforms.window import SlidingWindows
from apache_beam.transforms.window import TimestampCombiner
from apache_beam.transforms.window import TimestampedValue
from apache_beam.transforms.window import WindowedValue
from apache_beam.transforms.window import WindowFn
from apache_beam.typehints import row_type
from apache_beam.typehints import trivial_inference
from apache_beam.typehints.batch import BatchConverter
from apache_beam.typehints.decorators import TypeCheckError
from apache_beam.typehints.decorators import WithTypeHints
from apache_beam.typehints.decorators import get_signature
from apache_beam.typehints.decorators import get_type_hints
from apache_beam.typehints.decorators import with_input_types
from apache_beam.typehints.decorators import with_output_types
from apache_beam.typehints.trivial_inference import element_type
from apache_beam.typehints.typehints import TypeConstraint
from apache_beam.typehints.typehints import is_consistent_with
from apache_beam.typehints.typehints import visit_inner_types
from apache_beam.utils import urns
from apache_beam.utils.timestamp import Duration

if typing.TYPE_CHECKING:
  from google.protobuf import message  # pylint: disable=ungrouped-imports
  from apache_beam.io import iobase
  from apache_beam.pipeline import Pipeline
  from apache_beam.runners.pipeline_context import PipelineContext
  from apache_beam.transforms import create_source
  from apache_beam.transforms.trigger import AccumulationMode
  from apache_beam.transforms.trigger import DefaultTrigger
  from apache_beam.transforms.trigger import TriggerFn

__all__ = [
    'DoFn',
    'CombineFn',
    'PartitionFn',
    'ParDo',
    'FlatMap',
    'FlatMapTuple',
    'Map',
    'MapTuple',
    'Filter',
    'CombineGlobally',
    'CombinePerKey',
    'CombineValues',
    'GroupBy',
    'GroupByKey',
    'Select',
    'Partition',
    'Windowing',
    'WindowInto',
    'Flatten',
    'Create',
    'Impulse',
    'RestrictionProvider',
    'WatermarkEstimatorProvider',
]

# Type variables
T = typing.TypeVar('T')
K = typing.TypeVar('K')
V = typing.TypeVar('V')

_LOGGER = logging.getLogger(__name__)


class DoFnContext(object):
  """A context available to all methods of DoFn instance."""
  pass


class DoFnProcessContext(DoFnContext):
  """A processing context passed to DoFn process() during execution.

  Most importantly, a DoFn.process method will access context.element
  to get the element it is supposed to process.

  Attributes:
    label: label of the ParDo whose element is being processed.
    element: element being processed
      (in process method only; always None in start_bundle and finish_bundle)
    timestamp: timestamp of the element
      (in process method only; always None in start_bundle and finish_bundle)
    windows: windows of the element
      (in process method only; always None in start_bundle and finish_bundle)
    state: a DoFnState object, which holds the runner's internal state
      for this element.
      Not used by the pipeline code.
  """
  def __init__(self, label, element=None, state=None):
    """Initialize a processing context object with an element and state.

    The element represents one value from a PCollection that will be accessed
    by a DoFn object during pipeline execution, and state is an arbitrary object
    where counters and other pipeline state information can be passed in.

    DoFnProcessContext objects are also used as inputs to PartitionFn instances.

    Args:
      label: label of the PCollection whose element is being processed.
      element: element of a PCollection being processed using this context.
      state: a DoFnState object with state to be passed in to the DoFn object.
    """
    self.label = label
    self.state = state
    if element is not None:
      self.set_element(element)

  def set_element(self, windowed_value):
    if windowed_value is None:
      # Not currently processing an element.
      if hasattr(self, 'element'):
        del self.element
        del self.timestamp
        del self.windows
    else:
      self.element = windowed_value.value
      self.timestamp = windowed_value.timestamp
      self.windows = windowed_value.windows


class ProcessContinuation(object):
  """An object that may be produced as the last element of a process method
    invocation.

  If produced, indicates that there is more work to be done for the current
  input element.
  """
  def __init__(self, resume_delay=0):
    """Initializes a ProcessContinuation object.

    Args:
      resume_delay: indicates the minimum time, in seconds, that should elapse
        before re-invoking process() method for resuming the invocation of the
        current element.
    """
    self.resume_delay = resume_delay

  @staticmethod
  def resume(resume_delay=0):
    """A convenient method that produces a ``ProcessContinuation``.

    Args:
      resume_delay: delay after which processing current element should be
        resumed.
    Returns: a ``ProcessContinuation`` for signalling the runner that current
      input element has not been fully processed and should be resumed later.
    """
    return ProcessContinuation(resume_delay=resume_delay)


[docs]class RestrictionProvider(object): """Provides methods for generating and manipulating restrictions. This class should be implemented to support Splittable ``DoFn`` in Python SDK. See https://s.apache.org/splittable-do-fn for more details about Splittable ``DoFn``. To denote a ``DoFn`` class to be Splittable ``DoFn``, ``DoFn.process()`` method of that class should have exactly one parameter whose default value is an instance of ``RestrictionParam``. This ``RestrictionParam`` can either be constructed with an explicit ``RestrictionProvider``, or, if no ``RestrictionProvider`` is provided, the ``DoFn`` itself must be a ``RestrictionProvider``. The provided ``RestrictionProvider`` instance must provide suitable overrides for the following methods: * create_tracker() * initial_restriction() * restriction_size() Optionally, ``RestrictionProvider`` may override default implementations of following methods: * restriction_coder() * split() * split_and_size() * truncate() ** Pausing and resuming processing of an element ** As the last element produced by the iterator returned by the ``DoFn.process()`` method, a Splittable ``DoFn`` may return an object of type ``ProcessContinuation``. If restriction_tracker.defer_remander is called in the ```DoFn.process()``, it means that runner should later re-invoke ``DoFn.process()`` method to resume processing the current element and the manner in which the re-invocation should be performed. ** Updating output watermark ** ``DoFn.process()`` method of Splittable ``DoFn``s could contain a parameter with default value ``DoFn.WatermarkReporterParam``. If specified this asks the runner to provide a function that can be used to give the runner a (best-effort) lower bound about the timestamps of future output associated with the current element processed by the ``DoFn``. If the ``DoFn`` has multiple outputs, the watermark applies to all of them. Provided function must be invoked with a single parameter of type ``Timestamp`` or as an integer that gives the watermark in number of seconds. """
[docs] def create_tracker(self, restriction): # type: (...) -> iobase.RestrictionTracker """Produces a new ``RestrictionTracker`` for the given restriction. This API is required to be implemented. Args: restriction: an object that defines a restriction as identified by a Splittable ``DoFn`` that utilizes the current ``RestrictionProvider``. For example, a tuple that gives a range of positions for a Splittable ``DoFn`` that reads files based on byte positions. Returns: an object of type ``RestrictionTracker``. """ raise NotImplementedError
[docs] def initial_restriction(self, element): """Produces an initial restriction for the given element. This API is required to be implemented. """ raise NotImplementedError
[docs] def split(self, element, restriction): """Splits the given element and restriction initially. This method enables runners to perform bulk splitting initially allowing for a rapid increase in parallelism. Note that initial split is a different concept from the split during element processing time. Please refer to ``iobase.RestrictionTracker.try_split`` for details about splitting when the current element and restriction are actively being processed. Returns an iterator of restrictions. The total set of elements produced by reading input element for each of the returned restrictions should be the same as the total set of elements produced by reading the input element for the input restriction. This API is optional if ``split_and_size`` has been implemented. If this method is not override, there is no initial splitting happening on each restriction. """ yield restriction
[docs] def restriction_coder(self): """Returns a ``Coder`` for restrictions. Returned``Coder`` will be used for the restrictions produced by the current ``RestrictionProvider``. Returns: an object of type ``Coder``. """ return coders.registry.get_coder(object)
[docs] def restriction_size(self, element, restriction): """Returns the size of a restriction with respect to the given element. By default, asks a newly-created restriction tracker for the default size of the restriction. The return value must be non-negative. Must be thread safe. Will be invoked concurrently during bundle processing due to runner initiated splitting and progress estimation. This API is required to be implemented. """ raise NotImplementedError
[docs] def split_and_size(self, element, restriction): """Like split, but also does sizing, returning (restriction, size) pairs. For each pair, size must be non-negative. This API is optional if ``split`` and ``restriction_size`` have been implemented. """ for part in self.split(element, restriction): yield part, self.restriction_size(element, part)
[docs] def truncate(self, element, restriction): """Truncates the provided restriction into a restriction representing a finite amount of work when the pipeline is `draining <https://docs.google.com/document/d/1NExwHlj-2q2WUGhSO4jTu8XGhDPmm3cllSN8IMmWci8/edit#> for additional details about drain.>_`. # pylint: disable=line-too-long By default, if the restriction is bounded then the restriction will be returned otherwise None will be returned. This API is optional and should only be implemented if more granularity is required. Return a truncated finite restriction if further processing is required otherwise return None to represent that no further processing of this restriction is required. The default behavior when a pipeline is being drained is that bounded restrictions process entirely while unbounded restrictions process till a checkpoint is possible. """ restriction_tracker = self.create_tracker(restriction) if restriction_tracker.is_bounded(): return restriction
def get_function_arguments(obj, func): # type: (...) -> typing.Tuple[typing.List[str], typing.List[typing.Any]] """Return the function arguments based on the name provided. If they have a _inspect_function attached to the class then use that otherwise default to the modified version of python inspect library. Returns: Same as get_function_args_defaults. """ func_name = '_inspect_%s' % func if hasattr(obj, func_name): f = getattr(obj, func_name) return f() f = getattr(obj, func) return get_function_args_defaults(f) def get_function_args_defaults(f): # type: (...) -> typing.Tuple[typing.List[str], typing.List[typing.Any]] """Returns the function arguments of a given function. Returns: (args: List[str], defaults: List[Any]). The first list names the arguments of the method and the second one has the values of the default arguments. This is similar to ``inspect.getfullargspec()``'s results, except it doesn't include bound arguments and may follow function wrappers. """ signature = get_signature(f) parameter = inspect.Parameter # TODO(BEAM-5878) support kwonlyargs on Python 3. _SUPPORTED_ARG_TYPES = [ parameter.POSITIONAL_ONLY, parameter.POSITIONAL_OR_KEYWORD ] args = [ name for name, p in signature.parameters.items() if p.kind in _SUPPORTED_ARG_TYPES ] defaults = [ p.default for p in signature.parameters.values() if p.kind in _SUPPORTED_ARG_TYPES and p.default is not p.empty ] return args, defaults
[docs]class WatermarkEstimatorProvider(object): """Provides methods for generating WatermarkEstimator. This class should be implemented if wanting to providing output_watermark information within an SDF. In order to make an SDF.process() access to the typical WatermarkEstimator, the SDF author should have an argument whose default value is a DoFn.WatermarkEstimatorParam instance. This DoFn.WatermarkEstimatorParam can either be constructed with an explicit WatermarkEstimatorProvider, or, if no WatermarkEstimatorProvider is provided, the DoFn itself must be a WatermarkEstimatorProvider. """
[docs] def initial_estimator_state(self, element, restriction): """Returns the initial state of the WatermarkEstimator with given element and restriction. This function is called by the system. """ raise NotImplementedError
[docs] def create_watermark_estimator(self, estimator_state): """Create a new WatermarkEstimator based on the state. The state is typically useful when resuming processing an element. """ raise NotImplementedError
[docs] def estimator_state_coder(self): return coders.registry.get_coder(object)
class _DoFnParam(object): """DoFn parameter.""" def __init__(self, param_id): self.param_id = param_id def __eq__(self, other): if type(self) == type(other): return self.param_id == other.param_id return False def __hash__(self): return hash(self.param_id) def __repr__(self): return self.param_id class _RestrictionDoFnParam(_DoFnParam): """Restriction Provider DoFn parameter.""" def __init__(self, restriction_provider=None): # type: (typing.Optional[RestrictionProvider]) -> None if (restriction_provider is not None and not isinstance(restriction_provider, RestrictionProvider)): raise ValueError( 'DoFn.RestrictionParam expected RestrictionProvider object.') self.restriction_provider = restriction_provider self.param_id = ( 'RestrictionParam(%s)' % restriction_provider.__class__.__name__) class _StateDoFnParam(_DoFnParam): """State DoFn parameter.""" def __init__(self, state_spec): # type: (StateSpec) -> None if not isinstance(state_spec, StateSpec): raise ValueError("DoFn.StateParam expected StateSpec object.") self.state_spec = state_spec self.param_id = 'StateParam(%s)' % state_spec.name class _TimerDoFnParam(_DoFnParam): """Timer DoFn parameter.""" def __init__(self, timer_spec): # type: (TimerSpec) -> None if not isinstance(timer_spec, TimerSpec): raise ValueError("DoFn.TimerParam expected TimerSpec object.") self.timer_spec = timer_spec self.param_id = 'TimerParam(%s)' % timer_spec.name class _BundleFinalizerParam(_DoFnParam): """Bundle Finalization DoFn parameter.""" def __init__(self): self._callbacks = [] self.param_id = "FinalizeBundle" def register(self, callback): self._callbacks.append(callback) # Log errors when calling callback to make sure all callbacks get called # though there are errors. And errors should not fail pipeline. def finalize_bundle(self): for callback in self._callbacks: try: callback() except Exception as e: _LOGGER.warning("Got exception from finalization call: %s", e) def has_callbacks(self): # type: () -> bool return len(self._callbacks) > 0 def reset(self): # type: () -> None del self._callbacks[:] class _WatermarkEstimatorParam(_DoFnParam): """WatermarkEstimator DoFn parameter.""" def __init__( self, watermark_estimator_provider: typing. Optional[WatermarkEstimatorProvider] = None): if (watermark_estimator_provider is not None and not isinstance( watermark_estimator_provider, WatermarkEstimatorProvider)): raise ValueError( 'DoFn.WatermarkEstimatorParam expected' 'WatermarkEstimatorProvider object.') self.watermark_estimator_provider = watermark_estimator_provider self.param_id = 'WatermarkEstimatorProvider'
[docs]class DoFn(WithTypeHints, HasDisplayData, urns.RunnerApiFn): """A function object used by a transform with custom processing. The ParDo transform is such a transform. The ParDo.apply method will take an object of type DoFn and apply it to all elements of a PCollection object. In order to have concrete DoFn objects one has to subclass from DoFn and define the desired behavior (start_bundle/finish_bundle and process) or wrap a callable object using the CallableWrapperDoFn class. """ # Parameters that can be used in the .process() method. ElementParam = _DoFnParam('ElementParam') SideInputParam = _DoFnParam('SideInputParam') TimestampParam = _DoFnParam('TimestampParam') WindowParam = _DoFnParam('WindowParam') PaneInfoParam = _DoFnParam('PaneInfoParam') WatermarkEstimatorParam = _WatermarkEstimatorParam BundleFinalizerParam = _BundleFinalizerParam KeyParam = _DoFnParam('KeyParam') # Parameters to access state and timers. Not restricted to use only in the # .process() method. Usage: DoFn.StateParam(state_spec), # DoFn.TimerParam(timer_spec), DoFn.TimestampParam, DoFn.WindowParam, # DoFn.KeyParam StateParam = _StateDoFnParam TimerParam = _TimerDoFnParam DynamicTimerTagParam = _DoFnParam('DynamicTimerTagParam') DoFnProcessParams = [ ElementParam, SideInputParam, TimestampParam, WindowParam, WatermarkEstimatorParam, PaneInfoParam, BundleFinalizerParam, KeyParam, StateParam, TimerParam, ] RestrictionParam = _RestrictionDoFnParam
[docs] @staticmethod def from_callable(fn): return CallableWrapperDoFn(fn)
[docs] @staticmethod def unbounded_per_element(): """A decorator on process fn specifying that the fn performs an unbounded amount of work per input element.""" def wrapper(process_fn): process_fn.unbounded_per_element = True return process_fn return wrapper
[docs] @staticmethod def yields_elements(fn): """A decorator to apply to ``process_batch`` indicating it yields elements. By default ``process_batch`` is assumed to both consume and produce "batches", which are collections of multiple logical Beam elements. This decorator indicates that ``process_batch`` **produces** individual elements at a time. ``process_batch`` is always expected to consume batches. """ if not fn.__name__ in ('process', 'process_batch'): raise TypeError( "@yields_elements must be applied to a process or " f"process_batch method, got {fn!r}.") fn._beam_yields_elements = True return fn
[docs] @staticmethod def yields_batches(fn): """A decorator to apply to ``process`` indicating it yields batches. By default ``process`` is assumed to both consume and produce individual elements at a time. This decorator indicates that ``process`` **produces** "batches", which are collections of multiple logical Beam elements. """ if not fn.__name__ in ('process', 'process_batch'): raise TypeError( "@yields_elements must be applied to a process or " f"process_batch method, got {fn!r}.") fn._beam_yields_batches = True return fn
[docs] def default_label(self): return self.__class__.__name__
[docs] def process(self, element, *args, **kwargs): """Method to use for processing elements. This is invoked by ``DoFnRunner`` for each element of a input ``PCollection``. The following parameters can be used as default values on ``process`` arguments to indicate that a DoFn accepts the corresponding parameters. For example, a DoFn might accept the element and its timestamp with the following signature:: def process(element=DoFn.ElementParam, timestamp=DoFn.TimestampParam): ... The full set of parameters is: - ``DoFn.ElementParam``: element to be processed, should not be mutated. - ``DoFn.SideInputParam``: a side input that may be used when processing. - ``DoFn.TimestampParam``: timestamp of the input element. - ``DoFn.WindowParam``: ``Window`` the input element belongs to. - ``DoFn.TimerParam``: a ``userstate.RuntimeTimer`` object defined by the spec of the parameter. - ``DoFn.StateParam``: a ``userstate.RuntimeState`` object defined by the spec of the parameter. - ``DoFn.KeyParam``: key associated with the element. - ``DoFn.RestrictionParam``: an ``iobase.RestrictionTracker`` will be provided here to allow treatment as a Splittable ``DoFn``. The restriction tracker will be derived from the restriction provider in the parameter. - ``DoFn.WatermarkEstimatorParam``: a function that can be used to track output watermark of Splittable ``DoFn`` implementations. Args: element: The element to be processed *args: side inputs **kwargs: other keyword arguments. Returns: An Iterable of output elements or None. """ raise NotImplementedError
[docs] def process_batch(self, batch, *args, **kwargs): raise NotImplementedError
[docs] def setup(self): """Called to prepare an instance for processing bundles of elements. This is a good place to initialize transient in-memory resources, such as network connections. The resources can then be disposed in ``DoFn.teardown``. """ pass
[docs] def start_bundle(self): """Called before a bundle of elements is processed on a worker. Elements to be processed are split into bundles and distributed to workers. Before a worker calls process() on the first element of its bundle, it calls this method. """ pass
[docs] def finish_bundle(self): """Called after a bundle of elements is processed on a worker. """ pass
[docs] def teardown(self): """Called to use to clean up this instance before it is discarded. A runner will do its best to call this method on any given instance to prevent leaks of transient resources, however, there may be situations where this is impossible (e.g. process crash, hardware failure, etc.) or unnecessary (e.g. the pipeline is shutting down and the process is about to be killed anyway, so all transient resources will be released automatically by the OS). In these cases, the call may not happen. It will also not be retried, because in such situations the DoFn instance no longer exists, so there's no instance to retry it on. Thus, all work that depends on input elements, and all externally important side effects, must be performed in ``DoFn.process`` or ``DoFn.finish_bundle``. """ pass
[docs] def get_function_arguments(self, func): return get_function_arguments(self, func)
[docs] def default_type_hints(self): process_type_hints = typehints.decorators.IOTypeHints.from_callable( self.process) or typehints.decorators.IOTypeHints.empty() if self._process_yields_batches: # process() produces batches, don't use it's output typehint process_type_hints = process_type_hints.with_output_types_from( typehints.decorators.IOTypeHints.empty()) if self._process_batch_yields_elements: # process_batch() produces elements, *do* use it's output typehint # First access the typehint process_batch_type_hints = typehints.decorators.IOTypeHints.from_callable( self.process_batch) or typehints.decorators.IOTypeHints.empty() # Then we deconflict with the typehint from process, if it exists if (process_batch_type_hints.output_types != typehints.decorators.IOTypeHints.empty().output_types): if (process_type_hints.output_types != typehints.decorators.IOTypeHints.empty().output_types and process_batch_type_hints.output_types != process_type_hints.output_types): raise TypeError( f"DoFn {self!r} yields element from both process and " "process_batch, but they have mismatched output typehints:\n" f" process: {process_type_hints.output_types}\n" f" process_batch: {process_batch_type_hints.output_types}") process_type_hints = process_type_hints.with_output_types_from( process_batch_type_hints) try: process_type_hints = process_type_hints.strip_iterable() except ValueError as e: raise ValueError('Return value not iterable: %s: %s' % (self, e)) # Prefer class decorator type hints for backwards compatibility. return get_type_hints(self.__class__).with_defaults(process_type_hints)
# TODO(sourabhbajaj): Do we want to remove the responsibility of these from # the DoFn or maybe the runner
[docs] def infer_output_type(self, input_type): # TODO(https://github.com/apache/beam/issues/19824): Side inputs types. return trivial_inference.element_type( _strip_output_annotations( trivial_inference.infer_return_type(self.process, [input_type])))
@property def _process_defined(self) -> bool: # Check if this DoFn's process method has been overridden # Note that we retrieve the __func__ attribute, if it exists, to get the # underlying function from the bound method. # If __func__ doesn't exist, self.process was likely overridden with a free # function, as in CallableWrapperDoFn. return getattr(self.process, '__func__', self.process) != DoFn.process @property def _process_batch_defined(self) -> bool: # Check if this DoFn's process_batch method has been overridden # Note that we retrieve the __func__ attribute, if it exists, to get the # underlying function from the bound method. # If __func__ doesn't exist, self.process_batch was likely overridden with # a free function. return getattr( self.process_batch, '__func__', self.process_batch) != DoFn.process_batch @property def _can_yield_batches(self) -> bool: return ((self._process_defined and self._process_yields_batches) or ( self._process_batch_defined and not self._process_batch_yields_elements)) @property def _process_yields_batches(self) -> bool: return getattr(self.process, '_beam_yields_batches', False) @property def _process_batch_yields_elements(self) -> bool: return getattr(self.process_batch, '_beam_yields_elements', False)
[docs] def get_input_batch_type( self, input_element_type ) -> typing.Optional[typing.Union[TypeConstraint, type]]: """Determine the batch type expected as input to process_batch. The default implementation of ``get_input_batch_type`` simply observes the input typehint for the first parameter of ``process_batch``. A Batched DoFn may override this method if a dynamic approach is required. Args: input_element_type: The **element type** of the input PCollection this DoFn is being applied to. Returns: ``None`` if this DoFn cannot accept batches, else a Beam typehint or a native Python typehint. """ if not self._process_batch_defined: return None input_type = list( inspect.signature(self.process_batch).parameters.values())[0].annotation if input_type == inspect.Signature.empty: # TODO(https://github.com/apache/beam/issues/21652): Consider supporting # an alternative (dynamic?) approach for declaring input type raise TypeError( f"Either {self.__class__.__name__}.process_batch() must have a type " f"annotation on its first parameter, or {self.__class__.__name__} " "must override get_input_batch_type.") return input_type
def _get_input_batch_type_normalized(self, input_element_type): return typehints.native_type_compatibility.convert_to_beam_type( self.get_input_batch_type(input_element_type)) def _get_output_batch_type_normalized(self, input_element_type): return typehints.native_type_compatibility.convert_to_beam_type( self.get_output_batch_type(input_element_type)) @staticmethod def _get_element_type_from_return_annotation(method, input_type): return_type = inspect.signature(method).return_annotation if return_type == inspect.Signature.empty: # output type not annotated, try to infer it return_type = trivial_inference.infer_return_type(method, [input_type]) return_type = typehints.native_type_compatibility.convert_to_beam_type( return_type) if isinstance(return_type, typehints.typehints.IterableTypeConstraint): return return_type.inner_type elif isinstance(return_type, typehints.typehints.IteratorTypeConstraint): return return_type.yielded_type else: raise TypeError( "Expected Iterator in return type annotation for " f"{method!r}, did you mean Iterator[{return_type}]? Note Beam DoFn " "process and process_batch methods are expected to produce " "generators - they should 'yield' rather than 'return'.")
[docs] def get_output_batch_type( self, input_element_type ) -> typing.Optional[typing.Union[TypeConstraint, type]]: """Determine the batch type produced by this DoFn's ``process_batch`` implementation and/or its ``process`` implementation with ``@yields_batch``. The default implementation of this method observes the return type annotations on ``process_batch`` and/or ``process``. A Batched DoFn may override this method if a dynamic approach is required. Args: input_element_type: The **element type** of the input PCollection this DoFn is being applied to. Returns: ``None`` if this DoFn will never yield batches, else a Beam typehint or a native Python typehint. """ output_batch_type = None if self._process_defined and self._process_yields_batches: output_batch_type = self._get_element_type_from_return_annotation( self.process, input_element_type) if self._process_batch_defined and not self._process_batch_yields_elements: process_batch_type = self._get_element_type_from_return_annotation( self.process_batch, self._get_input_batch_type_normalized(input_element_type)) # TODO: Consider requiring an inheritance relationship rather than # equality if (output_batch_type is not None and (not process_batch_type == output_batch_type)): raise TypeError( f"DoFn {self!r} yields batches from both process and " "process_batch, but they produce different types:\n" f" process: {output_batch_type}\n" f" process_batch: {process_batch_type!r}") output_batch_type = process_batch_type return output_batch_type
def _process_argspec_fn(self): """Returns the Python callable that will eventually be invoked. This should ideally be the user-level function that is called with the main and (if any) side inputs, and is used to relate the type hint parameters with the input parameters (e.g., by argument name). """ return self.process urns.RunnerApiFn.register_pickle_urn(python_urns.PICKLED_DOFN)
class CallableWrapperDoFn(DoFn): """For internal use only; no backwards-compatibility guarantees. A DoFn (function) object wrapping a callable object. The purpose of this class is to conveniently wrap simple functions and use them in transforms. """ def __init__(self, fn, fullargspec=None): """Initializes a CallableWrapperDoFn object wrapping a callable. Args: fn: A callable object. Raises: TypeError: if fn parameter is not a callable type. """ if not callable(fn): raise TypeError('Expected a callable object instead of: %r' % fn) self._fn = fn self._fullargspec = fullargspec if isinstance( fn, (types.BuiltinFunctionType, types.MethodType, types.FunctionType)): self.process = fn else: # For cases such as set / list where fn is callable but not a function self.process = lambda element: fn(element) super().__init__() def display_data(self): # If the callable has a name, then it's likely a function, and # we show its name. # Otherwise, it might be an instance of a callable class. We # show its class. display_data_value = ( self._fn.__name__ if hasattr(self._fn, '__name__') else self._fn.__class__) return { 'fn': DisplayDataItem(display_data_value, label='Transform Function') } def __repr__(self): return 'CallableWrapperDoFn(%s)' % self._fn def default_type_hints(self): fn_type_hints = typehints.decorators.IOTypeHints.from_callable(self._fn) type_hints = get_type_hints(self._fn).with_defaults(fn_type_hints) # The fn's output type should be iterable. Strip off the outer # container type due to the 'flatten' portion of FlatMap/ParDo. try: type_hints = type_hints.strip_iterable() except ValueError as e: raise TypeCheckError( 'Return value not iterable: %s: %s' % (self.display_data()['fn'].value, e)) return type_hints def infer_output_type(self, input_type): return trivial_inference.element_type( _strip_output_annotations( trivial_inference.infer_return_type(self._fn, [input_type]))) def _process_argspec_fn(self): return getattr(self._fn, '_argspec_fn', self._fn) def _inspect_process(self): if self._fullargspec: return self._fullargspec else: return get_function_args_defaults(self._process_argspec_fn())
[docs]class CombineFn(WithTypeHints, HasDisplayData, urns.RunnerApiFn): """A function object used by a Combine transform with custom processing. A CombineFn specifies how multiple values in all or part of a PCollection can be merged into a single value---essentially providing the same kind of information as the arguments to the Python "reduce" builtin (except for the input argument, which is an instance of CombineFnProcessContext). The combining process proceeds as follows: 1. Input values are partitioned into one or more batches. 2. For each batch, the setup method is invoked. 3. For each batch, the create_accumulator method is invoked to create a fresh initial "accumulator" value representing the combination of zero values. 4. For each input value in the batch, the add_input method is invoked to combine more values with the accumulator for that batch. 5. The merge_accumulators method is invoked to combine accumulators from separate batches into a single combined output accumulator value, once all of the accumulators have had all the input value in their batches added to them. This operation is invoked repeatedly, until there is only one accumulator value left. 6. The extract_output operation is invoked on the final accumulator to get the output value. 7. The teardown method is invoked. Note: If this **CombineFn** is used with a transform that has defaults, **apply** will be called with an empty list at expansion time to get the default value. """
[docs] def default_label(self): return self.__class__.__name__
[docs] def setup(self, *args, **kwargs): """Called to prepare an instance for combining. This method can be useful if there is some state that needs to be loaded before executing any of the other methods. The resources can then be disposed of in ``CombineFn.teardown``. If you are using Dataflow, you need to enable Dataflow Runner V2 before using this feature. Args: *args: Additional arguments and side inputs. **kwargs: Additional arguments and side inputs. """ pass
[docs] def create_accumulator(self, *args, **kwargs): """Return a fresh, empty accumulator for the combine operation. Args: *args: Additional arguments and side inputs. **kwargs: Additional arguments and side inputs. """ raise NotImplementedError(str(self))
[docs] def add_input(self, mutable_accumulator, element, *args, **kwargs): """Return result of folding element into accumulator. CombineFn implementors must override add_input. Args: mutable_accumulator: the current accumulator, may be modified and returned for efficiency element: the element to add, should not be mutated *args: Additional arguments and side inputs. **kwargs: Additional arguments and side inputs. """ raise NotImplementedError(str(self))
[docs] def add_inputs(self, mutable_accumulator, elements, *args, **kwargs): """Returns the result of folding each element in elements into accumulator. This is provided in case the implementation affords more efficient bulk addition of elements. The default implementation simply loops over the inputs invoking add_input for each one. Args: mutable_accumulator: the current accumulator, may be modified and returned for efficiency elements: the elements to add, should not be mutated *args: Additional arguments and side inputs. **kwargs: Additional arguments and side inputs. """ for element in elements: mutable_accumulator =\ self.add_input(mutable_accumulator, element, *args, **kwargs) return mutable_accumulator
[docs] def merge_accumulators(self, accumulators, *args, **kwargs): """Returns the result of merging several accumulators to a single accumulator value. Args: accumulators: the accumulators to merge. Only the first accumulator may be modified and returned for efficiency; the other accumulators should not be mutated, because they may be shared with other code and mutating them could lead to incorrect results or data corruption. *args: Additional arguments and side inputs. **kwargs: Additional arguments and side inputs. """ raise NotImplementedError(str(self))
[docs] def compact(self, accumulator, *args, **kwargs): """Optionally returns a more compact represenation of the accumulator. This is called before an accumulator is sent across the wire, and can be useful in cases where values are buffered or otherwise lazily kept unprocessed when added to the accumulator. Should return an equivalent, though possibly modified, accumulator. By default returns the accumulator unmodified. Args: accumulator: the current accumulator *args: Additional arguments and side inputs. **kwargs: Additional arguments and side inputs. """ return accumulator
[docs] def extract_output(self, accumulator, *args, **kwargs): """Return result of converting accumulator into the output value. Args: accumulator: the final accumulator value computed by this CombineFn for the entire input key or PCollection. Can be modified for efficiency. *args: Additional arguments and side inputs. **kwargs: Additional arguments and side inputs. """ raise NotImplementedError(str(self))
[docs] def teardown(self, *args, **kwargs): """Called to clean up an instance before it is discarded. If you are using Dataflow, you need to enable Dataflow Runner V2 before using this feature. Args: *args: Additional arguments and side inputs. **kwargs: Additional arguments and side inputs. """ pass
[docs] def apply(self, elements, *args, **kwargs): """Returns result of applying this CombineFn to the input values. Args: elements: the set of values to combine. *args: Additional arguments and side inputs. **kwargs: Additional arguments and side inputs. """ return self.extract_output( self.add_inputs( self.create_accumulator(*args, **kwargs), elements, *args, **kwargs), *args, **kwargs)
[docs] def for_input_type(self, input_type): """Returns a specialized implementation of self, if it exists. Otherwise, returns self. Args: input_type: the type of input elements. """ return self
[docs] @staticmethod def from_callable(fn): return CallableWrapperCombineFn(fn)
[docs] @staticmethod def maybe_from_callable(fn, has_side_inputs=True): # type: (typing.Union[CombineFn, typing.Callable], bool) -> CombineFn if isinstance(fn, CombineFn): return fn elif callable(fn) and not has_side_inputs: return NoSideInputsCallableWrapperCombineFn(fn) elif callable(fn): return CallableWrapperCombineFn(fn) else: raise TypeError('Expected a CombineFn or callable, got %r' % fn)
[docs] def get_accumulator_coder(self): return coders.registry.get_coder(object)
urns.RunnerApiFn.register_pickle_urn(python_urns.PICKLED_COMBINE_FN)
class _ReiterableChain(object): """Like itertools.chain, but allowing re-iteration.""" def __init__(self, iterables): self.iterables = iterables def __iter__(self): for iterable in self.iterables: for item in iterable: yield item def __bool__(self): for iterable in self.iterables: for _ in iterable: return True return False class CallableWrapperCombineFn(CombineFn): """For internal use only; no backwards-compatibility guarantees. A CombineFn (function) object wrapping a callable object. The purpose of this class is to conveniently wrap simple functions and use them in Combine transforms. """ _DEFAULT_BUFFER_SIZE = 10 def __init__(self, fn, buffer_size=_DEFAULT_BUFFER_SIZE): """Initializes a CallableFn object wrapping a callable. Args: fn: A callable object that reduces elements of an iterable to a single value (like the builtins sum and max). This callable must be capable of receiving the kind of values it generates as output in its input, and for best results, its operation must be commutative and associative. Raises: TypeError: if fn parameter is not a callable type. """ if not callable(fn): raise TypeError('Expected a callable object instead of: %r' % fn) super().__init__() self._fn = fn self._buffer_size = buffer_size def display_data(self): return {'fn_dd': self._fn} def __repr__(self): return "%s(%s)" % (self.__class__.__name__, self._fn) def create_accumulator(self, *args, **kwargs): return [] def add_input(self, accumulator, element, *args, **kwargs): accumulator.append(element) if len(accumulator) > self._buffer_size: accumulator = [self._fn(accumulator, *args, **kwargs)] return accumulator def add_inputs(self, accumulator, elements, *args, **kwargs): accumulator.extend(elements) if len(accumulator) > self._buffer_size: accumulator = [self._fn(accumulator, *args, **kwargs)] return accumulator def merge_accumulators(self, accumulators, *args, **kwargs): return [self._fn(_ReiterableChain(accumulators), *args, **kwargs)] def compact(self, accumulator, *args, **kwargs): if len(accumulator) <= 1: return accumulator else: return [self._fn(accumulator, *args, **kwargs)] def extract_output(self, accumulator, *args, **kwargs): return self._fn(accumulator, *args, **kwargs) def default_type_hints(self): fn_type_hints = typehints.decorators.IOTypeHints.from_callable(self._fn) type_hints = get_type_hints(self._fn).with_defaults(fn_type_hints) if type_hints.input_types is None: return type_hints else: # fn(Iterable[V]) -> V becomes CombineFn(V) -> V input_args, input_kwargs = type_hints.input_types if not input_args: if len(input_kwargs) == 1: input_args, input_kwargs = tuple(input_kwargs.values()), {} else: raise TypeError('Combiner input type must be specified positionally.') if not is_consistent_with(input_args[0], typehints.Iterable[typehints.Any]): raise TypeCheckError( 'All functions for a Combine PTransform must accept a ' 'single argument compatible with: Iterable[Any]. ' 'Instead a function with input type: %s was received.' % input_args[0]) input_args = (element_type(input_args[0]), ) + input_args[1:] # TODO(robertwb): Assert output type is consistent with input type? return type_hints.with_input_types(*input_args, **input_kwargs) def infer_output_type(self, input_type): return _strip_output_annotations( trivial_inference.infer_return_type(self._fn, [input_type])) def for_input_type(self, input_type): # Avoid circular imports. from apache_beam.transforms import cy_combiners if self._fn is any: return cy_combiners.AnyCombineFn() elif self._fn is all: return cy_combiners.AllCombineFn() else: known_types = { (sum, int): cy_combiners.SumInt64Fn(), (min, int): cy_combiners.MinInt64Fn(), (max, int): cy_combiners.MaxInt64Fn(), (sum, float): cy_combiners.SumFloatFn(), (min, float): cy_combiners.MinFloatFn(), (max, float): cy_combiners.MaxFloatFn(), } return known_types.get((self._fn, input_type), self) class NoSideInputsCallableWrapperCombineFn(CallableWrapperCombineFn): """For internal use only; no backwards-compatibility guarantees. A CombineFn (function) object wrapping a callable object with no side inputs. This is identical to its parent, but avoids accepting and passing *args and **kwargs for efficiency as they are known to be empty. """ def create_accumulator(self): return [] def add_input(self, accumulator, element): accumulator.append(element) if len(accumulator) > self._buffer_size: accumulator = [self._fn(accumulator)] return accumulator def add_inputs(self, accumulator, elements): accumulator.extend(elements) if len(accumulator) > self._buffer_size: accumulator = [self._fn(accumulator)] return accumulator def merge_accumulators(self, accumulators): return [self._fn(_ReiterableChain(accumulators))] def compact(self, accumulator): if len(accumulator) <= 1: return accumulator else: return [self._fn(accumulator)] def extract_output(self, accumulator): return self._fn(accumulator)
[docs]class PartitionFn(WithTypeHints): """A function object used by a Partition transform. A PartitionFn specifies how individual values in a PCollection will be placed into separate partitions, indexed by an integer. """
[docs] def default_label(self): return self.__class__.__name__
[docs] def partition_for(self, element, num_partitions, *args, **kwargs): # type: (T, int, *typing.Any, **typing.Any) -> int """Specify which partition will receive this element. Args: element: An element of the input PCollection. num_partitions: Number of partitions, i.e., output PCollections. *args: optional parameters and side inputs. **kwargs: optional parameters and side inputs. Returns: An integer in [0, num_partitions). """ pass
class CallableWrapperPartitionFn(PartitionFn): """For internal use only; no backwards-compatibility guarantees. A PartitionFn object wrapping a callable object. Instances of this class wrap simple functions for use in Partition operations. """ def __init__(self, fn): """Initializes a PartitionFn object wrapping a callable. Args: fn: A callable object, which should accept the following arguments: element - element to assign to a partition. num_partitions - number of output partitions. and may accept additional arguments and side inputs. Raises: TypeError: if fn is not a callable type. """ if not callable(fn): raise TypeError('Expected a callable object instead of: %r' % fn) self._fn = fn def partition_for(self, element, num_partitions, *args, **kwargs): # type: (T, int, *typing.Any, **typing.Any) -> int return self._fn(element, num_partitions, *args, **kwargs) def _get_function_body_without_inners(func): source_lines = inspect.getsourcelines(func)[0] source_lines = dropwhile(lambda x: x.startswith("@"), source_lines) def_line = next(source_lines).strip() if def_line.startswith("def ") and def_line.endswith(":"): first_line = next(source_lines) indentation = len(first_line) - len(first_line.lstrip()) final_lines = [first_line[indentation:]] skip_inner_def = False if first_line[indentation:].startswith("def "): skip_inner_def = True for line in source_lines: line_indentation = len(line) - len(line.lstrip()) if line[indentation:].startswith("def "): skip_inner_def = True continue if skip_inner_def and line_indentation == indentation: skip_inner_def = False if skip_inner_def and line_indentation > indentation: continue final_lines.append(line[indentation:]) return "".join(final_lines) else: return def_line.rsplit(":")[-1].strip() def _check_fn_use_yield_and_return(fn): if isinstance(fn, types.BuiltinFunctionType): return False try: source_code = _get_function_body_without_inners(fn) has_yield = False has_return = False for line in source_code.split("\n"): if line.lstrip().startswith("yield ") or line.lstrip().startswith( "yield("): has_yield = True if line.lstrip().startswith("return ") or line.lstrip().startswith( "return("): has_return = True if has_yield and has_return: return True return False except Exception as e: _LOGGER.debug(str(e)) return False
[docs]class ParDo(PTransformWithSideInputs): """A :class:`ParDo` transform. Processes an input :class:`~apache_beam.pvalue.PCollection` by applying a :class:`DoFn` to each element and returning the accumulated results into an output :class:`~apache_beam.pvalue.PCollection`. The type of the elements is not fixed as long as the :class:`DoFn` can deal with it. In reality the type is restrained to some extent because the elements sometimes must be persisted to external storage. See the :meth:`.expand()` method comments for a detailed description of all possible arguments. Note that the :class:`DoFn` must return an iterable for each element of the input :class:`~apache_beam.pvalue.PCollection`. An easy way to do this is to use the ``yield`` keyword in the process method. Args: pcoll (~apache_beam.pvalue.PCollection): a :class:`~apache_beam.pvalue.PCollection` to be processed. fn (`typing.Union[DoFn, typing.Callable]`): a :class:`DoFn` object to be applied to each element of **pcoll** argument, or a Callable. *args: positional arguments passed to the :class:`DoFn` object. **kwargs: keyword arguments passed to the :class:`DoFn` object. Note that the positional and keyword arguments will be processed in order to detect :class:`~apache_beam.pvalue.PCollection` s that will be computed as side inputs to the transform. During pipeline execution whenever the :class:`DoFn` object gets executed (its :meth:`DoFn.process()` method gets called) the :class:`~apache_beam.pvalue.PCollection` arguments will be replaced by values from the :class:`~apache_beam.pvalue.PCollection` in the exact positions where they appear in the argument lists. """ def __init__(self, fn, *args, **kwargs): super().__init__(fn, *args, **kwargs) # TODO(robertwb): Change all uses of the dofn attribute to use fn instead. self.dofn = self.fn self.output_tags = set() # type: typing.Set[str] if not isinstance(self.fn, DoFn): raise TypeError('ParDo must be called with a DoFn instance.') # DoFn.process cannot allow both return and yield if _check_fn_use_yield_and_return(self.fn.process): _LOGGER.warning( 'Using yield and return in the process method ' 'of %s can lead to unexpected behavior, see:' 'https://github.com/apache/beam/issues/22969.', self.fn.__class__) # Validate the DoFn by creating a DoFnSignature from apache_beam.runners.common import DoFnSignature self._signature = DoFnSignature(self.fn)
[docs] def with_exception_handling( self, main_tag='good', dead_letter_tag='bad', *, exc_class=Exception, partial=False, use_subprocess=False, threshold=1, threshold_windowing=None, timeout=None): """Automatically provides a dead letter output for skipping bad records. This can allow a pipeline to continue successfully rather than fail or continuously throw errors on retry when bad elements are encountered. This returns a tagged output with two PCollections, the first being the results of successfully processing the input PCollection, and the second being the set of bad records (those which threw exceptions during processing) along with information about the errors raised. For example, one would write:: good, bad = Map(maybe_error_raising_function).with_exception_handling() and `good` will be a PCollection of mapped records and `bad` will contain those that raised exceptions. Args: main_tag: tag to be used for the main (good) output of the DoFn, useful to avoid possible conflicts if this DoFn already produces multiple outputs. Optional, defaults to 'good'. dead_letter_tag: tag to be used for the bad records, useful to avoid possible conflicts if this DoFn already produces multiple outputs. Optional, defaults to 'bad'. exc_class: An exception class, or tuple of exception classes, to catch. Optional, defaults to 'Exception'. partial: Whether to emit outputs for an element as they're produced (which could result in partial outputs for a ParDo or FlatMap that throws an error part way through execution) or buffer all outputs until successful processing of the entire element. Optional, defaults to False. use_subprocess: Whether to execute the DoFn logic in a subprocess. This allows one to recover from errors that can crash the calling process (e.g. from an underlying C/C++ library causing a segfault), but is slower as elements and results must cross a process boundary. Note that this starts up a long-running process that is used to handle all the elements (until hard failure, which should be rare) rather than a new process per element, so the overhead should be minimal (and can be amortized if there's any per-process or per-bundle initialization that needs to be done). Optional, defaults to False. threshold: An upper bound on the ratio of records that can be bad before aborting the entire pipeline. Optional, defaults to 1.0 (meaning up to 100% of records can be bad and the pipeline will still succeed). threshold_windowing: Event-time windowing to use for threshold. Optional, defaults to the windowing of the input. timeout: If the element has not finished processing in timeout seconds, raise a TimeoutError. Defaults to None, meaning no time limit. """ args, kwargs = self.raw_side_inputs return self.label >> _ExceptionHandlingWrapper( self.fn, args, kwargs, main_tag, dead_letter_tag, exc_class, partial, use_subprocess, threshold, threshold_windowing, timeout)
[docs] def default_type_hints(self): return self.fn.get_type_hints()
[docs] def infer_output_type(self, input_type): return self.fn.infer_output_type(input_type)
[docs] def infer_batch_converters(self, input_element_type): # TODO: Test this code (in batch_dofn_test) if self.fn._process_batch_defined: input_batch_type = self.fn._get_input_batch_type_normalized( input_element_type) if input_batch_type is None: raise TypeError( "process_batch method on {self.fn!r} does not have " "an input type annoation") try: # Generate a batch converter to convert between the input type and the # (batch) input type of process_batch self.fn.input_batch_converter = BatchConverter.from_typehints( element_type=input_element_type, batch_type=input_batch_type) except TypeError as e: raise TypeError( "Failed to find a BatchConverter for the input types of DoFn " f"{self.fn!r} (element_type={input_element_type!r}, " f"batch_type={input_batch_type!r}).") from e else: self.fn.input_batch_converter = None if self.fn._can_yield_batches: output_batch_type = self.fn._get_output_batch_type_normalized( input_element_type) if output_batch_type is None: # TODO: Mention process method in this error raise TypeError( f"process_batch method on {self.fn!r} does not have " "a return type annoation") # Generate a batch converter to convert between the output type and the # (batch) output type of process_batch output_element_type = self.infer_output_type(input_element_type) try: self.fn.output_batch_converter = BatchConverter.from_typehints( element_type=output_element_type, batch_type=output_batch_type) except TypeError as e: raise TypeError( "Failed to find a BatchConverter for the *output* types of DoFn " f"{self.fn!r} (element_type={output_element_type!r}, " f"batch_type={output_batch_type!r}). Maybe you need to override " "DoFn.infer_output_type to set the output element type?") from e else: self.fn.output_batch_converter = None
[docs] def make_fn(self, fn, has_side_inputs): if isinstance(fn, DoFn): return fn return CallableWrapperDoFn(fn)
def _process_argspec_fn(self): return self.fn._process_argspec_fn()
[docs] def display_data(self): return { 'fn': DisplayDataItem(self.fn.__class__, label='Transform Function'), 'fn_dd': self.fn }
[docs] def expand(self, pcoll): # In the case of a stateful DoFn, warn if the key coder is not # deterministic. if self._signature.is_stateful_dofn(): kv_type_hint = pcoll.element_type if kv_type_hint and kv_type_hint != typehints.Any: coder = coders.registry.get_coder(kv_type_hint) if not coder.is_kv_coder(): raise ValueError( 'Input elements to the transform %s with stateful DoFn must be ' 'key-value pairs.' % self) key_coder = coder.key_coder() else: key_coder = coders.registry.get_coder(typehints.Any) if not key_coder.is_deterministic(): _LOGGER.warning( 'Key coder %s for transform %s with stateful DoFn may not ' 'be deterministic. This may cause incorrect behavior for complex ' 'key types. Consider adding an input type hint for this transform.', key_coder, self) if self._signature.is_unbounded_per_element(): is_bounded = False else: is_bounded = pcoll.is_bounded self.infer_batch_converters(pcoll.element_type) return pvalue.PCollection.from_(pcoll, is_bounded=is_bounded)
[docs] def with_outputs(self, *tags, main=None, allow_unknown_tags=None): """Returns a tagged tuple allowing access to the outputs of a :class:`ParDo`. The resulting object supports access to the :class:`~apache_beam.pvalue.PCollection` associated with a tag (e.g. ``o.tag``, ``o[tag]``) and iterating over the available tags (e.g. ``for tag in o: ...``). Args: *tags: if non-empty, list of valid tags. If a list of valid tags is given, it will be an error to use an undeclared tag later in the pipeline. **main_kw: dictionary empty or with one key ``'main'`` defining the tag to be used for the main output (which will not have a tag associated with it). Returns: ~apache_beam.pvalue.DoOutputsTuple: An object of type :class:`~apache_beam.pvalue.DoOutputsTuple` that bundles together all the outputs of a :class:`ParDo` transform and allows accessing the individual :class:`~apache_beam.pvalue.PCollection` s for each output using an ``object.tag`` syntax. Raises: TypeError: if the **self** object is not a :class:`~apache_beam.pvalue.PCollection` that is the result of a :class:`ParDo` transform. ValueError: if **main_kw** contains any key other than ``'main'``. """ if main in tags: raise ValueError( 'Main output tag %r must be different from side output tags %r.' % (main, tags)) return _MultiParDo(self, tags, main, allow_unknown_tags)
def _do_fn_info(self): return DoFnInfo.create(self.fn, self.args, self.kwargs) def _get_key_and_window_coder(self, named_inputs): if named_inputs is None or not self._signature.is_stateful_dofn(): return None, None main_input = list(set(named_inputs.keys()) - set(self.side_inputs))[0] input_pcoll = named_inputs[main_input] kv_type_hint = input_pcoll.element_type if kv_type_hint and kv_type_hint != typehints.Any: coder = coders.registry.get_coder(kv_type_hint) if not coder.is_kv_coder(): raise ValueError( 'Input elements to the transform %s with stateful DoFn must be ' 'key-value pairs.' % self) key_coder = coder.key_coder() else: key_coder = coders.registry.get_coder(typehints.Any) window_coder = input_pcoll.windowing.windowfn.get_window_coder() return key_coder, window_coder # typing: PTransform base class does not accept extra_kwargs
[docs] def to_runner_api_parameter(self, context, **extra_kwargs): # type: ignore[override] # type: (PipelineContext, **typing.Any) -> typing.Tuple[str, message.Message] assert isinstance(self, ParDo), \ "expected instance of ParDo, but got %s" % self.__class__ state_specs, timer_specs = userstate.get_dofn_specs(self.fn) if state_specs or timer_specs: context.add_requirement( common_urns.requirements.REQUIRES_STATEFUL_PROCESSING.urn) from apache_beam.runners.common import DoFnSignature sig = DoFnSignature(self.fn) is_splittable = sig.is_splittable_dofn() if is_splittable: restriction_coder = sig.get_restriction_coder() # restriction_coder will never be None when is_splittable is True assert restriction_coder is not None restriction_coder_id = context.coders.get_id( restriction_coder) # type: typing.Optional[str] context.add_requirement( common_urns.requirements.REQUIRES_SPLITTABLE_DOFN.urn) else: restriction_coder_id = None has_bundle_finalization = sig.has_bundle_finalization() if has_bundle_finalization: context.add_requirement( common_urns.requirements.REQUIRES_BUNDLE_FINALIZATION.urn) # Get key_coder and window_coder for main_input. key_coder, window_coder = self._get_key_and_window_coder( extra_kwargs.get('named_inputs', None)) return ( common_urns.primitives.PAR_DO.urn, beam_runner_api_pb2.ParDoPayload( do_fn=self._do_fn_info().to_runner_api(context), requests_finalization=has_bundle_finalization, restriction_coder_id=restriction_coder_id, state_specs={ spec.name: spec.to_runner_api(context) for spec in state_specs }, timer_family_specs={ spec.name: spec.to_runner_api(context, key_coder, window_coder) for spec in timer_specs }, # It'd be nice to name these according to their actual # names/positions in the orignal argument list, but such a # transformation is currently irreversible given how # remove_objects_from_args and insert_values_in_args # are currently implemented. side_inputs={(SIDE_INPUT_PREFIX + '%s') % ix: si.to_runner_api(context) for ix, si in enumerate(self.side_inputs)}))
[docs] @staticmethod @PTransform.register_urn( common_urns.primitives.PAR_DO.urn, beam_runner_api_pb2.ParDoPayload) def from_runner_api_parameter(unused_ptransform, pardo_payload, context): fn, args, kwargs, si_tags_and_types, windowing = pickler.loads( DoFnInfo.from_runner_api( pardo_payload.do_fn, context).serialized_dofn_data()) if si_tags_and_types: raise NotImplementedError('explicit side input data') elif windowing: raise NotImplementedError('explicit windowing') result = ParDo(fn, *args, **kwargs) # This is an ordered list stored as a dict (see the comments in # to_runner_api_parameter above). indexed_side_inputs = [( get_sideinput_index(tag), pvalue.AsSideInput.from_runner_api(si, context)) for tag, si in pardo_payload.side_inputs.items()] result.side_inputs = [si for _, si in sorted(indexed_side_inputs)] return result
[docs] def runner_api_requires_keyed_input(self): return userstate.is_stateful_dofn(self.fn)
[docs] def get_restriction_coder(self): """Returns `restriction coder if `DoFn` of this `ParDo` is a SDF. Returns `None` otherwise. """ from apache_beam.runners.common import DoFnSignature return DoFnSignature(self.fn).get_restriction_coder()
def _add_type_constraint_from_consumer(self, full_label, input_type_hints): if not hasattr(self.fn, '_runtime_output_constraints'): self.fn._runtime_output_constraints = {} self.fn._runtime_output_constraints[full_label] = input_type_hints
class _MultiParDo(PTransform): def __init__(self, do_transform, tags, main_tag, allow_unknown_tags=None): super().__init__(do_transform.label) self._do_transform = do_transform self._tags = tags self._main_tag = main_tag self._allow_unknown_tags = allow_unknown_tags def expand(self, pcoll): _ = pcoll | self._do_transform return pvalue.DoOutputsTuple( pcoll.pipeline, self._do_transform, self._tags, self._main_tag, self._allow_unknown_tags) class DoFnInfo(object): """This class represents the state in the ParDoPayload's function spec, which is the actual DoFn together with some data required for invoking it. """ @staticmethod def register_stateless_dofn(urn): def wrapper(cls): StatelessDoFnInfo.REGISTERED_DOFNS[urn] = cls cls._stateless_dofn_urn = urn return cls return wrapper @classmethod def create(cls, fn, args, kwargs): if hasattr(fn, '_stateless_dofn_urn'): assert not args and not kwargs return StatelessDoFnInfo(fn._stateless_dofn_urn) else: return PickledDoFnInfo(cls._pickled_do_fn_info(fn, args, kwargs)) @staticmethod def from_runner_api(spec, unused_context): if spec.urn == python_urns.PICKLED_DOFN_INFO: return PickledDoFnInfo(spec.payload) elif spec.urn in StatelessDoFnInfo.REGISTERED_DOFNS: return StatelessDoFnInfo(spec.urn) else: raise ValueError('Unexpected DoFn type: %s' % spec.urn) @staticmethod def _pickled_do_fn_info(fn, args, kwargs): # This can be cleaned up once all runners move to portability. return pickler.dumps((fn, args, kwargs, None, None)) def serialized_dofn_data(self): raise NotImplementedError(type(self)) class PickledDoFnInfo(DoFnInfo): def __init__(self, serialized_data): self._serialized_data = serialized_data def serialized_dofn_data(self): return self._serialized_data def to_runner_api(self, unused_context): return beam_runner_api_pb2.FunctionSpec( urn=python_urns.PICKLED_DOFN_INFO, payload=self._serialized_data) class StatelessDoFnInfo(DoFnInfo): REGISTERED_DOFNS = {} # type: typing.Dict[str, typing.Type[DoFn]] def __init__(self, urn): # type: (str) -> None assert urn in self.REGISTERED_DOFNS self._urn = urn def serialized_dofn_data(self): return self._pickled_do_fn_info(self.REGISTERED_DOFNS[self._urn](), (), {}) def to_runner_api(self, unused_context): return beam_runner_api_pb2.FunctionSpec(urn=self._urn)
[docs]def FlatMap(fn, *args, **kwargs): # pylint: disable=invalid-name """:func:`FlatMap` is like :class:`ParDo` except it takes a callable to specify the transformation. The callable must return an iterable for each element of the input :class:`~apache_beam.pvalue.PCollection`. The elements of these iterables will be flattened into the output :class:`~apache_beam.pvalue.PCollection`. Args: fn (callable): a callable object. *args: positional arguments passed to the transform callable. **kwargs: keyword arguments passed to the transform callable. Returns: ~apache_beam.pvalue.PCollection: A :class:`~apache_beam.pvalue.PCollection` containing the :func:`FlatMap` outputs. Raises: TypeError: If the **fn** passed as argument is not a callable. Typical error is to pass a :class:`DoFn` instance which is supported only for :class:`ParDo`. """ label = 'FlatMap(%s)' % ptransform.label_from_callable(fn) if not callable(fn): raise TypeError( 'FlatMap can be used only with callable objects. ' 'Received %r instead.' % (fn)) pardo = ParDo(CallableWrapperDoFn(fn), *args, **kwargs) pardo.label = label return pardo
[docs]def Map(fn, *args, **kwargs): # pylint: disable=invalid-name """:func:`Map` is like :func:`FlatMap` except its callable returns only a single element. Args: fn (callable): a callable object. *args: positional arguments passed to the transform callable. **kwargs: keyword arguments passed to the transform callable. Returns: ~apache_beam.pvalue.PCollection: A :class:`~apache_beam.pvalue.PCollection` containing the :func:`Map` outputs. Raises: TypeError: If the **fn** passed as argument is not a callable. Typical error is to pass a :class:`DoFn` instance which is supported only for :class:`ParDo`. """ if not callable(fn): raise TypeError( 'Map can be used only with callable objects. ' 'Received %r instead.' % (fn)) from apache_beam.transforms.util import fn_takes_side_inputs if fn_takes_side_inputs(fn): wrapper = lambda x, *args, **kwargs: [fn(x, *args, **kwargs)] else: wrapper = lambda x: [fn(x)] label = 'Map(%s)' % ptransform.label_from_callable(fn) # TODO. What about callable classes? if hasattr(fn, '__name__'): wrapper.__name__ = fn.__name__ # Proxy the type-hint information from the original function to this new # wrapped function. type_hints = get_type_hints(fn).with_defaults( typehints.decorators.IOTypeHints.from_callable(fn)) if type_hints.input_types is not None: wrapper = with_input_types( *type_hints.input_types[0], **type_hints.input_types[1])( wrapper) output_hint = type_hints.simple_output_type(label) if output_hint: wrapper = with_output_types( typehints.Iterable[_strip_output_annotations(output_hint)])( wrapper) # pylint: disable=protected-access wrapper._argspec_fn = fn # pylint: enable=protected-access pardo = FlatMap(wrapper, *args, **kwargs) pardo.label = label return pardo
[docs]def MapTuple(fn, *args, **kwargs): # pylint: disable=invalid-name r""":func:`MapTuple` is like :func:`Map` but expects tuple inputs and flattens them into multiple input arguments. beam.MapTuple(lambda a, b, ...: ...) In other words beam.MapTuple(fn) is equivalent to beam.Map(lambda element, ...: fn(\*element, ...)) This can be useful when processing a PCollection of tuples (e.g. key-value pairs). Args: fn (callable): a callable object. *args: positional arguments passed to the transform callable. **kwargs: keyword arguments passed to the transform callable. Returns: ~apache_beam.pvalue.PCollection: A :class:`~apache_beam.pvalue.PCollection` containing the :func:`MapTuple` outputs. Raises: TypeError: If the **fn** passed as argument is not a callable. Typical error is to pass a :class:`DoFn` instance which is supported only for :class:`ParDo`. """ if not callable(fn): raise TypeError( 'MapTuple can be used only with callable objects. ' 'Received %r instead.' % (fn)) label = 'MapTuple(%s)' % ptransform.label_from_callable(fn) arg_names, defaults = get_function_args_defaults(fn) num_defaults = len(defaults) if num_defaults < len(args) + len(kwargs): raise TypeError('Side inputs must have defaults for MapTuple.') if defaults or args or kwargs: wrapper = lambda x, *args, **kwargs: [fn(*(tuple(x) + args), **kwargs)] else: wrapper = lambda x: [fn(*x)] # Proxy the type-hint information from the original function to this new # wrapped function. type_hints = get_type_hints(fn).with_defaults( typehints.decorators.IOTypeHints.from_callable(fn)) if type_hints.input_types is not None: # TODO(BEAM-14052): ignore input hints, as we do not have enough # information to infer the input type hint of the wrapper function. pass output_hint = type_hints.simple_output_type(label) if output_hint: wrapper = with_output_types( typehints.Iterable[_strip_output_annotations(output_hint)])( wrapper) # Replace the first (args) component. modified_arg_names = ['tuple_element'] + arg_names[-num_defaults:] modified_argspec = (modified_arg_names, defaults) pardo = ParDo( CallableWrapperDoFn(wrapper, fullargspec=modified_argspec), *args, **kwargs) pardo.label = label return pardo
[docs]def FlatMapTuple(fn, *args, **kwargs): # pylint: disable=invalid-name r""":func:`FlatMapTuple` is like :func:`FlatMap` but expects tuple inputs and flattens them into multiple input arguments. beam.FlatMapTuple(lambda a, b, ...: ...) is equivalent to Python 2 beam.FlatMap(lambda (a, b, ...), ...: ...) In other words beam.FlatMapTuple(fn) is equivalent to beam.FlatMap(lambda element, ...: fn(\*element, ...)) This can be useful when processing a PCollection of tuples (e.g. key-value pairs). Args: fn (callable): a callable object. *args: positional arguments passed to the transform callable. **kwargs: keyword arguments passed to the transform callable. Returns: ~apache_beam.pvalue.PCollection: A :class:`~apache_beam.pvalue.PCollection` containing the :func:`FlatMapTuple` outputs. Raises: TypeError: If the **fn** passed as argument is not a callable. Typical error is to pass a :class:`DoFn` instance which is supported only for :class:`ParDo`. """ if not callable(fn): raise TypeError( 'FlatMapTuple can be used only with callable objects. ' 'Received %r instead.' % (fn)) label = 'FlatMapTuple(%s)' % ptransform.label_from_callable(fn) arg_names, defaults = get_function_args_defaults(fn) num_defaults = len(defaults) if num_defaults < len(args) + len(kwargs): raise TypeError('Side inputs must have defaults for FlatMapTuple.') if defaults or args or kwargs: wrapper = lambda x, *args, **kwargs: fn(*(tuple(x) + args), **kwargs) else: wrapper = lambda x: fn(*x) # Proxy the type-hint information from the original function to this new # wrapped function. type_hints = get_type_hints(fn).with_defaults( typehints.decorators.IOTypeHints.from_callable(fn)) if type_hints.input_types is not None: # TODO(BEAM-14052): ignore input hints, as we do not have enough # information to infer the input type hint of the wrapper function. pass output_hint = type_hints.simple_output_type(label) if output_hint: wrapper = with_output_types(_strip_output_annotations(output_hint))(wrapper) # Replace the first (args) component. modified_arg_names = ['tuple_element'] + arg_names[-num_defaults:] modified_argspec = (modified_arg_names, defaults) pardo = ParDo( CallableWrapperDoFn(wrapper, fullargspec=modified_argspec), *args, **kwargs) pardo.label = label return pardo
class _ExceptionHandlingWrapper(ptransform.PTransform): """Implementation of ParDo.with_exception_handling.""" def __init__( self, fn, args, kwargs, main_tag, dead_letter_tag, exc_class, partial, use_subprocess, threshold, threshold_windowing, timeout): if partial and use_subprocess: raise ValueError('partial and use_subprocess are mutually incompatible.') self._fn = fn self._args = args self._kwargs = kwargs self._main_tag = main_tag self._dead_letter_tag = dead_letter_tag self._exc_class = exc_class self._partial = partial self._use_subprocess = use_subprocess self._threshold = threshold self._threshold_windowing = threshold_windowing self._timeout = timeout def expand(self, pcoll): if self._use_subprocess: wrapped_fn = _SubprocessDoFn(self._fn, timeout=self._timeout) elif self._timeout: wrapped_fn = _TimeoutDoFn(self._fn, timeout=self._timeout) else: wrapped_fn = self._fn result = pcoll | ParDo( _ExceptionHandlingWrapperDoFn( wrapped_fn, self._dead_letter_tag, self._exc_class, self._partial), *self._args, **self._kwargs).with_outputs( self._dead_letter_tag, main=self._main_tag, allow_unknown_tags=True) #TODO(BEAM-18957): Fix when type inference supports tagged outputs. result[self._main_tag].element_type = self._fn.infer_output_type( pcoll.element_type) if self._threshold < 1.0: class MaybeWindow(ptransform.PTransform): @staticmethod def expand(pcoll): if self._threshold_windowing: return pcoll | WindowInto(self._threshold_windowing) else: return pcoll input_count_view = pcoll | 'CountTotal' >> ( MaybeWindow() | Map(lambda _: 1) | CombineGlobally(sum).as_singleton_view()) bad_count_pcoll = result[self._dead_letter_tag] | 'CountBad' >> ( MaybeWindow() | Map(lambda _: 1) | CombineGlobally(sum).without_defaults()) def check_threshold(bad, total, threshold, window=DoFn.WindowParam): if bad > total * threshold: raise ValueError( 'The number of failing elements within the window %r ' 'exceeded threshold: %s / %s = %s > %s' % (window, bad, total, bad / total, threshold)) _ = bad_count_pcoll | Map( check_threshold, input_count_view, self._threshold) return result class _ExceptionHandlingWrapperDoFn(DoFn): def __init__(self, fn, dead_letter_tag, exc_class, partial): self._fn = fn self._dead_letter_tag = dead_letter_tag self._exc_class = exc_class self._partial = partial def __getattribute__(self, name): if (name.startswith('__') or name in self.__dict__ or name in _ExceptionHandlingWrapperDoFn.__dict__): return object.__getattribute__(self, name) else: return getattr(self._fn, name) def process(self, *args, **kwargs): try: result = self._fn.process(*args, **kwargs) if not self._partial: # Don't emit any results until we know there will be no errors. result = list(result) yield from result except self._exc_class as exn: yield pvalue.TaggedOutput( self._dead_letter_tag, ( args[0], ( type(exn), repr(exn), traceback.format_exception(*sys.exc_info())))) # Idea adapted from https://github.com/tosun-si/asgarde. # TODO(robertwb): Consider how this could fit into the public API. # TODO(robertwb): Generalize to all PValue types. class _PValueWithErrors(object): """This wraps a PCollection such that transforms can be chained in a linear manner while still accumulating any errors.""" def __init__(self, pcoll, exception_handling_args, upstream_errors=()): self._pcoll = pcoll self._exception_handling_args = exception_handling_args self._upstream_errors = upstream_errors @property def element_type(self): return self._pcoll.element_type def main_output_tag(self): return self._exception_handling_args.get('main_tag', 'good') def error_output_tag(self): return self._exception_handling_args.get('dead_letter_tag', 'bad') def __or__(self, transform): return self.apply(transform) def apply(self, transform): result = self._pcoll | transform.with_exception_handling( **self._exception_handling_args) if result[self.main_output_tag()].element_type == typehints.Any: result[self.main_output_tag()].element_type = transform.infer_output_type( self._pcoll.element_type) # TODO(BEAM-18957): Add support for tagged type hints. result[self.error_output_tag()].element_type = typehints.Any return _PValueWithErrors( result[self.main_output_tag()], self._exception_handling_args, self._upstream_errors + (result[self.error_output_tag()], )) def accumulated_errors(self): if len(self._upstream_errors) == 1: return self._upstream_errors[0] else: return self._upstream_errors | Flatten() def as_result(self, error_post_processing=None): return { self.main_output_tag(): self._pcoll, self.error_output_tag(): self.accumulated_errors() if error_post_processing is None else self.accumulated_errors() | error_post_processing, } class _MaybePValueWithErrors(object): """This is like _PValueWithErrors, but only wraps values if exception_handling_args is non-trivial. It is useful for handling error-catching and non-error-catching code in a uniform manner. """ def __init__(self, pvalue, exception_handling_args=None): if isinstance(pvalue, _PValueWithErrors): assert exception_handling_args is None self._pvalue = pvalue elif exception_handling_args is None: self._pvalue = pvalue else: self._pvalue = _PValueWithErrors(pvalue, exception_handling_args) @property def element_type(self): return self._pvalue.element_type def __or__(self, transform): return self.apply(transform) def apply(self, transform): return _MaybePValueWithErrors(self._pvalue | transform) def as_result(self, error_post_processing=None): if isinstance(self._pvalue, _PValueWithErrors): return self._pvalue.as_result(error_post_processing) else: return self._pvalue class _SubprocessDoFn(DoFn): """Process method run in a subprocess, turning hard crashes into exceptions. """ def __init__(self, fn, timeout=None): self._fn = fn self._serialized_fn = pickler.dumps(fn) self._timeout = timeout def __getattribute__(self, name): if (name.startswith('__') or name in self.__dict__ or name in type(self).__dict__): return object.__getattribute__(self, name) else: return getattr(self._fn, name) def setup(self): self._pool = None def start_bundle(self): # The pool is initialized lazily, including calls to setup and start_bundle. # This allows us to continue processing elements after a crash. pass def process(self, *args, **kwargs): return self._call_remote(self._remote_process, *args, **kwargs) def finish_bundle(self): self._call_remote(self._remote_finish_bundle) def teardown(self): self._call_remote(self._remote_teardown) self._terminate_pool() def _call_remote(self, method, *args, **kwargs): if self._pool is None: self._pool = concurrent.futures.ProcessPoolExecutor(1) self._pool.submit(self._remote_init, self._serialized_fn).result() try: return self._pool.submit(method, *args, **kwargs).result( self._timeout if method == self._remote_process else None) except (concurrent.futures.process.BrokenProcessPool, TimeoutError, concurrent.futures._base.TimeoutError): self._terminate_pool() raise def _terminate_pool(self): """Forcibly terminate the pool, not leaving any live subprocesses.""" pool = self._pool self._pool = None processes = list(pool._processes.values()) pool.shutdown(wait=False) for p in processes: if p.is_alive(): p.kill() time.sleep(1) for p in processes: if p.is_alive(): p.terminate() # These are classmethods to avoid picking the state of self. # They should only be called in an isolated process, so there's no concern # about sharing state or thread safety. @classmethod def _remote_init(cls, serialized_fn): cls._serialized_fn = serialized_fn cls._fn = None cls._started = False @classmethod def _remote_process(cls, *args, **kwargs): if cls._fn is None: cls._fn = pickler.loads(cls._serialized_fn) cls._fn.setup() if not cls._started: cls._fn.start_bundle() cls._started = True result = cls._fn.process(*args, **kwargs) if result: # Don't return generator objects. result = list(result) return result @classmethod def _remote_finish_bundle(cls): if cls._started: cls._started = False if cls._fn.finish_bundle(): # This is because we restart and re-initialize the pool if it crashed. raise RuntimeError( "Returning elements from _SubprocessDoFn.finish_bundle not safe.") @classmethod def _remote_teardown(cls): if cls._fn: cls._fn.teardown() cls._fn = None class _TimeoutDoFn(DoFn): """Process method run in a separate thread allowing timeouts. """ def __init__(self, fn, timeout=None): self._fn = fn self._timeout = timeout self._pool = None def __getattribute__(self, name): if (name.startswith('__') or name in self.__dict__ or name in type(self).__dict__): return object.__getattribute__(self, name) else: return getattr(self._fn, name) def process(self, *args, **kwargs): if self._pool is None: self._pool = concurrent.futures.ThreadPoolExecutor(10) # Ensure we iterate over the entire output list in the given amount of time. try: return self._pool.submit( lambda: list(self._fn.process(*args, **kwargs))).result( self._timeout) except TimeoutError: self._pool.shutdown(wait=False) self._pool = None raise def teardown(self): try: self._fn.teardown() finally: if self._pool is not None: self._pool.shutdown(wait=False) self._pool = None
[docs]def Filter(fn, *args, **kwargs): # pylint: disable=invalid-name """:func:`Filter` is a :func:`FlatMap` with its callable filtering out elements. Filter accepts a function that keeps elements that return True, and filters out the remaining elements. Args: fn (``Callable[..., bool]``): a callable object. First argument will be an element. *args: positional arguments passed to the transform callable. **kwargs: keyword arguments passed to the transform callable. Returns: ~apache_beam.pvalue.PCollection: A :class:`~apache_beam.pvalue.PCollection` containing the :func:`Filter` outputs. Raises: TypeError: If the **fn** passed as argument is not a callable. Typical error is to pass a :class:`DoFn` instance which is supported only for :class:`ParDo`. """ if not callable(fn): raise TypeError( 'Filter can be used only with callable objects. ' 'Received %r instead.' % (fn)) wrapper = lambda x, *args, **kwargs: [x] if fn(x, *args, **kwargs) else [] label = 'Filter(%s)' % ptransform.label_from_callable(fn) # TODO: What about callable classes? if hasattr(fn, '__name__'): wrapper.__name__ = fn.__name__ # Get type hints from this instance or the callable. Do not use output type # hints from the callable (which should be bool if set). fn_type_hints = typehints.decorators.IOTypeHints.from_callable(fn) if fn_type_hints is not None: fn_type_hints = fn_type_hints.with_output_types() type_hints = get_type_hints(fn).with_defaults(fn_type_hints) # Proxy the type-hint information from the function being wrapped, setting the # output type to be the same as the input type. if type_hints.input_types is not None: wrapper = with_input_types( *type_hints.input_types[0], **type_hints.input_types[1])( wrapper) output_hint = type_hints.simple_output_type(label) if (output_hint is None and get_type_hints(wrapper).input_types and get_type_hints(wrapper).input_types[0]): output_hint = get_type_hints(wrapper).input_types[0][0] if output_hint: wrapper = with_output_types( typehints.Iterable[_strip_output_annotations(output_hint)])( wrapper) # pylint: disable=protected-access wrapper._argspec_fn = fn # pylint: enable=protected-access pardo = FlatMap(wrapper, *args, **kwargs) pardo.label = label return pardo
def _combine_payload(combine_fn, context): return beam_runner_api_pb2.CombinePayload( combine_fn=combine_fn.to_runner_api(context), accumulator_coder_id=context.coders.get_id( combine_fn.get_accumulator_coder()))
[docs]class CombineGlobally(PTransform): """A :class:`CombineGlobally` transform. Reduces a :class:`~apache_beam.pvalue.PCollection` to a single value by progressively applying a :class:`CombineFn` to portions of the :class:`~apache_beam.pvalue.PCollection` (and to intermediate values created thereby). See documentation in :class:`CombineFn` for details on the specifics on how :class:`CombineFn` s are applied. Args: pcoll (~apache_beam.pvalue.PCollection): a :class:`~apache_beam.pvalue.PCollection` to be reduced into a single value. fn (callable): a :class:`CombineFn` object that will be called to progressively reduce the :class:`~apache_beam.pvalue.PCollection` into single values, or a callable suitable for wrapping by :class:`~apache_beam.transforms.core.CallableWrapperCombineFn`. *args: positional arguments passed to the :class:`CombineFn` object. **kwargs: keyword arguments passed to the :class:`CombineFn` object. Raises: TypeError: If the output type of the input :class:`~apache_beam.pvalue.PCollection` is not compatible with ``Iterable[A]``. Returns: ~apache_beam.pvalue.PCollection: A single-element :class:`~apache_beam.pvalue.PCollection` containing the main output of the :class:`CombineGlobally` transform. Note that the positional and keyword arguments will be processed in order to detect :class:`~apache_beam.pvalue.PValue` s that will be computed as side inputs to the transform. During pipeline execution whenever the :class:`CombineFn` object gets executed (i.e. any of the :class:`CombineFn` methods get called), the :class:`~apache_beam.pvalue.PValue` arguments will be replaced by their actual value in the exact position where they appear in the argument lists. """ has_defaults = True as_view = False fanout = None # type: typing.Optional[int] def __init__(self, fn, *args, **kwargs): if not (isinstance(fn, CombineFn) or callable(fn)): raise TypeError( 'CombineGlobally can be used only with combineFn objects. ' 'Received %r instead.' % (fn)) super().__init__() self.fn = fn self.args = args self.kwargs = kwargs
[docs] def display_data(self): return { 'combine_fn': DisplayDataItem( self.fn.__class__, label='Combine Function'), 'combine_fn_dd': self.fn, }
[docs] def default_label(self): if self.fanout is None: return '%s(%s)' % ( self.__class__.__name__, ptransform.label_from_callable(self.fn)) else: return '%s(%s, fanout=%s)' % ( self.__class__.__name__, ptransform.label_from_callable(self.fn), self.fanout)
def _clone(self, **extra_attributes): clone = copy.copy(self) clone.__dict__.update(extra_attributes) return clone
[docs] def with_fanout(self, fanout): return self._clone(fanout=fanout)
[docs] def with_defaults(self, has_defaults=True): return self._clone(has_defaults=has_defaults)
[docs] def without_defaults(self): return self.with_defaults(False)
[docs] def as_singleton_view(self): return self._clone(as_view=True)
[docs] def expand(self, pcoll): def add_input_types(transform): type_hints = self.get_type_hints() if type_hints.input_types: return transform.with_input_types(type_hints.input_types[0][0]) return transform combine_fn = CombineFn.maybe_from_callable( self.fn, has_side_inputs=self.args or self.kwargs) combine_per_key = CombinePerKey(combine_fn, *self.args, **self.kwargs) if self.fanout: combine_per_key = combine_per_key.with_hot_key_fanout(self.fanout) combined = ( pcoll | 'KeyWithVoid' >> add_input_types( ParDo(_KeyWithNone()).with_output_types( typehints.KV[None, pcoll.element_type])) | 'CombinePerKey' >> combine_per_key | 'UnKey' >> Map(lambda k_v: k_v[1])) if not self.has_defaults and not self.as_view: return combined elif self.as_view: if self.has_defaults: try: combine_fn.setup(*self.args, **self.kwargs) # This is called in the main program, but cannot be avoided # in the as_view case as it must be available to all windows. default_value = combine_fn.apply([], *self.args, **self.kwargs) finally: combine_fn.teardown(*self.args, **self.kwargs) else: default_value = pvalue.AsSingleton._NO_DEFAULT return pvalue.AsSingleton(combined, default_value=default_value) else: if pcoll.windowing.windowfn != GlobalWindows(): raise ValueError( "Default values are not yet supported in CombineGlobally() if the " "output PCollection is not windowed by GlobalWindows. " "Instead, use CombineGlobally().without_defaults() to output " "an empty PCollection if the input PCollection is empty, " "or CombineGlobally().as_singleton_view() to get the default " "output of the CombineFn if the input PCollection is empty.") # log the error for this ill-defined streaming case now if not pcoll.is_bounded and not pcoll.windowing.is_default(): _LOGGER.error( "When combining elements in unbounded collections with " "the non-default windowing strategy, you must explicitly " "specify how to define the combined result of an empty window. " "Please use CombineGlobally().without_defaults() to output " "an empty PCollection if the input PCollection is empty.") def typed(transform): # TODO(robertwb): We should infer this. if combined.element_type: return transform.with_output_types(combined.element_type) return transform # Capture in closure (avoiding capturing self). args, kwargs = self.args, self.kwargs def inject_default(_, combined): if combined: if len(combined) > 1: _LOGGER.error( "Multiple combined values unexpectedly provided" " for a global combine: %s", combined) assert len(combined) == 1 return combined[0] else: try: combine_fn.setup(*args, **kwargs) default = combine_fn.apply([], *args, **kwargs) finally: combine_fn.teardown(*args, **kwargs) return default return ( pcoll.pipeline | 'DoOnce' >> Create([None]) | 'InjectDefault' >> typed( Map(inject_default, pvalue.AsList(combined))))
[docs] @staticmethod @PTransform.register_urn( common_urns.composites.COMBINE_GLOBALLY.urn, beam_runner_api_pb2.CombinePayload) def from_runner_api_parameter(unused_ptransform, combine_payload, context): return CombineGlobally( CombineFn.from_runner_api(combine_payload.combine_fn, context))
@DoFnInfo.register_stateless_dofn(python_urns.KEY_WITH_NONE_DOFN) class _KeyWithNone(DoFn): def process(self, v): yield None, v
[docs]class CombinePerKey(PTransformWithSideInputs): """A per-key Combine transform. Identifies sets of values associated with the same key in the input PCollection, then applies a CombineFn to condense those sets to single values. See documentation in CombineFn for details on the specifics on how CombineFns are applied. Args: pcoll: input pcollection. fn: instance of CombineFn to apply to all values under the same key in pcoll, or a callable whose signature is ``f(iterable, *args, **kwargs)`` (e.g., sum, max). *args: arguments and side inputs, passed directly to the CombineFn. **kwargs: arguments and side inputs, passed directly to the CombineFn. Returns: A PObject holding the result of the combine operation. """
[docs] def with_hot_key_fanout(self, fanout): """A per-key combine operation like self but with two levels of aggregation. If a given key is produced by too many upstream bundles, the final reduction can become a bottleneck despite partial combining being lifted pre-GroupByKey. In these cases it can be helpful to perform intermediate partial aggregations in parallel and then re-group to peform a final (per-key) combine. This is also useful for high-volume keys in streaming where combiners are not generally lifted for latency reasons. Note that a fanout greater than 1 requires the data to be sent through two GroupByKeys, and a high fanout can also result in more shuffle data due to less per-bundle combining. Setting the fanout for a key at 1 or less places values on the "cold key" path that skip the intermediate level of aggregation. Args: fanout: either None, for no fanout, an int, for a constant-degree fanout, or a callable mapping keys to a key-specific degree of fanout. Returns: A per-key combining PTransform with the specified fanout. """ from apache_beam.transforms.combiners import curry_combine_fn if fanout is None: return self else: return _CombinePerKeyWithHotKeyFanout( curry_combine_fn(self.fn, self.args, self.kwargs), fanout)
[docs] def display_data(self): return { 'combine_fn': DisplayDataItem( self.fn.__class__, label='Combine Function'), 'combine_fn_dd': self.fn }
[docs] def make_fn(self, fn, has_side_inputs): self._fn_label = ptransform.label_from_callable(fn) return CombineFn.maybe_from_callable(fn, has_side_inputs)
[docs] def default_label(self): return '%s(%s)' % (self.__class__.__name__, self._fn_label)
def _process_argspec_fn(self): return lambda element, *args, **kwargs: None
[docs] def expand(self, pcoll): args, kwargs = util.insert_values_in_args( self.args, self.kwargs, self.side_inputs) return pcoll | GroupByKey() | 'Combine' >> CombineValues( self.fn, *args, **kwargs)
[docs] def default_type_hints(self): result = self.fn.get_type_hints() k = typehints.TypeVariable('K') if result.input_types: args, kwargs = result.input_types args = (typehints.Tuple[k, args[0]], ) + args[1:] result = result.with_input_types(*args, **kwargs) else: result = result.with_input_types(typehints.Tuple[k, typehints.Any]) if result.output_types: main_output_type = result.simple_output_type('') result = result.with_output_types(typehints.Tuple[k, main_output_type]) else: result = result.with_output_types(typehints.Tuple[k, typehints.Any]) return result
[docs] def to_runner_api_parameter( self, context, # type: PipelineContext ): # type: (...) -> typing.Tuple[str, beam_runner_api_pb2.CombinePayload] if self.args or self.kwargs: from apache_beam.transforms.combiners import curry_combine_fn combine_fn = curry_combine_fn(self.fn, self.args, self.kwargs) else: combine_fn = self.fn return ( common_urns.composites.COMBINE_PER_KEY.urn, _combine_payload(combine_fn, context))
[docs] @staticmethod @PTransform.register_urn( common_urns.composites.COMBINE_PER_KEY.urn, beam_runner_api_pb2.CombinePayload) def from_runner_api_parameter(unused_ptransform, combine_payload, context): return CombinePerKey( CombineFn.from_runner_api(combine_payload.combine_fn, context))
[docs] def runner_api_requires_keyed_input(self): return True
# TODO(robertwb): Rename to CombineGroupedValues?
[docs]class CombineValues(PTransformWithSideInputs):
[docs] def make_fn(self, fn, has_side_inputs): return CombineFn.maybe_from_callable(fn, has_side_inputs)
[docs] def expand(self, pcoll): args, kwargs = util.insert_values_in_args( self.args, self.kwargs, self.side_inputs) input_type = pcoll.element_type key_type = None if input_type is not None: key_type, _ = input_type.tuple_types runtime_type_check = ( pcoll.pipeline._options.view_as(TypeOptions).runtime_type_check) return pcoll | ParDo( CombineValuesDoFn(key_type, self.fn, runtime_type_check), *args, **kwargs)
[docs] def to_runner_api_parameter(self, context): if self.args or self.kwargs: from apache_beam.transforms.combiners import curry_combine_fn combine_fn = curry_combine_fn(self.fn, self.args, self.kwargs) else: combine_fn = self.fn return ( common_urns.combine_components.COMBINE_GROUPED_VALUES.urn, _combine_payload(combine_fn, context))
[docs] @staticmethod @PTransform.register_urn( common_urns.combine_components.COMBINE_GROUPED_VALUES.urn, beam_runner_api_pb2.CombinePayload) def from_runner_api_parameter(unused_ptransform, combine_payload, context): return CombineValues( CombineFn.from_runner_api(combine_payload.combine_fn, context))
class CombineValuesDoFn(DoFn): """DoFn for performing per-key Combine transforms.""" def __init__( self, input_pcoll_type, combinefn, # type: CombineFn runtime_type_check, # type: bool ): super().__init__() self.combinefn = combinefn self.runtime_type_check = runtime_type_check def setup(self): self.combinefn.setup() def process(self, element, *args, **kwargs): # Expected elements input to this DoFn are 2-tuples of the form # (key, iter), with iter an iterable of all the values associated with key # in the input PCollection. if self.runtime_type_check: # Apply the combiner in a single operation rather than artificially # breaking it up so that output type violations manifest as TypeCheck # errors rather than type errors. return [(element[0], self.combinefn.apply(element[1], *args, **kwargs))] # Add the elements into three accumulators (for testing of merge). elements = list(element[1]) accumulators = [] for k in range(3): if len(elements) <= k: break accumulators.append( self.combinefn.add_inputs( self.combinefn.create_accumulator(*args, **kwargs), elements[k::3], *args, **kwargs)) # Merge the accumulators. accumulator = self.combinefn.merge_accumulators( accumulators, *args, **kwargs) # Convert accumulator to the final result. return [( element[0], self.combinefn.extract_output(accumulator, *args, **kwargs))] def teardown(self): self.combinefn.teardown() def default_type_hints(self): hints = self.combinefn.get_type_hints() if hints.input_types: K = typehints.TypeVariable('K') args, kwargs = hints.input_types args = (typehints.Tuple[K, typehints.Iterable[args[0]]], ) + args[1:] hints = hints.with_input_types(*args, **kwargs) else: K = typehints.Any if hints.output_types: main_output_type = hints.simple_output_type('') hints = hints.with_output_types(typehints.Tuple[K, main_output_type]) return hints class _CombinePerKeyWithHotKeyFanout(PTransform): def __init__( self, combine_fn, # type: CombineFn fanout, # type: typing.Union[int, typing.Callable[[typing.Any], int]] ): # type: (...) -> None self._combine_fn = combine_fn self._fanout_fn = ((lambda key: fanout) if isinstance(fanout, int) else fanout) def default_label(self): return '%s(%s, fanout=%s)' % ( self.__class__.__name__, ptransform.label_from_callable(self._combine_fn), ptransform.label_from_callable(self._fanout_fn)) def expand(self, pcoll): from apache_beam.transforms.trigger import AccumulationMode combine_fn = self._combine_fn fanout_fn = self._fanout_fn if isinstance(pcoll.windowing.windowfn, SlidingWindows): raise ValueError( 'CombinePerKey.with_hot_key_fanout does not yet work properly with ' 'SlidingWindows. See: https://github.com/apache/beam/issues/20528') class SplitHotCold(DoFn): def start_bundle(self): # Spreading a hot key across all possible sub-keys for all bundles # would defeat the goal of not overwhelming downstream reducers # (as well as making less efficient use of PGBK combining tables). # Instead, each bundle independently makes a consistent choice about # which "shard" of a key to send its intermediate results. self._nonce = int(random.getrandbits(31)) def process(self, element): key, value = element fanout = fanout_fn(key) if fanout <= 1: # Boolean indicates this is not an accumulator. yield (key, (False, value)) # cold else: yield pvalue.TaggedOutput('hot', ((self._nonce % fanout, key), value)) class PreCombineFn(CombineFn): @staticmethod def extract_output(accumulator): # Boolean indicates this is an accumulator. return (True, accumulator) setup = combine_fn.setup create_accumulator = combine_fn.create_accumulator add_input = combine_fn.add_input merge_accumulators = combine_fn.merge_accumulators compact = combine_fn.compact teardown = combine_fn.teardown class PostCombineFn(CombineFn): @staticmethod def add_input(accumulator, element): is_accumulator, value = element if is_accumulator: return combine_fn.merge_accumulators([accumulator, value]) else: return combine_fn.add_input(accumulator, value) setup = combine_fn.setup create_accumulator = combine_fn.create_accumulator merge_accumulators = combine_fn.merge_accumulators compact = combine_fn.compact extract_output = combine_fn.extract_output teardown = combine_fn.teardown def StripNonce(nonce_key_value): (_, key), value = nonce_key_value return key, value cold, hot = pcoll | ParDo(SplitHotCold()).with_outputs('hot', main='cold') cold.element_type = typehints.Any # No multi-output type hints. precombined_hot = ( hot # Avoid double counting that may happen with stacked accumulating mode. | 'WindowIntoDiscarding' >> WindowInto( pcoll.windowing, accumulation_mode=AccumulationMode.DISCARDING) | CombinePerKey(PreCombineFn()) | Map(StripNonce) | 'WindowIntoOriginal' >> WindowInto(pcoll.windowing)) return ((cold, precombined_hot) | Flatten() | CombinePerKey(PostCombineFn()))
[docs]@typehints.with_input_types(typing.Tuple[K, V]) @typehints.with_output_types(typing.Tuple[K, typing.Iterable[V]]) class GroupByKey(PTransform): """A group by key transform. Processes an input PCollection consisting of key/value pairs represented as a tuple pair. The result is a PCollection where values having a common key are grouped together. For example (a, 1), (b, 2), (a, 3) will result into (a, [1, 3]), (b, [2]). The implementation here is used only when run on the local direct runner. """
[docs] class ReifyWindows(DoFn):
[docs] def process( self, element, window=DoFn.WindowParam, timestamp=DoFn.TimestampParam): try: k, v = element except TypeError: raise TypeCheckError( 'Input to GroupByKey must be a PCollection with ' 'elements compatible with KV[A, B]') return [(k, WindowedValue(v, timestamp, [window]))]
[docs] def infer_output_type(self, input_type): key_type, value_type = trivial_inference.key_value_types(input_type) return typehints.KV[ key_type, typehints.WindowedValue[value_type]] # type: ignore[misc]
[docs] def expand(self, pcoll): from apache_beam.transforms.trigger import DataLossReason from apache_beam.transforms.trigger import DefaultTrigger windowing = pcoll.windowing trigger = windowing.triggerfn if not pcoll.is_bounded and isinstance( windowing.windowfn, GlobalWindows) and isinstance(trigger, DefaultTrigger): if pcoll.pipeline.allow_unsafe_triggers: # TODO(BEAM-9487) Change comment for Beam 2.33 _LOGGER.warning( '%s: PCollection passed to GroupByKey is unbounded, has a global ' 'window, and uses a default trigger. This is being allowed ' 'because --allow_unsafe_triggers is set, but it may prevent ' 'data from making it through the pipeline.', self.label) else: raise ValueError( 'GroupByKey cannot be applied to an unbounded ' + 'PCollection with global windowing and a default trigger') unsafe_reason = trigger.may_lose_data(windowing) if unsafe_reason != DataLossReason.NO_POTENTIAL_LOSS: reason_msg = str(unsafe_reason).replace('DataLossReason.', '') if pcoll.pipeline.allow_unsafe_triggers: _LOGGER.warning( '%s: Unsafe trigger `%s` detected (reason: %s). This is ' 'being allowed because --allow_unsafe_triggers is set. This could ' 'lead to missing or incomplete groups.', self.label, trigger, reason_msg) else: msg = '{}: Unsafe trigger: `{}` may lose data. '.format( self.label, trigger) msg += 'Reason: {}. '.format(reason_msg) msg += 'This can be overriden with the --allow_unsafe_triggers flag.' raise ValueError(msg) return pvalue.PCollection.from_(pcoll)
[docs] def infer_output_type(self, input_type): key_type, value_type = (typehints.typehints.coerce_to_kv_type( input_type).tuple_types) return typehints.KV[key_type, typehints.Iterable[value_type]]
[docs] def to_runner_api_parameter(self, unused_context): # type: (PipelineContext) -> typing.Tuple[str, None] return common_urns.primitives.GROUP_BY_KEY.urn, None
[docs] @staticmethod @PTransform.register_urn(common_urns.primitives.GROUP_BY_KEY.urn, None) def from_runner_api_parameter( unused_ptransform, unused_payload, unused_context): return GroupByKey()
[docs] def runner_api_requires_keyed_input(self): return True
def _expr_to_callable(expr, pos): if isinstance(expr, str): return lambda x: getattr(x, expr) elif callable(expr): return expr else: raise TypeError( 'Field expression %r at %s must be a callable or a string.' % (expr, pos))
[docs]class GroupBy(PTransform): """Groups a PCollection by one or more expressions, used to derive the key. `GroupBy(expr)` is roughly equivalent to beam.Map(lambda v: (expr(v), v)) | beam.GroupByKey() but provides several conveniences, e.g. * Several arguments may be provided, as positional or keyword arguments, resulting in a tuple-like key. For example `GroupBy(a=expr1, b=expr2)` groups by a key with attributes `a` and `b` computed by applying `expr1` and `expr2` to each element. * Strings can be used as a shorthand for accessing an attribute, e.g. `GroupBy('some_field')` is equivalent to `GroupBy(lambda v: getattr(v, 'some_field'))`. The GroupBy operation can be made into an aggregating operation by invoking its `aggregate_field` method. """ def __init__( self, *fields, # type: typing.Union[str, typing.Callable] **kwargs # type: typing.Union[str, typing.Callable] ): if len(fields) == 1 and not kwargs: self._force_tuple_keys = False name = fields[0] if isinstance(fields[0], str) else 'key' key_fields = [(name, _expr_to_callable(fields[0], 0))] else: self._force_tuple_keys = True key_fields = [] for ix, field in enumerate(fields): name = field if isinstance(field, str) else 'key%d' % ix key_fields.append((name, _expr_to_callable(field, ix))) for name, expr in kwargs.items(): key_fields.append((name, _expr_to_callable(expr, name))) self._key_fields = key_fields field_names = tuple(name for name, _ in key_fields) self._key_type = lambda *values: _dynamic_named_tuple('Key', field_names)( *values)
[docs] def aggregate_field( self, field, # type: typing.Union[str, typing.Callable] combine_fn, # type: typing.Union[typing.Callable, CombineFn] dest, # type: str ): """Returns a grouping operation that also aggregates grouped values. Args: field: indicates the field to be aggregated combine_fn: indicates the aggregation function to be used dest: indicates the name that will be used for the aggregate in the output May be called repeatedly to aggregate multiple fields, e.g. GroupBy('key') .aggregate_field('some_attr', sum, 'sum_attr') .aggregate_field(lambda v: ..., MeanCombineFn, 'mean') """ return _GroupAndAggregate(self, ()).aggregate_field(field, combine_fn, dest)
[docs] def force_tuple_keys(self, value=True): """Forces the keys to always be tuple-like, even if there is only a single expression. """ res = copy.copy(self) res._force_tuple_keys = value return res
def _key_func(self): if not self._force_tuple_keys and len(self._key_fields) == 1: return self._key_fields[0][1] else: key_type = self._key_type key_exprs = [expr for _, expr in self._key_fields] return lambda element: key_type(*(expr(element) for expr in key_exprs)) def _key_type_hint(self, input_type): if not self._force_tuple_keys and len(self._key_fields) == 1: expr = self._key_fields[0][1] return trivial_inference.infer_return_type(expr, [input_type]) else: return row_type.RowTypeConstraint.from_fields([ (name, trivial_inference.infer_return_type(expr, [input_type])) for (name, expr) in self._key_fields ])
[docs] def default_label(self): return 'GroupBy(%s)' % ', '.join(name for name, _ in self._key_fields)
[docs] def expand(self, pcoll): input_type = pcoll.element_type or typing.Any return ( pcoll | Map(lambda x: (self._key_func()(x), x)).with_output_types( typehints.Tuple[self._key_type_hint(input_type), input_type]) | GroupByKey())
_dynamic_named_tuple_cache = { } # type: typing.Dict[typing.Tuple[str, typing.Tuple[str, ...]], typing.Type[tuple]] def _dynamic_named_tuple(type_name, field_names): # type: (str, typing.Tuple[str, ...]) -> typing.Type[tuple] cache_key = (type_name, field_names) result = _dynamic_named_tuple_cache.get(cache_key) if result is None: import collections result = _dynamic_named_tuple_cache[cache_key] = collections.namedtuple( type_name, field_names) # typing: can't override a method. also, self type is unknown and can't # be cast to tuple result.__reduce__ = lambda self: ( # type: ignore[assignment] _unpickle_dynamic_named_tuple, (type_name, field_names, tuple(self))) # type: ignore[arg-type] return result def _unpickle_dynamic_named_tuple(type_name, field_names, values): # type: (str, typing.Tuple[str, ...], typing.Iterable[typing.Any]) -> tuple return _dynamic_named_tuple(type_name, field_names)(*values) class _GroupAndAggregate(PTransform): def __init__(self, grouping, aggregations): self._grouping = grouping self._aggregations = aggregations def aggregate_field( self, field, # type: typing.Union[str, typing.Callable] combine_fn, # type: typing.Union[typing.Callable, CombineFn] dest, # type: str ): field = _expr_to_callable(field, 0) return _GroupAndAggregate( self._grouping, list(self._aggregations) + [(field, combine_fn, dest)]) def expand(self, pcoll): from apache_beam.transforms.combiners import TupleCombineFn key_func = self._grouping.force_tuple_keys(True)._key_func() value_exprs = [expr for expr, _, __ in self._aggregations] value_func = lambda element: [expr(element) for expr in value_exprs] result_fields = tuple(name for name, _ in self._grouping._key_fields) + tuple( dest for _, __, dest in self._aggregations) key_type_hint = self._grouping.force_tuple_keys(True)._key_type_hint( pcoll.element_type) return ( pcoll | Map(lambda x: (key_func(x), value_func(x))).with_output_types( typehints.Tuple[key_type_hint, typing.Any]) | CombinePerKey( TupleCombineFn( *[combine_fn for _, combine_fn, __ in self._aggregations])) | MapTuple( lambda key, value: _dynamic_named_tuple('Result', result_fields) (*(key + value))))
[docs]class Select(PTransform): """Converts the elements of a PCollection into a schema'd PCollection of Rows. `Select(...)` is roughly equivalent to `Map(lambda x: Row(...))` where each argument (which may be a string or callable) of `ToRow` is applied to `x`. For example, pcoll | beam.Select('a', b=lambda x: foo(x)) is the same as pcoll | beam.Map(lambda x: beam.Row(a=x.a, b=foo(x))) """ def __init__( self, *args, # type: typing.Union[str, typing.Callable] **kwargs # type: typing.Union[str, typing.Callable] ): self._fields = [( expr if isinstance(expr, str) else 'arg%02d' % ix, _expr_to_callable(expr, ix)) for (ix, expr) in enumerate(args) ] + [(name, _expr_to_callable(expr, name)) for (name, expr) in kwargs.items()] self._exception_handling_args = None
[docs] def with_exception_handling(self, **kwargs): self._exception_handling_args = kwargs return self
[docs] def default_label(self): return 'ToRows(%s)' % ', '.join(name for name, _ in self._fields)
[docs] def expand(self, pcoll): return ( _MaybePValueWithErrors(pcoll, self._exception_handling_args) | Map( lambda x: pvalue.Row( **{name: expr(x) for name, expr in self._fields}))).as_result()
[docs] def infer_output_type(self, input_type): return row_type.RowTypeConstraint.from_fields([ (name, trivial_inference.infer_return_type(expr, [input_type])) for (name, expr) in self._fields ])
[docs]class Partition(PTransformWithSideInputs): """Split a PCollection into several partitions. Uses the specified PartitionFn to separate an input PCollection into the specified number of sub-PCollections. When apply()d, a Partition() PTransform requires the following: Args: partitionfn: a PartitionFn, or a callable with the signature described in CallableWrapperPartitionFn. n: number of output partitions. The result of this PTransform is a simple list of the output PCollections representing each of n partitions, in order. """
[docs] class ApplyPartitionFnFn(DoFn): """A DoFn that applies a PartitionFn."""
[docs] def process(self, element, partitionfn, n, *args, **kwargs): partition = partitionfn.partition_for(element, n, *args, **kwargs) if not 0 <= partition < n: raise ValueError( 'PartitionFn specified out-of-bounds partition index: ' '%d not in [0, %d)' % (partition, n)) # Each input is directed into the output that corresponds to the # selected partition. yield pvalue.TaggedOutput(str(partition), element)
[docs] def make_fn(self, fn, has_side_inputs): return fn if isinstance(fn, PartitionFn) else CallableWrapperPartitionFn(fn)
[docs] def expand(self, pcoll): n = int(self.args[0]) args, kwargs = util.insert_values_in_args( self.args, self.kwargs, self.side_inputs) return pcoll | ParDo(self.ApplyPartitionFnFn(), self.fn, *args, ** kwargs).with_outputs(*[str(t) for t in range(n)])
[docs]class Windowing(object): def __init__(self, windowfn, # type: WindowFn triggerfn=None, # type: typing.Optional[TriggerFn] accumulation_mode=None, # type: typing.Optional[beam_runner_api_pb2.AccumulationMode.Enum.ValueType] timestamp_combiner=None, # type: typing.Optional[beam_runner_api_pb2.OutputTime.Enum.ValueType] allowed_lateness=0, # type: typing.Union[int, float] environment_id=None, # type: typing.Optional[str] ): """Class representing the window strategy. Args: windowfn: Window assign function. triggerfn: Trigger function. accumulation_mode: a AccumulationMode, controls what to do with data when a trigger fires multiple times. timestamp_combiner: a TimestampCombiner, determines how output timestamps of grouping operations are assigned. allowed_lateness: Maximum delay in seconds after end of window allowed for any late data to be processed without being discarded directly. environment_id: Environment where the current window_fn should be applied in. """ global AccumulationMode, DefaultTrigger # pylint: disable=global-variable-not-assigned # pylint: disable=wrong-import-order, wrong-import-position from apache_beam.transforms.trigger import AccumulationMode, DefaultTrigger # pylint: enable=wrong-import-order, wrong-import-position if triggerfn is None: triggerfn = DefaultTrigger() if accumulation_mode is None: if triggerfn == DefaultTrigger(): accumulation_mode = AccumulationMode.DISCARDING else: raise ValueError( 'accumulation_mode must be provided for non-trivial triggers') if not windowfn.get_window_coder().is_deterministic(): raise ValueError( 'window fn (%s) does not have a determanistic coder (%s)' % (windowfn, windowfn.get_window_coder())) self.windowfn = windowfn self.triggerfn = triggerfn self.accumulation_mode = accumulation_mode self.allowed_lateness = Duration.of(allowed_lateness) self.environment_id = environment_id self.timestamp_combiner = ( timestamp_combiner or TimestampCombiner.OUTPUT_AT_EOW) self._is_default = ( self.windowfn == GlobalWindows() and self.triggerfn == DefaultTrigger() and self.accumulation_mode == AccumulationMode.DISCARDING and self.timestamp_combiner == TimestampCombiner.OUTPUT_AT_EOW and self.allowed_lateness == 0) def __repr__(self): return "Windowing(%s, %s, %s, %s, %s)" % ( self.windowfn, self.triggerfn, self.accumulation_mode, self.timestamp_combiner, self.environment_id) def __eq__(self, other): if type(self) == type(other): if self._is_default and other._is_default: return True return ( self.windowfn == other.windowfn and self.triggerfn == other.triggerfn and self.accumulation_mode == other.accumulation_mode and self.timestamp_combiner == other.timestamp_combiner and self.allowed_lateness == other.allowed_lateness and self.environment_id == self.environment_id) return False def __hash__(self): return hash(( self.windowfn, self.triggerfn, self.accumulation_mode, self.allowed_lateness, self.timestamp_combiner, self.environment_id))
[docs] def is_default(self): return self._is_default
[docs] def to_runner_api(self, context): # type: (PipelineContext) -> beam_runner_api_pb2.WindowingStrategy environment_id = self.environment_id or context.default_environment_id() return beam_runner_api_pb2.WindowingStrategy( window_fn=self.windowfn.to_runner_api(context), # TODO(robertwb): Prohibit implicit multi-level merging. merge_status=( beam_runner_api_pb2.MergeStatus.NEEDS_MERGE if self.windowfn.is_merging() else beam_runner_api_pb2.MergeStatus.NON_MERGING), window_coder_id=context.coders.get_id(self.windowfn.get_window_coder()), trigger=self.triggerfn.to_runner_api(context), accumulation_mode=self.accumulation_mode, output_time=self.timestamp_combiner, # TODO(robertwb): Support EMIT_IF_NONEMPTY closing_behavior=beam_runner_api_pb2.ClosingBehavior.EMIT_ALWAYS, on_time_behavior=beam_runner_api_pb2.OnTimeBehavior.FIRE_ALWAYS, allowed_lateness=self.allowed_lateness.micros // 1000, environment_id=environment_id)
[docs] @staticmethod def from_runner_api(proto, context): # pylint: disable=wrong-import-order, wrong-import-position from apache_beam.transforms.trigger import TriggerFn return Windowing( windowfn=WindowFn.from_runner_api(proto.window_fn, context), triggerfn=TriggerFn.from_runner_api(proto.trigger, context), accumulation_mode=proto.accumulation_mode, timestamp_combiner=proto.output_time, allowed_lateness=Duration(micros=proto.allowed_lateness * 1000), environment_id=None)
[docs]@typehints.with_input_types(T) @typehints.with_output_types(T) class WindowInto(ParDo): """A window transform assigning windows to each element of a PCollection. Transforms an input PCollection by applying a windowing function to each element. Each transformed element in the result will be a WindowedValue element with the same input value and timestamp, with its new set of windows determined by the windowing function. """
[docs] class WindowIntoFn(DoFn): """A DoFn that applies a WindowInto operation.""" def __init__(self, windowing): # type: (Windowing) -> None self.windowing = windowing
[docs] def process( self, element, timestamp=DoFn.TimestampParam, window=DoFn.WindowParam): context = WindowFn.AssignContext( timestamp, element=element, window=window) new_windows = self.windowing.windowfn.assign(context) yield WindowedValue(element, context.timestamp, new_windows)
[docs] def infer_output_type(self, input_type): return input_type
def __init__( self, windowfn, # type: typing.Union[Windowing, WindowFn] trigger=None, # type: typing.Optional[TriggerFn] accumulation_mode=None, timestamp_combiner=None, allowed_lateness=0): """Initializes a WindowInto transform. Args: windowfn (Windowing, WindowFn): Function to be used for windowing. trigger: (optional) Trigger used for windowing, or None for default. accumulation_mode: (optional) Accumulation mode used for windowing, required for non-trivial triggers. timestamp_combiner: (optional) Timestamp combniner used for windowing, or None for default. """ if isinstance(windowfn, Windowing): # Overlay windowing with kwargs. windowing = windowfn windowfn = windowing.windowfn # Use windowing to fill in defaults for the extra arguments. trigger = trigger or windowing.triggerfn accumulation_mode = accumulation_mode or windowing.accumulation_mode timestamp_combiner = timestamp_combiner or windowing.timestamp_combiner self.windowing = Windowing( windowfn, trigger, accumulation_mode, timestamp_combiner, allowed_lateness) super().__init__(self.WindowIntoFn(self.windowing))
[docs] def get_windowing(self, unused_inputs): # type: (typing.Any) -> Windowing return self.windowing
[docs] def infer_output_type(self, input_type): return input_type
[docs] def expand(self, pcoll): input_type = pcoll.element_type if input_type is not None: output_type = input_type self.with_input_types(input_type) self.with_output_types(output_type) return super().expand(pcoll)
# typing: PTransform base class does not accept extra_kwargs
[docs] def to_runner_api_parameter(self, context, **extra_kwargs): # type: ignore[override] # type: (PipelineContext, **typing.Any) -> typing.Tuple[str, message.Message] return ( common_urns.primitives.ASSIGN_WINDOWS.urn, self.windowing.to_runner_api(context))
[docs] @staticmethod def from_runner_api_parameter(unused_ptransform, proto, context): windowing = Windowing.from_runner_api(proto, context) return WindowInto( windowing.windowfn, trigger=windowing.triggerfn, accumulation_mode=windowing.accumulation_mode, timestamp_combiner=windowing.timestamp_combiner)
PTransform.register_urn( common_urns.primitives.ASSIGN_WINDOWS.urn, # TODO(robertwb): Update WindowIntoPayload to include the full strategy. # (Right now only WindowFn is used, but we need this to reconstitute the # WindowInto transform, and in the future will need it at runtime to # support meta-data driven triggers.) # TODO(robertwb): Use a reference rather than embedding? beam_runner_api_pb2.WindowingStrategy, WindowInto.from_runner_api_parameter) # Python's pickling is broken for nested classes. WindowIntoFn = WindowInto.WindowIntoFn
[docs]class Flatten(PTransform): """Merges several PCollections into a single PCollection. Copies all elements in 0 or more PCollections into a single output PCollection. If there are no input PCollections, the resulting PCollection will be empty (but see also kwargs below). Args: **kwargs: Accepts a single named argument "pipeline", which specifies the pipeline that "owns" this PTransform. Ordinarily Flatten can obtain this information from one of the input PCollections, but if there are none (or if there's a chance there may be none), this argument is the only way to provide pipeline information and should be considered mandatory. """ def __init__(self, **kwargs): super().__init__() self.pipeline = kwargs.pop( 'pipeline', None) # type: typing.Optional[Pipeline] if kwargs: raise ValueError('Unexpected keyword arguments: %s' % list(kwargs)) def _extract_input_pvalues(self, pvalueish): try: pvalueish = tuple(pvalueish) except TypeError: raise ValueError( 'Input to Flatten must be an iterable. ' 'Got a value of type %s instead.' % type(pvalueish)) return pvalueish, pvalueish
[docs] def expand(self, pcolls): for pcoll in pcolls: self._check_pcollection(pcoll) is_bounded = all(pcoll.is_bounded for pcoll in pcolls) return pvalue.PCollection(self.pipeline, is_bounded=is_bounded)
[docs] def infer_output_type(self, input_type): return input_type
[docs] def to_runner_api_parameter(self, context): # type: (PipelineContext) -> typing.Tuple[str, None] return common_urns.primitives.FLATTEN.urn, None
[docs] @staticmethod def from_runner_api_parameter( unused_ptransform, unused_parameter, unused_context): return Flatten()
PTransform.register_urn( common_urns.primitives.FLATTEN.urn, None, Flatten.from_runner_api_parameter)
[docs]class Create(PTransform): """A transform that creates a PCollection from an iterable.""" def __init__(self, values, reshuffle=True): """Initializes a Create transform. Args: values: An object of values for the PCollection """ super().__init__() if isinstance(values, (str, bytes)): raise TypeError( 'PTransform Create: Refusing to treat string as ' 'an iterable. (string=%r)' % values) elif isinstance(values, dict): values = values.items() self.values = tuple(values) self.reshuffle = reshuffle self._coder = typecoders.registry.get_coder(self.get_output_type()) def __getstate__(self): serialized_values = [self._coder.encode(v) for v in self.values] return serialized_values, self.reshuffle, self._coder def __setstate__(self, state): serialized_values, self.reshuffle, self._coder = state self.values = [self._coder.decode(v) for v in serialized_values]
[docs] def to_runner_api_parameter(self, context): # type: (PipelineContext) -> typing.Tuple[str, bytes] # Required as this is identified by type in PTransformOverrides. # TODO(https://github.com/apache/beam/issues/18713): Use an actual URN # here. return self.to_runner_api_pickled(context)
[docs] def infer_output_type(self, unused_input_type): if not self.values: return typehints.Any return typehints.Union[[ trivial_inference.instance_to_type(v) for v in self.values ]]
[docs] def get_output_type(self): return ( self.get_type_hints().simple_output_type(self.label) or self.infer_output_type(None))
[docs] def expand(self, pbegin): assert isinstance(pbegin, pvalue.PBegin) serialized_values = [self._coder.encode(v) for v in self.values] reshuffle = self.reshuffle # Avoid the "redistributing" reshuffle for 0 and 1 element Creates. # These special cases are often used in building up more complex # transforms (e.g. Write). class MaybeReshuffle(PTransform): def expand(self, pcoll): if len(serialized_values) > 1 and reshuffle: from apache_beam.transforms.util import Reshuffle return pcoll | Reshuffle() else: return pcoll return ( pbegin | Impulse() | FlatMap(lambda _: serialized_values).with_output_types(bytes) | MaybeReshuffle().with_output_types(bytes) | Map(self._coder.decode).with_output_types(self.get_output_type()))
[docs] def as_read(self): from apache_beam.io import iobase source = self._create_source_from_iterable(self.values, self._coder) return iobase.Read(source).with_output_types(self.get_output_type())
[docs] def get_windowing(self, unused_inputs): # type: (typing.Any) -> Windowing return Windowing(GlobalWindows())
@staticmethod def _create_source_from_iterable(values, coder): return Create._create_source(list(map(coder.encode, values)), coder) @staticmethod def _create_source(serialized_values, coder): # type: (typing.Any, typing.Any) -> create_source._CreateSource from apache_beam.transforms.create_source import _CreateSource return _CreateSource(serialized_values, coder)
[docs]@typehints.with_output_types(bytes) class Impulse(PTransform): """Impulse primitive."""
[docs] def expand(self, pbegin): if not isinstance(pbegin, pvalue.PBegin): raise TypeError( 'Input to Impulse transform must be a PBegin but found %s' % pbegin) return pvalue.PCollection(pbegin.pipeline, element_type=bytes)
[docs] def get_windowing(self, inputs): # type: (typing.Any) -> Windowing return Windowing(GlobalWindows())
[docs] def infer_output_type(self, unused_input_type): return bytes
[docs] def to_runner_api_parameter(self, unused_context): # type: (PipelineContext) -> typing.Tuple[str, None] return common_urns.primitives.IMPULSE.urn, None
[docs] @staticmethod @PTransform.register_urn(common_urns.primitives.IMPULSE.urn, None) def from_runner_api_parameter( unused_ptransform, unused_parameter, unused_context): return Impulse()
def _strip_output_annotations(type_hint): # TODO(robertwb): These should be parameterized types that the # type inferencer understands. # Then we can replace them with the correct element types instead of # using Any. Refer to typehints.WindowedValue when doing this. annotations = (TimestampedValue, WindowedValue, pvalue.TaggedOutput) contains_annotation = False def visitor(t, unused_args): if t in annotations or (hasattr(t, '__name__') and t.__name__ == TimestampedValue.__name__): raise StopIteration try: visit_inner_types(type_hint, visitor, []) except StopIteration: contains_annotation = True return typehints.Any if contains_annotation else type_hint