#
# Licensed to the Apache Software Foundation (ASF) under one or more
# contributor license agreements. See the NOTICE file distributed with
# this work for additional information regarding copyright ownership.
# The ASF licenses this file to You under the Apache License, Version 2.0
# (the "License"); you may not use this file except in compliance with
# the License. You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
import argparse
import yaml
import apache_beam as beam
from apache_beam.typehints.schemas import LogicalType
from apache_beam.typehints.schemas import MillisInstant
from apache_beam.yaml import yaml_transform
# Workaround for https://github.com/apache/beam/issues/28151.
LogicalType.register_logical_type(MillisInstant)
def _configure_parser(argv):
parser = argparse.ArgumentParser()
parser.add_argument(
'--pipeline_spec', help='A yaml description of the pipeline to run.')
parser.add_argument(
'--pipeline_spec_file',
help='A file containing a yaml description of the pipeline to run.')
return parser.parse_known_args(argv)
def _pipeline_spec_from_args(known_args):
if known_args.pipeline_spec_file and known_args.pipeline_spec:
raise ValueError(
"Exactly one of pipeline_spec or pipeline_spec_file must be set.")
elif known_args.pipeline_spec_file:
with open(known_args.pipeline_spec_file) as fin:
pipeline_yaml = fin.read()
elif known_args.pipeline_spec:
pipeline_yaml = known_args.pipeline_spec
else:
raise ValueError(
"Exactly one of pipeline_spec or pipeline_spec_file must be set.")
return yaml.load(pipeline_yaml, Loader=yaml_transform.SafeLineLoader)
[docs]def run(argv=None):
yaml_transform._LOGGER.setLevel('INFO')
known_args, pipeline_args = _configure_parser(argv)
pipeline_spec = _pipeline_spec_from_args(known_args)
with beam.Pipeline(options=beam.options.pipeline_options.PipelineOptions(
pipeline_args,
pickle_library='cloudpickle',
**yaml_transform.SafeLineLoader.strip_metadata(pipeline_spec.get(
'options', {})))) as p:
print("Building pipeline...")
yaml_transform.expand_pipeline(p, pipeline_spec)
print("Running pipeline...")
if __name__ == '__main__':
import logging
logging.getLogger().setLevel(logging.INFO)
run()