apache_beam.ml.inference.tensorrt_inference module¶
- 
class 
apache_beam.ml.inference.tensorrt_inference.TensorRTEngine(engine: <sphinx.ext.autodoc.importer._MockObject object at 0x7f50f164b040>)[source]¶ Bases:
objectImplementation of the TensorRTEngine class which handles allocations associated with TensorRT engine.
Example Usage:
TensorRTEngine(engine)
Parameters: engine – trt.ICudaEngine object that contains TensorRT engine 
- 
class 
apache_beam.ml.inference.tensorrt_inference.TensorRTEngineHandlerNumPy(min_batch_size: int, max_batch_size: int, *, inference_fn: Callable[[Sequence[numpy.ndarray], apache_beam.ml.inference.tensorrt_inference.TensorRTEngine, Optional[Dict[str, Any]]], Iterable[apache_beam.ml.inference.base.PredictionResult]] = <function _default_tensorRT_inference_fn>, large_model: bool = False, **kwargs)[source]¶ Bases:
apache_beam.ml.inference.base.ModelHandlerImplementation of the ModelHandler interface for TensorRT.
Example Usage:
pcoll | RunInference( TensorRTEngineHandlerNumPy( min_batch_size=1, max_batch_size=1, engine_path="my_uri"))
NOTE: This API and its implementation are under development and do not provide backward compatibility guarantees.
Parameters: - min_batch_size – minimum accepted batch size.
 - max_batch_size – maximum accepted batch size.
 - inference_fn – the inference function to use on RunInference calls. default: _default_tensorRT_inference_fn
 - large_model – set to true if your model is large enough to run into memory pressure if you load multiple copies. Given a model that consumes N memory and a machine with W cores and M memory, you should set this to True if N*W > M.
 - kwargs – Additional arguments like ‘engine_path’ and ‘onnx_path’ are currently supported. ‘env_vars’ can be used to set environment variables before loading the model.
 
See https://docs.nvidia.com/deeplearning/tensorrt/api/python_api/ for details
- 
load_model() → apache_beam.ml.inference.tensorrt_inference.TensorRTEngine[source]¶ Loads and initializes a TensorRT engine for processing.
- 
load_onnx() → Tuple[<sphinx.ext.autodoc.importer._MockObject object at 0x7f50f0bb1c40>, <sphinx.ext.autodoc.importer._MockObject object at 0x7f50f0bb1c70>][source]¶ Loads and parses an onnx model for processing.
- 
build_engine(network: <sphinx.ext.autodoc.importer._MockObject object at 0x7f50f0bb1850>, builder: <sphinx.ext.autodoc.importer._MockObject object at 0x7f50f0bb16a0>) → apache_beam.ml.inference.tensorrt_inference.TensorRTEngine[source]¶ Build an engine according to parsed/created network.
- 
run_inference(batch: Sequence[numpy.ndarray], engine: apache_beam.ml.inference.tensorrt_inference.TensorRTEngine, inference_args: Optional[Dict[str, Any]] = None) → Iterable[apache_beam.ml.inference.base.PredictionResult][source]¶ Runs inferences on a batch of Tensors and returns an Iterable of TensorRT Predictions.
Parameters: - batch – A np.ndarray or a np.ndarray that represents a concatenation of multiple arrays as a batch.
 - engine – A TensorRT engine.
 - inference_args – Any additional arguments for an inference that are not applicable to TensorRT.
 
Returns: An Iterable of type PredictionResult.
- 
get_num_bytes(batch: Sequence[numpy.ndarray]) → int[source]¶ Returns: The number of bytes of data for a batch of Tensors. 
- 
get_metrics_namespace() → str[source]¶ Returns a namespace for metrics collected by the RunInference transform.