apache_beam.ml.gcp.recommendations_ai module¶
A connector for sending API requests to the GCP Recommendations AI API (https://cloud.google.com/recommendations).
- 
class apache_beam.ml.gcp.recommendations_ai.CreateCatalogItem(project: str = None, retry: google.api_core.retry.retry_unary.Retry = None, timeout: float = 120, metadata: Sequence[Tuple[str, str]] = (), catalog_name: str = 'default_catalog')[source]¶
- Bases: - apache_beam.transforms.ptransform.PTransform- Creates catalogitem information. The - PTransformreturns a PCollectionTuple with a PCollections of successfully and failed created CatalogItems.- Example usage: - pipeline | CreateCatalogItem( project='example-gcp-project', catalog_name='my-catalog') - Initializes a - CreateCatalogItemtransform.- Parameters: - project (str) – Optional. GCP project name in which the catalog data will be imported.
- retry – Optional. Designation of what errors, if any, should be retried.
- timeout (float) – Optional. The amount of time, in seconds, to wait for the request to complete.
- metadata – Optional. Strings which should be sent along with the request as metadata.
- catalog_name (str) – Optional. Name of the catalog. Default: ‘default_catalog’
 
- 
class apache_beam.ml.gcp.recommendations_ai.ImportCatalogItems(max_batch_size: int = 5000, project: str = None, retry: google.api_core.retry.retry_unary.Retry = None, timeout: float = 120, metadata: Sequence[Tuple[str, str]] = (), catalog_name: str = 'default_catalog')[source]¶
- Bases: - apache_beam.transforms.ptransform.PTransform- Imports catalogitems in bulk. The PTransform returns a PCollectionTuple with PCollections of successfully and failed imported CatalogItems. - Example usage: - pipeline | ImportCatalogItems( project='example-gcp-project', catalog_name='my-catalog') - Initializes a - ImportCatalogItemstransform- Parameters: - batch_size (int) – Required. Maximum number of catalogitems per request.
- project (str) – Optional. GCP project name in which the catalog data will be imported.
- retry – Optional. Designation of what errors, if any, should be retried.
- timeout (float) – Optional. The amount of time, in seconds, to wait for the request to complete.
- metadata – Optional. Strings which should be sent along with the request as metadata.
- catalog_name (str) – Optional. Name of the catalog. Default: ‘default_catalog’
 
- 
class apache_beam.ml.gcp.recommendations_ai.WriteUserEvent(project: str = None, retry: google.api_core.retry.retry_unary.Retry = None, timeout: float = 120, metadata: Sequence[Tuple[str, str]] = (), catalog_name: str = 'default_catalog', event_store: str = 'default_event_store')[source]¶
- Bases: - apache_beam.transforms.ptransform.PTransform- Write user event information. The PTransform returns a PCollectionTuple with PCollections of successfully and failed written UserEvents. - Example usage: - pipeline | WriteUserEvent( project='example-gcp-project', catalog_name='my-catalog', event_store='my_event_store') - Initializes a - WriteUserEventtransform.- Parameters: - project (str) – Optional. GCP project name in which the catalog data will be imported.
- retry – Optional. Designation of what errors, if any, should be retried.
- timeout (float) – Optional. The amount of time, in seconds, to wait for the request to complete.
- metadata – Optional. Strings which should be sent along with the request as metadata.
- catalog_name (str) – Optional. Name of the catalog. Default: ‘default_catalog’
- event_store (str) – Optional. Name of the event store. Default: ‘default_event_store’
 
- 
class apache_beam.ml.gcp.recommendations_ai.ImportUserEvents(max_batch_size: int = 5000, project: str = None, retry: google.api_core.retry.retry_unary.Retry = None, timeout: float = 120, metadata: Sequence[Tuple[str, str]] = (), catalog_name: str = 'default_catalog', event_store: str = 'default_event_store')[source]¶
- Bases: - apache_beam.transforms.ptransform.PTransform- Imports userevents in bulk. The PTransform returns a PCollectionTuple with PCollections of successfully and failed imported UserEvents. - Example usage: - pipeline | ImportUserEvents( project='example-gcp-project', catalog_name='my-catalog', event_store='my_event_store') - Initializes a - WriteUserEventtransform.- Parameters: - batch_size (int) – Required. Maximum number of catalogitems per request.
- project (str) – Optional. GCP project name in which the catalog data will be imported.
- retry – Optional. Designation of what errors, if any, should be retried.
- timeout (float) – Optional. The amount of time, in seconds, to wait for the request to complete.
- metadata – Optional. Strings which should be sent along with the request as metadata.
- catalog_name (str) – Optional. Name of the catalog. Default: ‘default_catalog’
- event_store (str) – Optional. Name of the event store. Default: ‘default_event_store’
 
- 
class apache_beam.ml.gcp.recommendations_ai.PredictUserEvent(project: str = None, retry: google.api_core.retry.retry_unary.Retry = None, timeout: float = 120, metadata: Sequence[Tuple[str, str]] = (), catalog_name: str = 'default_catalog', event_store: str = 'default_event_store', placement_id: str = None)[source]¶
- Bases: - apache_beam.transforms.ptransform.PTransform- Make a recommendation prediction. The PTransform returns a PCollection - Example usage: - pipeline | PredictUserEvent( project='example-gcp-project', catalog_name='my-catalog', event_store='my_event_store', placement_id='recently_viewed_default') - Initializes a - PredictUserEventtransform.- Parameters: - project (str) – Optional. GCP project name in which the catalog data will be imported.
- retry – Optional. Designation of what errors, if any, should be retried.
- timeout (float) – Optional. The amount of time, in seconds, to wait for the request to complete.
- metadata – Optional. Strings which should be sent along with the request as metadata.
- catalog_name (str) – Optional. Name of the catalog. Default: ‘default_catalog’
- event_store (str) – Optional. Name of the event store. Default: ‘default_event_store’
- placement_id (str) – Required. ID of the recommendation engine placement. This id is used to identify the set of models that will be used to make the prediction.