apache_beam.ml.inference.onnx_inference module¶
- 
class apache_beam.ml.inference.onnx_inference.OnnxModelHandlerNumpy(model_uri: str, session_options=None, providers=['CUDAExecutionProvider', 'CPUExecutionProvider'], provider_options=None, *, inference_fn: Callable[[Sequence[numpy.ndarray], <sphinx.ext.autodoc.importer._MockObject object at 0x7f2fcf543a90>, Optional[Dict[str, Any]]], Iterable[apache_beam.ml.inference.base.PredictionResult]] = <function default_numpy_inference_fn>, large_model: bool = False, min_batch_size: Optional[int] = None, max_batch_size: Optional[int] = None, max_batch_duration_secs: Optional[int] = None, **kwargs)[source]¶
- Bases: - apache_beam.ml.inference.base.ModelHandler- Implementation of the ModelHandler interface for onnx using numpy arrays as input. Note that inputs to ONNXModelHandler should be of the same sizes - Example Usage: - pcoll | RunInference(OnnxModelHandler(model_uri="my_uri")) - Parameters: - model_uri – The URI to where the model is saved.
- inference_fn – The inference function to use on RunInference calls. default=default_numpy_inference_fn
- large_model – set to true if your model is large enough to run into memory pressure if you load multiple copies. Given a model that consumes N memory and a machine with W cores and M memory, you should set this to True if N*W > M.
- min_batch_size – the minimum batch size to use when batching inputs.
- max_batch_size – the maximum batch size to use when batching inputs.
- max_batch_duration_secs – the maximum amount of time to buffer a batch before emitting; used in streaming contexts.
- kwargs – ‘env_vars’ can be used to set environment variables before loading the model.
 - 
load_model() → <sphinx.ext.autodoc.importer._MockObject object at 0x7f2fcf4eaa00>[source]¶
- Loads and initializes an onnx inference session for processing. 
 - 
run_inference(batch: Sequence[numpy.ndarray], inference_session: <sphinx.ext.autodoc.importer._MockObject object at 0x7f2fcf47b0d0>, inference_args: Optional[Dict[str, Any]] = None) → Iterable[apache_beam.ml.inference.base.PredictionResult][source]¶
- Runs inferences on a batch of numpy arrays. - Parameters: - batch – A sequence of examples as numpy arrays. They should be single examples.
- inference_session – An onnx inference session. Must be runnable with input x where x is sequence of numpy array
- inference_args – Any additional arguments for an inference.
 - Returns: - An Iterable of type PredictionResult. 
 - 
get_num_bytes(batch: Sequence[numpy.ndarray]) → int[source]¶
- Returns: - The number of bytes of data for a batch. 
 - 
get_metrics_namespace() → str[source]¶
- Returns: - A namespace for metrics collected by the RunInference transform.