apache_beam.ml.inference.tensorrt_inference module¶
- 
class apache_beam.ml.inference.tensorrt_inference.TensorRTEngine(engine: <sphinx.ext.autodoc.importer._MockObject object at 0x7f2fc17eb220>)[source]¶
- Bases: - object- Implementation of the TensorRTEngine class which handles allocations associated with TensorRT engine. - Example Usage: - TensorRTEngine(engine) - Parameters: - engine – trt.ICudaEngine object that contains TensorRT engine 
- 
class apache_beam.ml.inference.tensorrt_inference.TensorRTEngineHandlerNumPy(min_batch_size: int, max_batch_size: int, *, inference_fn: Callable[[Sequence[numpy.ndarray], apache_beam.ml.inference.tensorrt_inference.TensorRTEngine, Optional[Dict[str, Any]]], Iterable[apache_beam.ml.inference.base.PredictionResult]] = <function _default_tensorRT_inference_fn>, large_model: bool = False, max_batch_duration_secs: Optional[int] = None, **kwargs)[source]¶
- Bases: - apache_beam.ml.inference.base.ModelHandler- Implementation of the ModelHandler interface for TensorRT. - Example Usage: - pcoll | RunInference( TensorRTEngineHandlerNumPy( min_batch_size=1, max_batch_size=1, engine_path="my_uri")) - NOTE: This API and its implementation are under development and do not provide backward compatibility guarantees. - Parameters: - min_batch_size – minimum accepted batch size.
- max_batch_size – maximum accepted batch size.
- inference_fn – the inference function to use on RunInference calls. default: _default_tensorRT_inference_fn
- large_model – set to true if your model is large enough to run into memory pressure if you load multiple copies. Given a model that consumes N memory and a machine with W cores and M memory, you should set this to True if N*W > M.
- max_batch_duration_secs – the maximum amount of time to buffer a batch before emitting; used in streaming contexts.
- kwargs – Additional arguments like ‘engine_path’ and ‘onnx_path’ are currently supported. ‘env_vars’ can be used to set environment variables before loading the model.
 - See https://docs.nvidia.com/deeplearning/tensorrt/api/python_api/ for details - 
load_model() → apache_beam.ml.inference.tensorrt_inference.TensorRTEngine[source]¶
- Loads and initializes a TensorRT engine for processing. 
 - 
load_onnx() → Tuple[<sphinx.ext.autodoc.importer._MockObject object at 0x7f2fc17f7160>, <sphinx.ext.autodoc.importer._MockObject object at 0x7f2fc17f7070>][source]¶
- Loads and parses an onnx model for processing. 
 - 
build_engine(network: <sphinx.ext.autodoc.importer._MockObject object at 0x7f2fc17f7580>, builder: <sphinx.ext.autodoc.importer._MockObject object at 0x7f2fc17f7550>) → apache_beam.ml.inference.tensorrt_inference.TensorRTEngine[source]¶
- Build an engine according to parsed/created network. 
 - 
run_inference(batch: Sequence[numpy.ndarray], engine: apache_beam.ml.inference.tensorrt_inference.TensorRTEngine, inference_args: Optional[Dict[str, Any]] = None) → Iterable[apache_beam.ml.inference.base.PredictionResult][source]¶
- Runs inferences on a batch of Tensors and returns an Iterable of TensorRT Predictions. - Parameters: - batch – A np.ndarray or a np.ndarray that represents a concatenation of multiple arrays as a batch.
- engine – A TensorRT engine.
- inference_args – Any additional arguments for an inference that are not applicable to TensorRT.
 - Returns: - An Iterable of type PredictionResult. 
 - 
get_num_bytes(batch: Sequence[numpy.ndarray]) → int[source]¶
- Returns: - The number of bytes of data for a batch of Tensors. 
 - 
get_metrics_namespace() → str[source]¶
- Returns a namespace for metrics collected by the RunInference transform.