apache_beam.ml.inference.xgboost_inference module¶
- 
class apache_beam.ml.inference.xgboost_inference.XGBoostModelHandler(model_class: Union[Callable[[...], <sphinx.ext.autodoc.importer._MockObject object at 0x7f2fc1787190>], Callable[[...], <sphinx.ext.autodoc.importer._MockObject object at 0x7f2fc16edb20>]], model_state: str, inference_fn: Callable[[Sequence[object], Union[<sphinx.ext.autodoc.importer._MockObject object at 0x7f2fc1738f10>, <sphinx.ext.autodoc.importer._MockObject object at 0x7f2fc1738eb0>], Optional[Dict[str, Any]]], Iterable[apache_beam.ml.inference.base.PredictionResult]] = <function default_xgboost_inference_fn>, *, min_batch_size: Optional[int] = None, max_batch_size: Optional[int] = None, max_batch_duration_secs: Optional[int] = None, **kwargs)[source]¶
- Bases: - apache_beam.ml.inference.base.ModelHandler,- abc.ABC- Implementation of the ModelHandler interface for XGBoost. - Example Usage: - pcoll | RunInference( XGBoostModelHandler( model_class="XGBoost Model Class", model_state="my_model_state.json"))) - See https://xgboost.readthedocs.io/en/stable/tutorials/saving_model.html for details - Parameters: - model_class – class of the XGBoost model that defines the model structure.
- model_state – path to a json file that contains the model’s configuration.
- inference_fn – the inference function to use during RunInference. default=default_xgboost_inference_fn
- min_batch_size – optional. the minimum batch size to use when batching inputs.
- max_batch_size – optional. the maximum batch size to use when batching inputs.
- max_batch_duration_secs – optional. the maximum amount of time to buffer a batch before emitting; used in streaming contexts.
- kwargs – ‘env_vars’ can be used to set environment variables before loading the model.
 - Supported Versions: RunInference APIs in Apache Beam have been tested with XGBoost 1.6.0 and 1.7.0 - XGBoost 1.0.0 introduced support for using JSON to save and load XGBoost models. XGBoost 1.6.0, additional support for Universal Binary JSON. It is recommended to use a model trained in XGBoost 1.6.0 or higher. While you should be able to load models created in older versions, there are no guarantees this will work as expected. - This class is the superclass of all the various XGBoostModelhandlers and should not be instantiated directly. (See instead XGBoostModelHandlerNumpy, XGBoostModelHandlerPandas, etc.) 
- 
class apache_beam.ml.inference.xgboost_inference.XGBoostModelHandlerNumpy(model_class: Union[Callable[[...], <sphinx.ext.autodoc.importer._MockObject object at 0x7f2fc1787190>], Callable[[...], <sphinx.ext.autodoc.importer._MockObject object at 0x7f2fc16edb20>]], model_state: str, inference_fn: Callable[[Sequence[object], Union[<sphinx.ext.autodoc.importer._MockObject object at 0x7f2fc1738f10>, <sphinx.ext.autodoc.importer._MockObject object at 0x7f2fc1738eb0>], Optional[Dict[str, Any]]], Iterable[apache_beam.ml.inference.base.PredictionResult]] = <function default_xgboost_inference_fn>, *, min_batch_size: Optional[int] = None, max_batch_size: Optional[int] = None, max_batch_duration_secs: Optional[int] = None, **kwargs)[source]¶
- Bases: - apache_beam.ml.inference.xgboost_inference.XGBoostModelHandler- Implementation of the ModelHandler interface for XGBoost using numpy arrays as input. - Example Usage: - pcoll | RunInference( XGBoostModelHandlerNumpy( model_class="XGBoost Model Class", model_state="my_model_state.json"))) - Parameters: - model_class – class of the XGBoost model that defines the model structure.
- model_state – path to a json file that contains the model’s configuration.
- inference_fn – the inference function to use during RunInference. default=default_xgboost_inference_fn
 - Implementation of the ModelHandler interface for XGBoost. - Example Usage: - pcoll | RunInference( XGBoostModelHandler( model_class="XGBoost Model Class", model_state="my_model_state.json"))) - See https://xgboost.readthedocs.io/en/stable/tutorials/saving_model.html for details - Parameters: - model_class – class of the XGBoost model that defines the model structure.
- model_state – path to a json file that contains the model’s configuration.
- inference_fn – the inference function to use during RunInference. default=default_xgboost_inference_fn
- min_batch_size – optional. the minimum batch size to use when batching inputs.
- max_batch_size – optional. the maximum batch size to use when batching inputs.
- max_batch_duration_secs – optional. the maximum amount of time to buffer a batch before emitting; used in streaming contexts.
- kwargs – ‘env_vars’ can be used to set environment variables before loading the model.
 - Supported Versions: RunInference APIs in Apache Beam have been tested with XGBoost 1.6.0 and 1.7.0 - XGBoost 1.0.0 introduced support for using JSON to save and load XGBoost models. XGBoost 1.6.0, additional support for Universal Binary JSON. It is recommended to use a model trained in XGBoost 1.6.0 or higher. While you should be able to load models created in older versions, there are no guarantees this will work as expected. - This class is the superclass of all the various XGBoostModelhandlers and should not be instantiated directly. (See instead XGBoostModelHandlerNumpy, XGBoostModelHandlerPandas, etc.) - 
run_inference(batch: Sequence[numpy.ndarray], model: Union[<sphinx.ext.autodoc.importer._MockObject object at 0x7f2fc16edeb0>, <sphinx.ext.autodoc.importer._MockObject object at 0x7f2fc16edf70>], inference_args: Optional[Dict[str, Any]] = None) → Iterable[apache_beam.ml.inference.base.PredictionResult][source]¶
- Runs inferences on a batch of 2d numpy arrays. - Parameters: - batch – A sequence of examples as 2d numpy arrays. Each row in an array is a single example. The dimensions must match the dimensions of the data used to train the model.
- model – XGBoost booster or XBGModel (sklearn interface). Must implement predict(X). Where the parameter X is a 2d numpy array.
- inference_args – Any additional arguments for an inference.
 - Returns: - An Iterable of type PredictionResult. 
 
- 
class apache_beam.ml.inference.xgboost_inference.XGBoostModelHandlerPandas(model_class: Union[Callable[[...], <sphinx.ext.autodoc.importer._MockObject object at 0x7f2fc1787190>], Callable[[...], <sphinx.ext.autodoc.importer._MockObject object at 0x7f2fc16edb20>]], model_state: str, inference_fn: Callable[[Sequence[object], Union[<sphinx.ext.autodoc.importer._MockObject object at 0x7f2fc1738f10>, <sphinx.ext.autodoc.importer._MockObject object at 0x7f2fc1738eb0>], Optional[Dict[str, Any]]], Iterable[apache_beam.ml.inference.base.PredictionResult]] = <function default_xgboost_inference_fn>, *, min_batch_size: Optional[int] = None, max_batch_size: Optional[int] = None, max_batch_duration_secs: Optional[int] = None, **kwargs)[source]¶
- Bases: - apache_beam.ml.inference.xgboost_inference.XGBoostModelHandler- Implementation of the ModelHandler interface for XGBoost using pandas dataframes as input. - Example Usage: - pcoll | RunInference( XGBoostModelHandlerPandas( model_class="XGBoost Model Class", model_state="my_model_state.json"))) - Parameters: - model_class – class of the XGBoost model that defines the model structure.
- model_state – path to a json file that contains the model’s configuration.
- inference_fn – the inference function to use during RunInference. default=default_xgboost_inference_fn
 - Implementation of the ModelHandler interface for XGBoost. - Example Usage: - pcoll | RunInference( XGBoostModelHandler( model_class="XGBoost Model Class", model_state="my_model_state.json"))) - See https://xgboost.readthedocs.io/en/stable/tutorials/saving_model.html for details - Parameters: - model_class – class of the XGBoost model that defines the model structure.
- model_state – path to a json file that contains the model’s configuration.
- inference_fn – the inference function to use during RunInference. default=default_xgboost_inference_fn
- min_batch_size – optional. the minimum batch size to use when batching inputs.
- max_batch_size – optional. the maximum batch size to use when batching inputs.
- max_batch_duration_secs – optional. the maximum amount of time to buffer a batch before emitting; used in streaming contexts.
- kwargs – ‘env_vars’ can be used to set environment variables before loading the model.
 - Supported Versions: RunInference APIs in Apache Beam have been tested with XGBoost 1.6.0 and 1.7.0 - XGBoost 1.0.0 introduced support for using JSON to save and load XGBoost models. XGBoost 1.6.0, additional support for Universal Binary JSON. It is recommended to use a model trained in XGBoost 1.6.0 or higher. While you should be able to load models created in older versions, there are no guarantees this will work as expected. - This class is the superclass of all the various XGBoostModelhandlers and should not be instantiated directly. (See instead XGBoostModelHandlerNumpy, XGBoostModelHandlerPandas, etc.) - 
run_inference(batch: Sequence[pandas.core.frame.DataFrame], model: Union[<sphinx.ext.autodoc.importer._MockObject object at 0x7f2fc16eb130>, <sphinx.ext.autodoc.importer._MockObject object at 0x7f2fc16eb1f0>], inference_args: Optional[Dict[str, Any]] = None) → Iterable[apache_beam.ml.inference.base.PredictionResult][source]¶
- Runs inferences on a batch of pandas dataframes. - Parameters: - batch – A sequence of examples as pandas dataframes. Each row in a dataframe is a single example. The dimensions must match the dimensions of the data used to train the model.
- model – XGBoost booster or XBGModel (sklearn interface). Must implement predict(X). Where the parameter X is a pandas dataframe.
- inference_args – Any additional arguments for an inference.
 - Returns: - An Iterable of type PredictionResult. 
 
- 
class apache_beam.ml.inference.xgboost_inference.XGBoostModelHandlerSciPy(model_class: Union[Callable[[...], <sphinx.ext.autodoc.importer._MockObject object at 0x7f2fc1787190>], Callable[[...], <sphinx.ext.autodoc.importer._MockObject object at 0x7f2fc16edb20>]], model_state: str, inference_fn: Callable[[Sequence[object], Union[<sphinx.ext.autodoc.importer._MockObject object at 0x7f2fc1738f10>, <sphinx.ext.autodoc.importer._MockObject object at 0x7f2fc1738eb0>], Optional[Dict[str, Any]]], Iterable[apache_beam.ml.inference.base.PredictionResult]] = <function default_xgboost_inference_fn>, *, min_batch_size: Optional[int] = None, max_batch_size: Optional[int] = None, max_batch_duration_secs: Optional[int] = None, **kwargs)[source]¶
- Bases: - apache_beam.ml.inference.xgboost_inference.XGBoostModelHandler- Implementation of the ModelHandler interface for XGBoost using scipy matrices as input. - Example Usage: - pcoll | RunInference( XGBoostModelHandlerSciPy( model_class="XGBoost Model Class", model_state="my_model_state.json"))) - Parameters: - model_class – class of the XGBoost model that defines the model structure.
- model_state – path to a json file that contains the model’s configuration.
- inference_fn – the inference function to use during RunInference. default=default_xgboost_inference_fn
 - Implementation of the ModelHandler interface for XGBoost. - Example Usage: - pcoll | RunInference( XGBoostModelHandler( model_class="XGBoost Model Class", model_state="my_model_state.json"))) - See https://xgboost.readthedocs.io/en/stable/tutorials/saving_model.html for details - Parameters: - model_class – class of the XGBoost model that defines the model structure.
- model_state – path to a json file that contains the model’s configuration.
- inference_fn – the inference function to use during RunInference. default=default_xgboost_inference_fn
- min_batch_size – optional. the minimum batch size to use when batching inputs.
- max_batch_size – optional. the maximum batch size to use when batching inputs.
- max_batch_duration_secs – optional. the maximum amount of time to buffer a batch before emitting; used in streaming contexts.
- kwargs – ‘env_vars’ can be used to set environment variables before loading the model.
 - Supported Versions: RunInference APIs in Apache Beam have been tested with XGBoost 1.6.0 and 1.7.0 - XGBoost 1.0.0 introduced support for using JSON to save and load XGBoost models. XGBoost 1.6.0, additional support for Universal Binary JSON. It is recommended to use a model trained in XGBoost 1.6.0 or higher. While you should be able to load models created in older versions, there are no guarantees this will work as expected. - This class is the superclass of all the various XGBoostModelhandlers and should not be instantiated directly. (See instead XGBoostModelHandlerNumpy, XGBoostModelHandlerPandas, etc.) - 
run_inference(batch: Sequence[scipy.sparse._csr.csr_matrix], model: Union[<sphinx.ext.autodoc.importer._MockObject object at 0x7f2fc16eb370>, <sphinx.ext.autodoc.importer._MockObject object at 0x7f2fc16eb4c0>], inference_args: Optional[Dict[str, Any]] = None) → Iterable[apache_beam.ml.inference.base.PredictionResult][source]¶
- Runs inferences on a batch of SciPy sparse matrices. - Parameters: - batch – A sequence of examples as Scipy sparse matrices. The dimensions must match the dimensions of the data used to train the model.
- model – XGBoost booster or XBGModel (sklearn interface). Must implement predict(X). Where the parameter X is a SciPy sparse matrix.
- inference_args – Any additional arguments for an inference.
 - Returns: - An Iterable of type PredictionResult. 
 
- 
class apache_beam.ml.inference.xgboost_inference.XGBoostModelHandlerDatatable(model_class: Union[Callable[[...], <sphinx.ext.autodoc.importer._MockObject object at 0x7f2fc1787190>], Callable[[...], <sphinx.ext.autodoc.importer._MockObject object at 0x7f2fc16edb20>]], model_state: str, inference_fn: Callable[[Sequence[object], Union[<sphinx.ext.autodoc.importer._MockObject object at 0x7f2fc1738f10>, <sphinx.ext.autodoc.importer._MockObject object at 0x7f2fc1738eb0>], Optional[Dict[str, Any]]], Iterable[apache_beam.ml.inference.base.PredictionResult]] = <function default_xgboost_inference_fn>, *, min_batch_size: Optional[int] = None, max_batch_size: Optional[int] = None, max_batch_duration_secs: Optional[int] = None, **kwargs)[source]¶
- Bases: - apache_beam.ml.inference.xgboost_inference.XGBoostModelHandler- Implementation of the ModelHandler interface for XGBoost using datatable dataframes as input. - Example Usage: - pcoll | RunInference( XGBoostModelHandlerDatatable( model_class="XGBoost Model Class", model_state="my_model_state.json"))) - Parameters: - model_class – class of the XGBoost model that defines the model structure.
- model_state – path to a json file that contains the model’s configuration.
- inference_fn – the inference function to use during RunInference. default=default_xgboost_inference_fn
 - Implementation of the ModelHandler interface for XGBoost. - Example Usage: - pcoll | RunInference( XGBoostModelHandler( model_class="XGBoost Model Class", model_state="my_model_state.json"))) - See https://xgboost.readthedocs.io/en/stable/tutorials/saving_model.html for details - Parameters: - model_class – class of the XGBoost model that defines the model structure.
- model_state – path to a json file that contains the model’s configuration.
- inference_fn – the inference function to use during RunInference. default=default_xgboost_inference_fn
- min_batch_size – optional. the minimum batch size to use when batching inputs.
- max_batch_size – optional. the maximum batch size to use when batching inputs.
- max_batch_duration_secs – optional. the maximum amount of time to buffer a batch before emitting; used in streaming contexts.
- kwargs – ‘env_vars’ can be used to set environment variables before loading the model.
 - Supported Versions: RunInference APIs in Apache Beam have been tested with XGBoost 1.6.0 and 1.7.0 - XGBoost 1.0.0 introduced support for using JSON to save and load XGBoost models. XGBoost 1.6.0, additional support for Universal Binary JSON. It is recommended to use a model trained in XGBoost 1.6.0 or higher. While you should be able to load models created in older versions, there are no guarantees this will work as expected. - This class is the superclass of all the various XGBoostModelhandlers and should not be instantiated directly. (See instead XGBoostModelHandlerNumpy, XGBoostModelHandlerPandas, etc.) - 
run_inference(batch: Sequence[<sphinx.ext.autodoc.importer._MockObject object at 0x7f2fc16eb6a0>], model: Union[<sphinx.ext.autodoc.importer._MockObject object at 0x7f2fc16eb760>, <sphinx.ext.autodoc.importer._MockObject object at 0x7f2fc16eb850>], inference_args: Optional[Dict[str, Any]] = None) → Iterable[apache_beam.ml.inference.base.PredictionResult][source]¶
- Runs inferences on a batch of datatable dataframe. - Parameters: - batch – A sequence of examples as datatable dataframes. Each row in a dataframe is a single example. The dimensions must match the dimensions of the data used to train the model.
- model – XGBoost booster or XBGModel (sklearn interface). Must implement predict(X). Where the parameter X is a datatable dataframe.
- inference_args – Any additional arguments for an inference.
 - Returns: - An Iterable of type PredictionResult.