Source code for apache_beam.io.gcp.bigquery_io_read_pipeline

#
# Licensed to the Apache Software Foundation (ASF) under one or more
# contributor license agreements.  See the NOTICE file distributed with
# this work for additional information regarding copyright ownership.
# The ASF licenses this file to You under the Apache License, Version 2.0
# (the "License"); you may not use this file except in compliance with
# the License.  You may obtain a copy of the License at
#
#    http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#

"""A Dataflow job that counts the number of rows in a BQ table.

   Can be configured to simulate slow reading for a given number of rows.
"""

# pytype: skip-file

import argparse
import logging
import random
import time

import apache_beam as beam
from apache_beam.io.gcp.bigquery import ReadFromBigQuery
from apache_beam.options.pipeline_options import GoogleCloudOptions
from apache_beam.options.pipeline_options import PipelineOptions
from apache_beam.testing.test_pipeline import TestPipeline
from apache_beam.testing.util import assert_that
from apache_beam.testing.util import equal_to


[docs]class RowToStringWithSlowDown(beam.DoFn):
[docs] def process(self, element, num_slow=0, *args, **kwargs): if num_slow == 0: yield ['row'] else: rand = random.random() * 100 if rand < num_slow: time.sleep(0.01) yield ['slow_row'] else: yield ['row']
[docs]def run(argv=None): parser = argparse.ArgumentParser() parser.add_argument( '--input_table', required=True, help='Input table to process.') parser.add_argument( '--num_records', required=True, help='The expected number of records', type=int) parser.add_argument( '--num_slow', default=0, help=( 'Percentage of rows that will be slow. ' 'Must be in the range [0, 100)')) parser.add_argument( '--beam_bq_source', default=False, type=bool, help=( 'Whether to use the new ReadFromBigQuery' ' transform, or the BigQuerySource.')) known_args, pipeline_args = parser.parse_known_args(argv) options = PipelineOptions(pipeline_args) with TestPipeline(options=options) as p: if known_args.beam_bq_source: reader = ReadFromBigQuery( table='%s:%s' % (options.view_as(GoogleCloudOptions).project, known_args.input_table)) else: reader = beam.io.Read(beam.io.BigQuerySource(known_args.input_table)) # pylint: disable=expression-not-assigned count = ( p | 'read' >> reader | 'row to string' >> beam.ParDo( RowToStringWithSlowDown(), num_slow=known_args.num_slow) | 'count' >> beam.combiners.Count.Globally()) assert_that(count, equal_to([known_args.num_records]))
if __name__ == '__main__': logging.getLogger().setLevel(logging.INFO) run()