Source code for apache_beam.transforms.environments

#
# Licensed to the Apache Software Foundation (ASF) under one or more
# contributor license agreements.  See the NOTICE file distributed with
# this work for additional information regarding copyright ownership.
# The ASF licenses this file to You under the Apache License, Version 2.0
# (the "License"); you may not use this file except in compliance with
# the License.  You may obtain a copy of the License at
#
#    http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#

"""Environments concepts.

For internal use only. No backwards compatibility guarantees."""

# pytype: skip-file

import json
import logging
import sys
import tempfile
from types import MappingProxyType
from typing import TYPE_CHECKING
from typing import Any
from typing import Callable
from typing import Dict
from typing import Iterable
from typing import Iterator
from typing import List
from typing import Mapping
from typing import Optional
from typing import Set
from typing import Tuple
from typing import Type
from typing import TypeVar
from typing import Union
from typing import overload

from google.protobuf import message

from apache_beam import coders
from apache_beam.options.pipeline_options import PortableOptions
from apache_beam.options.pipeline_options import SetupOptions
from apache_beam.portability import common_urns
from apache_beam.portability import python_urns
from apache_beam.portability.api import beam_runner_api_pb2
from apache_beam.portability.api import endpoints_pb2
from apache_beam.runners.portability import stager
from apache_beam.transforms.resources import resource_hints_from_options
from apache_beam.utils import proto_utils

if TYPE_CHECKING:
  from apache_beam.options.pipeline_options import PipelineOptions
  from apache_beam.runners.pipeline_context import PipelineContext

__all__ = [
    'Environment',
    'AnyOfEnvironment',
    'DefaultEnvironment',
    'DockerEnvironment',
    'ProcessEnvironment',
    'ExternalEnvironment',
    'EmbeddedPythonEnvironment',
    'EmbeddedPythonGrpcEnvironment',
    'SubprocessSDKEnvironment',
    'PyPIArtifactRegistry'
]

T = TypeVar('T')
EnvironmentT = TypeVar('EnvironmentT', bound='Environment')
ConstructorFn = Callable[[
    Optional[Any],
    Iterable[str],
    Iterable[beam_runner_api_pb2.ArtifactInformation],
    Mapping[str, bytes],
    'PipelineContext'
],
                         Any]


def looks_like_json(s):
  import re
  return re.match(r'\s*\{.*\}\s*$', s)


APACHE_BEAM_DOCKER_IMAGE_PREFIX = 'apache/beam'
APACHE_BEAM_JAVA_CONTAINER_NAME_PREFIX = 'beam_java'
SDK_VERSION_CAPABILITY_PREFIX = 'beam:version:sdk_base:'


def is_apache_beam_container(container_image):
  return container_image and container_image.startswith(
      APACHE_BEAM_DOCKER_IMAGE_PREFIX)


[docs]class Environment(object): """Abstract base class for environments. Represents a type and configuration of environment. Each type of Environment should have a unique urn. For internal use only. No backwards compatibility guarantees. """ _known_urns = {} # type: Dict[str, Tuple[Optional[type], ConstructorFn]] _urn_to_env_cls = {} # type: Dict[str, type] def __init__(self, capabilities=(), # type: Iterable[str] artifacts=(), # type: Iterable[beam_runner_api_pb2.ArtifactInformation] resource_hints=None, # type: Optional[Mapping[str, bytes]] ): # type: (...) -> None self._capabilities = capabilities self._artifacts = sorted(artifacts, key=lambda x: x.SerializeToString()) # Hints on created environments should be immutable since pipeline context # stores environments in hash maps and we use hints to compute the hash. self._resource_hints = MappingProxyType( dict(resource_hints) if resource_hints else {}) def __eq__(self, other): return ( self.__class__ == other.__class__ and self._artifacts == other._artifacts # Assuming that we don't have instances of the same Environment subclass # with different set of capabilities. and self._resource_hints == other._resource_hints) def __hash__(self): # type: () -> int return hash((self.__class__, frozenset(self._resource_hints.items())))
[docs] def artifacts(self): # type: () -> Iterable[beam_runner_api_pb2.ArtifactInformation] return self._artifacts
[docs] def to_runner_api_parameter(self, context): # type: (PipelineContext) -> Tuple[str, Optional[Union[message.Message, bytes, str]]] raise NotImplementedError
[docs] def capabilities(self): # type: () -> Iterable[str] return self._capabilities
[docs] def resource_hints(self): # type: () -> Mapping[str, bytes] return self._resource_hints
@classmethod @overload def register_urn( cls, urn, # type: str parameter_type, # type: Type[T] ): # type: (...) -> Callable[[Union[type, Callable[[T, Iterable[str], PipelineContext], Any]]], Callable[[T, Iterable[str], PipelineContext], Any]] pass @classmethod @overload def register_urn( cls, urn, # type: str parameter_type, # type: None ): # type: (...) -> Callable[[Union[type, Callable[[bytes, Iterable[str], Iterable[beam_runner_api_pb2.ArtifactInformation], PipelineContext], Any]]], Callable[[bytes, Iterable[str], PipelineContext], Any]] pass @classmethod @overload def register_urn(cls, urn, # type: str parameter_type, # type: Type[T] constructor # type: Callable[[T, Iterable[str], Iterable[beam_runner_api_pb2.ArtifactInformation], PipelineContext], Any] ): # type: (...) -> None pass @classmethod @overload def register_urn(cls, urn, # type: str parameter_type, # type: None constructor # type: Callable[[bytes, Iterable[str], Iterable[beam_runner_api_pb2.ArtifactInformation], PipelineContext], Any] ): # type: (...) -> None pass
[docs] @classmethod def register_urn(cls, urn, parameter_type, constructor=None): def register(constructor): if isinstance(constructor, type): constructor.from_runner_api_parameter = register( constructor.from_runner_api_parameter) # register environment urn to environment class cls._urn_to_env_cls[urn] = constructor return constructor else: cls._known_urns[urn] = parameter_type, constructor return staticmethod(constructor) if constructor: # Used as a statement. register(constructor) else: # Used as a decorator. return register
[docs] @classmethod def get_env_cls_from_urn(cls, urn): # type: (str) -> Type[Environment] return cls._urn_to_env_cls[urn]
[docs] def to_runner_api(self, context): # type: (PipelineContext) -> beam_runner_api_pb2.Environment urn, typed_param = self.to_runner_api_parameter(context) return beam_runner_api_pb2.Environment( urn=urn, payload=typed_param.SerializeToString() if isinstance( typed_param, message.Message) else typed_param if (isinstance(typed_param, bytes) or typed_param is None) else typed_param.encode('utf-8'), capabilities=self.capabilities(), dependencies=self.artifacts(), resource_hints=self.resource_hints())
[docs] @classmethod def from_runner_api(cls, proto, # type: Optional[beam_runner_api_pb2.Environment] context # type: PipelineContext ): # type: (...) -> Optional[Environment] if proto is None or not proto.urn: return None parameter_type, constructor = cls._known_urns[proto.urn] return constructor( proto_utils.parse_Bytes(proto.payload, parameter_type), proto.capabilities, proto.dependencies, proto.resource_hints, context)
[docs] @classmethod def from_options(cls, options): # type: (Type[EnvironmentT], PortableOptions) -> EnvironmentT """Creates an Environment object from PortableOptions. Args: options: The PortableOptions object. """ if cls != Environment: raise NotImplementedError portable_options = options.view_as(PortableOptions) environment_type = portable_options.environment_type if not environment_type: environment_urn = common_urns.environments.DOCKER.urn elif environment_type.startswith('beam:env:'): environment_urn = environment_type elif environment_type == 'LOOPBACK': environment_urn = python_urns.EMBEDDED_PYTHON_LOOPBACK else: try: environment_urn = getattr( common_urns.environments, environment_type).urn except AttributeError: raise ValueError('Unknown environment type: %s' % environment_type) env_class = Environment.get_env_cls_from_urn(environment_urn) return env_class.from_options(portable_options) # type: ignore
[docs]@Environment.register_urn(common_urns.environments.DEFAULT.urn, None) class DefaultEnvironment(Environment): """Used as a stub when context is missing a default environment."""
[docs] def to_runner_api_parameter(self, context): return common_urns.environments.DEFAULT.urn, None
[docs] @staticmethod def from_runner_api_parameter(payload, # type: beam_runner_api_pb2.DockerPayload capabilities, # type: Iterable[str] artifacts, # type: Iterable[beam_runner_api_pb2.ArtifactInformation] resource_hints, # type: Mapping[str, bytes] context # type: PipelineContext ): # type: (...) -> DefaultEnvironment return DefaultEnvironment( capabilities=capabilities, artifacts=artifacts, resource_hints=resource_hints)
[docs]@Environment.register_urn( common_urns.environments.DOCKER.urn, beam_runner_api_pb2.DockerPayload) class DockerEnvironment(Environment): def __init__( self, container_image=None, # type: Optional[str] capabilities=(), # type: Iterable[str] artifacts=(), # type: Iterable[beam_runner_api_pb2.ArtifactInformation] resource_hints=None, # type: Optional[Mapping[str, bytes]] ): super().__init__(capabilities, artifacts, resource_hints) if container_image: logging.info( 'Using provided Python SDK container image: %s' % (container_image)) self.container_image = container_image else: logging.info('No image given, using default Python SDK image') self.container_image = self.default_docker_image() logging.info( 'Python SDK container image set to "%s" for Docker environment' % (self.container_image)) def __eq__(self, other): return ( super().__eq__(other) and self.container_image == other.container_image) def __hash__(self): return hash((super().__hash__(), self.container_image)) def __repr__(self): return 'DockerEnvironment(container_image=%s)' % self.container_image
[docs] def to_runner_api_parameter(self, context): # type: (PipelineContext) -> Tuple[str, beam_runner_api_pb2.DockerPayload] return ( common_urns.environments.DOCKER.urn, beam_runner_api_pb2.DockerPayload(container_image=self.container_image))
[docs] @staticmethod def from_runner_api_parameter(payload, # type: beam_runner_api_pb2.DockerPayload capabilities, # type: Iterable[str] artifacts, # type: Iterable[beam_runner_api_pb2.ArtifactInformation] resource_hints, # type: Mapping[str, bytes] context # type: PipelineContext ): # type: (...) -> DockerEnvironment return DockerEnvironment( container_image=payload.container_image, capabilities=capabilities, artifacts=artifacts, resource_hints=resource_hints)
[docs] @classmethod def from_options(cls, options): # type: (PortableOptions) -> DockerEnvironment if options.view_as(SetupOptions).prebuild_sdk_container_engine: # Imported here to avoid circular dependencies. # pylint: disable=wrong-import-order, wrong-import-position from apache_beam.runners.portability.sdk_container_builder import SdkContainerImageBuilder prebuilt_container_image = SdkContainerImageBuilder.build_container_image( options) return cls.from_container_image( container_image=prebuilt_container_image, artifacts=python_sdk_dependencies(options), resource_hints=resource_hints_from_options(options), ) return cls.from_container_image( container_image=options.lookup_environment_option( 'docker_container_image') or options.environment_config, artifacts=python_sdk_dependencies(options), resource_hints=resource_hints_from_options(options), )
[docs] @classmethod def from_container_image( cls, container_image, artifacts=(), resource_hints=None): # type: (str, Iterable[beam_runner_api_pb2.ArtifactInformation], Optional[Mapping[str, bytes]]) -> DockerEnvironment return cls( container_image=container_image, capabilities=python_sdk_docker_capabilities(), artifacts=artifacts, resource_hints=resource_hints)
[docs] @staticmethod def default_docker_image(): # type: () -> str from apache_beam import version as beam_version sdk_version = beam_version.__version__ version_suffix = '.'.join([str(i) for i in sys.version_info[0:2]]) image = ( APACHE_BEAM_DOCKER_IMAGE_PREFIX + '_python{version_suffix}_sdk:{tag}'.format( version_suffix=version_suffix, tag=sdk_version)) return image
[docs]@Environment.register_urn( common_urns.environments.PROCESS.urn, beam_runner_api_pb2.ProcessPayload) class ProcessEnvironment(Environment): def __init__( self, command, # type: str os='', # type: str arch='', # type: str env=None, # type: Optional[Mapping[str, str]] capabilities=(), # type: Iterable[str] artifacts=(), # type: Iterable[beam_runner_api_pb2.ArtifactInformation] resource_hints=None, # type: Optional[Mapping[str, bytes]] ): # type: (...) -> None super().__init__(capabilities, artifacts, resource_hints) self.command = command self.os = os self.arch = arch self.env = env or {} def __eq__(self, other): return ( super().__eq__(other) and self.command == other.command and self.os == other.os and self.arch == other.arch and self.env == other.env) def __hash__(self): # type: () -> int return hash(( super().__hash__(), self.command, self.os, self.arch, frozenset(self.env.items()))) def __repr__(self): # type: () -> str repr_parts = ['command=%s' % self.command] if self.os: repr_parts.append('os=%s' % self.os) if self.arch: repr_parts.append('arch=%s' % self.arch) repr_parts.append('env=%s' % self.env) return 'ProcessEnvironment(%s)' % ','.join(repr_parts)
[docs] def to_runner_api_parameter(self, context): # type: (PipelineContext) -> Tuple[str, beam_runner_api_pb2.ProcessPayload] return ( common_urns.environments.PROCESS.urn, beam_runner_api_pb2.ProcessPayload( os=self.os, arch=self.arch, command=self.command, env=self.env))
[docs] @staticmethod def from_runner_api_parameter(payload, capabilities, # type: Iterable[str] artifacts, # type: Iterable[beam_runner_api_pb2.ArtifactInformation] resource_hints, # type: Mapping[str, bytes] context # type: PipelineContext ): # type: (...) -> ProcessEnvironment return ProcessEnvironment( command=payload.command, os=payload.os, arch=payload.arch, env=payload.env, capabilities=capabilities, artifacts=artifacts, resource_hints=resource_hints, )
[docs] @staticmethod def parse_environment_variables(variables): env = {} for var in variables: try: name, value = var.split('=', 1) env[name] = value except ValueError: raise ValueError( 'Invalid process_variables "%s" (expected assignment in the ' 'form "FOO=bar").' % var) return env
[docs] @classmethod def from_options(cls, options): # type: (PortableOptions) -> ProcessEnvironment if options.environment_config: config = json.loads(options.environment_config) return cls( config.get('command'), os=config.get('os', ''), arch=config.get('arch', ''), env=config.get('env', ''), capabilities=python_sdk_capabilities(), artifacts=python_sdk_dependencies(options), resource_hints=resource_hints_from_options(options), ) env = cls.parse_environment_variables( options.lookup_environment_option('process_variables').split(',') if options.lookup_environment_option('process_variables') else []) return cls( options.lookup_environment_option('process_command'), env=env, capabilities=python_sdk_capabilities(), artifacts=python_sdk_dependencies(options), resource_hints=resource_hints_from_options(options), )
[docs]@Environment.register_urn( common_urns.environments.EXTERNAL.urn, beam_runner_api_pb2.ExternalPayload) class ExternalEnvironment(Environment): def __init__( self, url, # type: str params=None, # type: Optional[Mapping[str, str]] capabilities=(), # type: Iterable[str] artifacts=(), # type: Iterable[beam_runner_api_pb2.ArtifactInformation] resource_hints=None, # type: Optional[Mapping[str, bytes]] ): super().__init__(capabilities, artifacts, resource_hints) self.url = url self.params = params def __eq__(self, other): return ( super().__eq__(other) and self.url == other.url and self.params == other.params) def __hash__(self): # type: () -> int return hash(( super().__hash__(), self.url, frozenset(self.params.items()) if self.params is not None else None)) def __repr__(self): # type: () -> str return 'ExternalEnvironment(url=%s,params=%s)' % (self.url, self.params)
[docs] def to_runner_api_parameter(self, context): # type: (PipelineContext) -> Tuple[str, beam_runner_api_pb2.ExternalPayload] return ( common_urns.environments.EXTERNAL.urn, beam_runner_api_pb2.ExternalPayload( endpoint=endpoints_pb2.ApiServiceDescriptor(url=self.url), params=self.params))
[docs] @staticmethod def from_runner_api_parameter(payload, # type: beam_runner_api_pb2.ExternalPayload capabilities, # type: Iterable[str] artifacts, # type: Iterable[beam_runner_api_pb2.ArtifactInformation] resource_hints, # type: Mapping[str, bytes] context # type: PipelineContext ): # type: (...) -> ExternalEnvironment return ExternalEnvironment( payload.endpoint.url, params=payload.params or None, capabilities=capabilities, artifacts=artifacts, resource_hints=resource_hints)
[docs] @classmethod def from_options(cls, options): # type: (PortableOptions) -> ExternalEnvironment if looks_like_json(options.environment_config): config = json.loads(options.environment_config) url = config.get('url') if not url: raise ValueError('External environment endpoint must be set.') params = config.get('params') elif options.environment_config: url = options.environment_config params = None else: url = options.lookup_environment_option('external_service_address') params = None return cls( url, params=params, capabilities=python_sdk_capabilities(), artifacts=python_sdk_dependencies(options), resource_hints=resource_hints_from_options(options))
def expand_anyof_environments(env_proto): if env_proto.urn == common_urns.environments.ANYOF.urn: for alt in beam_runner_api_pb2.AnyOfEnvironmentPayload.FromString( env_proto.payload).environments: yield from expand_anyof_environments(alt) else: yield env_proto def resolve_anyof_environment(env_proto, *preferred_types): all_environments = list(expand_anyof_environments(env_proto)) for preferred_type in preferred_types: for env in all_environments: if env.urn == preferred_type: return env return all_environments[0]
[docs]@Environment.register_urn(python_urns.EMBEDDED_PYTHON, None) class EmbeddedPythonEnvironment(Environment):
[docs] def to_runner_api_parameter(self, context): # type: (PipelineContext) -> Tuple[str, None] return python_urns.EMBEDDED_PYTHON, None
[docs] @staticmethod def from_runner_api_parameter(unused_payload, # type: None capabilities, # type: Iterable[str] artifacts, # type: Iterable[beam_runner_api_pb2.ArtifactInformation] resource_hints, # type: Mapping[str, bytes] context # type: PipelineContext ): # type: (...) -> EmbeddedPythonEnvironment return EmbeddedPythonEnvironment(capabilities, artifacts, resource_hints)
[docs] @classmethod def from_options(cls, options): # type: (PortableOptions) -> EmbeddedPythonEnvironment return cls( capabilities=python_sdk_capabilities(), artifacts=python_sdk_dependencies(options), resource_hints=resource_hints_from_options(options), )
[docs] @classmethod def default(cls): # type: () -> EmbeddedPythonEnvironment return cls(capabilities=python_sdk_capabilities(), artifacts=())
[docs]@Environment.register_urn(python_urns.EMBEDDED_PYTHON_GRPC, bytes) class EmbeddedPythonGrpcEnvironment(Environment): def __init__( self, state_cache_size=None, data_buffer_time_limit_ms=None, capabilities=(), artifacts=(), resource_hints=None, ): super().__init__(capabilities, artifacts, resource_hints) self.state_cache_size = state_cache_size self.data_buffer_time_limit_ms = data_buffer_time_limit_ms def __eq__(self, other): return ( super().__eq__(other) and self.state_cache_size == other.state_cache_size and self.data_buffer_time_limit_ms == other.data_buffer_time_limit_ms) def __hash__(self): # type: () -> int return hash(( super().__hash__(), self.state_cache_size, self.data_buffer_time_limit_ms)) def __repr__(self): # type: () -> str repr_parts = [] if not self.state_cache_size is None: repr_parts.append('state_cache_size=%d' % self.state_cache_size) if not self.data_buffer_time_limit_ms is None: repr_parts.append( 'data_buffer_time_limit_ms=%d' % self.data_buffer_time_limit_ms) return 'EmbeddedPythonGrpcEnvironment(%s)' % ','.join(repr_parts)
[docs] def to_runner_api_parameter(self, context): # type: (PipelineContext) -> Tuple[str, bytes] params = {} if self.state_cache_size is not None: params['state_cache_size'] = self.state_cache_size if self.data_buffer_time_limit_ms is not None: params['data_buffer_time_limit_ms'] = self.data_buffer_time_limit_ms payload = json.dumps(params).encode('utf-8') return python_urns.EMBEDDED_PYTHON_GRPC, payload
[docs] @staticmethod def from_runner_api_parameter(payload, # type: bytes capabilities, # type: Iterable[str] artifacts, # type: Iterable[beam_runner_api_pb2.ArtifactInformation] resource_hints, # type: Mapping[str, bytes] context # type: PipelineContext ): # type: (...) -> EmbeddedPythonGrpcEnvironment if payload: config = EmbeddedPythonGrpcEnvironment.parse_config( payload.decode('utf-8')) return EmbeddedPythonGrpcEnvironment( state_cache_size=config.get('state_cache_size'), data_buffer_time_limit_ms=config.get('data_buffer_time_limit_ms'), capabilities=capabilities, artifacts=artifacts, resource_hints=resource_hints) else: return EmbeddedPythonGrpcEnvironment()
[docs] @classmethod def from_options(cls, options): # type: (PortableOptions) -> EmbeddedPythonGrpcEnvironment if options.environment_config: config = EmbeddedPythonGrpcEnvironment.parse_config( options.environment_config) return cls( state_cache_size=config.get('state_cache_size'), data_buffer_time_limit_ms=config.get('data_buffer_time_limit_ms'), capabilities=python_sdk_capabilities(), artifacts=python_sdk_dependencies(options)) else: return cls( capabilities=python_sdk_capabilities(), artifacts=python_sdk_dependencies(options), resource_hints=resource_hints_from_options(options))
[docs] @staticmethod def parse_config(s): # type: (str) -> Dict[str, Any] if looks_like_json(s): config_dict = json.loads(s) if 'state_cache_size' in config_dict: config_dict['state_cache_size'] = int(config_dict['state_cache_size']) if 'data_buffer_time_limit_ms' in config_dict: config_dict['data_buffer_time_limit_ms'] = \ int(config_dict['data_buffer_time_limit_ms']) return config_dict else: return {'state_cache_size': int(s)}
[docs] @classmethod def default(cls): # type: () -> EmbeddedPythonGrpcEnvironment return cls(capabilities=python_sdk_capabilities(), artifacts=())
@Environment.register_urn(python_urns.EMBEDDED_PYTHON_LOOPBACK, None) class PythonLoopbackEnvironment(EmbeddedPythonEnvironment): """Used as a stub when the loopback worker has not yet been started.""" def to_runner_api_parameter(self, context): # type: (PipelineContext) -> Tuple[str, None] return python_urns.EMBEDDED_PYTHON_LOOPBACK, None @staticmethod def from_runner_api_parameter(unused_payload, # type: None capabilities, # type: Iterable[str] artifacts, # type: Iterable[beam_runner_api_pb2.ArtifactInformation] resource_hints, # type: Mapping[str, bytes] context # type: PipelineContext ): # type: (...) -> PythonLoopbackEnvironment return PythonLoopbackEnvironment( capabilities=capabilities, artifacts=artifacts, resource_hints=resource_hints)
[docs]@Environment.register_urn(python_urns.SUBPROCESS_SDK, bytes) class SubprocessSDKEnvironment(Environment): def __init__( self, command_string, # type: str capabilities=(), # type: Iterable[str] artifacts=(), # type: Iterable[beam_runner_api_pb2.ArtifactInformation] resource_hints=None, # type: Optional[Mapping[str, bytes]] ): super().__init__(capabilities, artifacts, resource_hints) self.command_string = command_string def __eq__(self, other): return ( super().__eq__(other) and self.command_string == other.command_string) def __hash__(self): # type: () -> int return hash((super().__hash__(), self.command_string)) def __repr__(self): # type: () -> str return 'SubprocessSDKEnvironment(command_string=%s)' % self.command_string
[docs] def to_runner_api_parameter(self, context): # type: (PipelineContext) -> Tuple[str, bytes] return python_urns.SUBPROCESS_SDK, self.command_string.encode('utf-8')
[docs] @staticmethod def from_runner_api_parameter(payload, # type: bytes capabilities, # type: Iterable[str] artifacts, # type: Iterable[beam_runner_api_pb2.ArtifactInformation] resource_hints, # type: Mapping[str, bytes] context # type: PipelineContext ): # type: (...) -> SubprocessSDKEnvironment return SubprocessSDKEnvironment( payload.decode('utf-8'), capabilities, artifacts, resource_hints)
[docs] @classmethod def from_options(cls, options): # type: (PortableOptions) -> SubprocessSDKEnvironment return cls( options.environment_config, capabilities=python_sdk_capabilities(), artifacts=python_sdk_dependencies(options), resource_hints=resource_hints_from_options(options))
[docs] @classmethod def from_command_string(cls, command_string): # type: (str) -> SubprocessSDKEnvironment return cls( command_string, capabilities=python_sdk_capabilities(), artifacts=())
[docs]@Environment.register_urn( common_urns.environments.ANYOF.urn, beam_runner_api_pb2.AnyOfEnvironmentPayload) class AnyOfEnvironment(Environment): def __init__(self, environments): self._environments = environments
[docs] def to_runner_api_parameter(self, context): # type: (PipelineContext) -> Tuple[str, beam_runner_api_pb2.AnyOfEnvironmentPayload] return ( common_urns.environments.ANYOF.urn, beam_runner_api_pb2.AnyOfEnvironmentPayload( environments=[ env.to_runner_api(context) for env in self._environments ]))
[docs] @staticmethod def from_runner_api_parameter(payload, # type: beam_runner_api_pb2.AnyOfEnvironmentPayload capabilities, # type: Iterable[str] artifacts, # type: Iterable[beam_runner_api_pb2.ArtifactInformation] resource_hints, # type: Mapping[str, bytes] context # type: PipelineContext ): # type: (...) -> AnyOfEnvironment return AnyOfEnvironment([ Environment.from_runner_api(env, context) for env in payload.environments ])
[docs] @staticmethod def create_proto( environments: Iterable[beam_runner_api_pb2.Environment] ) -> beam_runner_api_pb2.Environment: return beam_runner_api_pb2.Environment( urn=common_urns.environments.ANYOF.urn, payload=beam_runner_api_pb2.AnyOfEnvironmentPayload( environments=environments).SerializeToString())
[docs]class PyPIArtifactRegistry(object): _registered_artifacts = set() # type: Set[Tuple[str, str]]
[docs] @classmethod def register_artifact(cls, name, version): cls._registered_artifacts.add((name, version))
[docs] @classmethod def get_artifacts(cls): for artifact in cls._registered_artifacts: yield artifact
def python_sdk_capabilities(): # type: () -> List[str] return list(_python_sdk_capabilities_iter()) def python_sdk_docker_capabilities(): return python_sdk_capabilities() + [common_urns.protocols.SIBLING_WORKERS.urn] def sdk_base_version_capability(): return ( SDK_VERSION_CAPABILITY_PREFIX + DockerEnvironment.default_docker_image()) def _python_sdk_capabilities_iter(): # type: () -> Iterator[str] for urn_spec in common_urns.coders.__dict__.values(): if getattr(urn_spec, 'urn', None) in coders.Coder._known_urns: yield urn_spec.urn yield common_urns.protocols.LEGACY_PROGRESS_REPORTING.urn yield common_urns.protocols.HARNESS_MONITORING_INFOS.urn yield common_urns.protocols.WORKER_STATUS.urn yield python_urns.PACKED_COMBINE_FN yield sdk_base_version_capability() yield common_urns.sdf_components.TRUNCATE_SIZED_RESTRICTION.urn yield common_urns.primitives.TO_STRING.urn yield common_urns.protocols.DATA_SAMPLING.urn yield common_urns.protocols.SDK_CONSUMING_RECEIVED_DATA.urn def python_sdk_dependencies(options, tmp_dir=None): if tmp_dir is None: tmp_dir = tempfile.mkdtemp() skip_prestaged_dependencies = options.view_as( SetupOptions).prebuild_sdk_container_engine is not None return stager.Stager.create_job_resources( options, tmp_dir, pypi_requirements=[ artifact[0] + artifact[1] for artifact in PyPIArtifactRegistry.get_artifacts() ], skip_prestaged_dependencies=skip_prestaged_dependencies)