#
# Licensed to the Apache Software Foundation (ASF) under one or more
# contributor license agreements. See the NOTICE file distributed with
# this work for additional information regarding copyright ownership.
# The ASF licenses this file to You under the Apache License, Version 2.0
# (the "License"); you may not use this file except in compliance with
# the License. You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
"""Pickler for values, functions, and classes.
For internal use only. No backwards compatibility guarantees.
Pickles created by the pickling library contain non-ASCII characters, so
we base64-encode the results so that we can put them in a JSON objects.
The pickler is used to embed FlatMap callable objects into the workflow JSON
description.
The pickler module should be used to pickle functions and modules; for values,
the coders.*PickleCoder classes should be used instead.
"""
from __future__ import absolute_import
import base64
import logging
import sys
import traceback
import types
import zlib
import dill
# Dill 0.28.0 renamed dill.dill to dill._dill:
# https://github.com/uqfoundation/dill/commit/f0972ecc7a41d0b8acada6042d557068cac69baa
# TODO: Remove this once Beam depends on dill >= 0.2.8
if not getattr(dill, 'dill', None):
dill.dill = dill._dill
sys.modules['dill.dill'] = dill._dill
# TODO: Remove once Dataflow has containers with a preinstalled dill >= 0.2.8
if not getattr(dill, '_dill', None):
dill._dill = dill.dill
sys.modules['dill._dill'] = dill.dill
def _is_nested_class(cls):
"""Returns true if argument is a class object that appears to be nested."""
return (isinstance(cls, type)
and cls.__module__ != '__builtin__'
and cls.__name__ not in sys.modules[cls.__module__].__dict__)
def _find_containing_class(nested_class):
"""Finds containing class of a nested class passed as argument."""
seen = set()
def _find_containing_class_inner(outer):
if outer in seen:
return None
seen.add(outer)
for k, v in outer.__dict__.items():
if v is nested_class:
return outer, k
elif isinstance(v, type) and hasattr(v, '__dict__'):
res = _find_containing_class_inner(v)
if res: return res
return _find_containing_class_inner(sys.modules[nested_class.__module__])
def _nested_type_wrapper(fun):
"""A wrapper for the standard pickler handler for class objects.
Args:
fun: Original pickler handler for type objects.
Returns:
A wrapper for type objects that handles nested classes.
The wrapper detects if an object being pickled is a nested class object.
For nested class object only it will save the containing class object so
the nested structure is recreated during unpickle.
"""
def wrapper(pickler, obj):
# When the nested class is defined in the __main__ module we do not have to
# do anything special because the pickler itself will save the constituent
# parts of the type (i.e., name, base classes, dictionary) and then
# recreate it during unpickling.
if _is_nested_class(obj) and obj.__module__ != '__main__':
containing_class_and_name = _find_containing_class(obj)
if containing_class_and_name is not None:
return pickler.save_reduce(
getattr, containing_class_and_name, obj=obj)
try:
return fun(pickler, obj)
except dill.dill.PicklingError:
# pylint: disable=protected-access
return pickler.save_reduce(
dill.dill._create_type,
(type(obj), obj.__name__, obj.__bases__,
dill.dill._dict_from_dictproxy(obj.__dict__)),
obj=obj)
# pylint: enable=protected-access
return wrapper
# Monkey patch the standard pickler dispatch table entry for type objects.
# Dill, for certain types, defers to the standard pickler (including type
# objects). We wrap the standard handler using type_wrapper() because
# for nested class we want to pickle the actual enclosing class object so we
# can recreate it during unpickling.
# TODO(silviuc): Make sure we submit the fix upstream to GitHub dill project.
dill.dill.Pickler.dispatch[type] = _nested_type_wrapper(
dill.dill.Pickler.dispatch[type])
# Dill pickles generators objects without complaint, but unpickling produces
# TypeError: object.__new__(generator) is not safe, use generator.__new__()
# on some versions of Python.
def _reject_generators(unused_pickler, unused_obj):
raise TypeError("can't (safely) pickle generator objects")
dill.dill.Pickler.dispatch[types.GeneratorType] = _reject_generators
# This if guards against dill not being full initialized when generating docs.
if 'save_module' in dir(dill.dill):
# Always pickle non-main modules by name.
old_save_module = dill.dill.save_module
[docs] @dill.dill.register(dill.dill.ModuleType)
def save_module(pickler, obj):
if dill.dill.is_dill(pickler) and obj is pickler._main:
return old_save_module(pickler, obj)
else:
dill.dill.log.info('M2: %s' % obj)
# pylint: disable=protected-access
pickler.save_reduce(dill.dill._import_module, (obj.__name__,), obj=obj)
# pylint: enable=protected-access
dill.dill.log.info('# M2')
# Pickle module dictionaries (commonly found in lambda's globals)
# by referencing their module.
old_save_module_dict = dill.dill.save_module_dict
known_module_dicts = {}
[docs] @dill.dill.register(dict)
def new_save_module_dict(pickler, obj):
obj_id = id(obj)
if not known_module_dicts or '__file__' in obj or '__package__' in obj:
if obj_id not in known_module_dicts:
for m in sys.modules.values():
try:
if m and m.__name__ != '__main__':
d = m.__dict__
known_module_dicts[id(d)] = m, d
except AttributeError:
# Skip modules that do not have the __name__ attribute.
pass
if obj_id in known_module_dicts and dill.dill.is_dill(pickler):
m = known_module_dicts[obj_id][0]
try:
# pylint: disable=protected-access
dill.dill._import_module(m.__name__)
return pickler.save_reduce(
getattr, (known_module_dicts[obj_id][0], '__dict__'), obj=obj)
except (ImportError, AttributeError):
return old_save_module_dict(pickler, obj)
else:
return old_save_module_dict(pickler, obj)
dill.dill.save_module_dict = new_save_module_dict
def _nest_dill_logging():
"""Prefix all dill logging with its depth in the callstack.
Useful for debugging pickling of deeply nested structures.
"""
old_log_info = dill.dill.log.info
def new_log_info(msg, *args, **kwargs):
old_log_info(
('1 2 3 4 5 6 7 8 9 0 ' * 10)[:len(traceback.extract_stack())] + msg,
*args, **kwargs)
dill.dill.log.info = new_log_info
# Turn off verbose logging from the dill pickler.
logging.getLogger('dill').setLevel(logging.WARN)
# TODO(ccy): Currently, there are still instances of pickler.dumps() and
# pickler.loads() being used for data, which results in an unnecessary base64
# encoding. This should be cleaned up.
[docs]def dumps(o, enable_trace=True):
"""For internal use only; no backwards-compatibility guarantees."""
try:
s = dill.dumps(o)
except Exception: # pylint: disable=broad-except
if enable_trace:
dill.dill._trace(True) # pylint: disable=protected-access
s = dill.dumps(o)
else:
raise
finally:
dill.dill._trace(False) # pylint: disable=protected-access
# Compress as compactly as possible to decrease peak memory usage (of multiple
# in-memory copies) and free up some possibly large and no-longer-needed
# memory.
c = zlib.compress(s, 9)
del s
return base64.b64encode(c)
[docs]def loads(encoded, enable_trace=True):
"""For internal use only; no backwards-compatibility guarantees."""
c = base64.b64decode(encoded)
s = zlib.decompress(c)
del c # Free up some possibly large and no-longer-needed memory.
try:
return dill.loads(s)
except Exception: # pylint: disable=broad-except
if enable_trace:
dill.dill._trace(True) # pylint: disable=protected-access
return dill.loads(s)
else:
raise
finally:
dill.dill._trace(False) # pylint: disable=protected-access
[docs]def dump_session(file_path):
"""For internal use only; no backwards-compatibility guarantees.
Pickle the current python session to be used in the worker.
Note: Due to the inconsistency in the first dump of dill dump_session we
create and load the dump twice to have consistent results in the worker and
the running session. Check: https://github.com/uqfoundation/dill/issues/195
"""
dill.dump_session(file_path)
dill.load_session(file_path)
return dill.dump_session(file_path)
[docs]def load_session(file_path):
return dill.load_session(file_path)