Source code for apache_beam.ml.rag.enrichment.bigquery_vector_search

#
# Licensed to the Apache Software Foundation (ASF) under one or more
# contributor license agreements.  See the NOTICE file distributed with
# this work for additional information regarding copyright ownership.
# The ASF licenses this file to You under the Apache License, Version 2.0
# (the "License"); you may not use this file except in compliance with
# the License.  You may obtain a copy of the License at
#
#    http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#

from collections import defaultdict
from dataclasses import dataclass
from typing import Any
from typing import Dict
from typing import List
from typing import Optional
from typing import Tuple
from typing import Union

from google.cloud import bigquery

from apache_beam.ml.rag.types import Chunk
from apache_beam.ml.rag.types import Embedding
from apache_beam.transforms.enrichment import EnrichmentSourceHandler


[docs] @dataclass class BigQueryVectorSearchParameters: """Parameters for configuring BigQuery vector similarity search. This class is used by BigQueryVectorSearchEnrichmentHandler to perform vector similarity search using BigQuery's VECTOR_SEARCH function. It processes :class:`~apache_beam.ml.rag.types.Chunk` objects that contain :class:`~apache_beam.ml.rag.types.Embedding` and returns similar vectors from a BigQuery table. BigQueryVectorSearchEnrichmentHandler is used with :class:`~apache_beam.transforms.enrichment.Enrichment` transform to enrich Chunks with similar content from a vector database. For example: >>> # Create search parameters >>> params = BigQueryVectorSearchParameters( ... table_name='project.dataset.embeddings', ... embedding_column='embedding', ... columns=['content'], ... neighbor_count=5 ... ) >>> # Use in pipeline >>> enriched = ( ... chunks ... | "Generate Embeddings" >> MLTransform(...) ... | "Find Similar" >> Enrichment( ... BigQueryVectorSearchEnrichmentHandler( ... project='my-project', ... vector_search_parameters=params ... ) ... ) ... ) BigQueryVectorSearchParameters encapsulates the configuration needed to perform vector similarity search using BigQuery's VECTOR_SEARCH function. It handles formatting the query with proper embedding vectors and metadata restrictions. Example with flattened metadata column: Table schema:: embedding: ARRAY<FLOAT64> # Vector embedding content: STRING # Document content language: STRING # Direct metadata column Code:: >>> params = BigQueryVectorSearchParameters( ... table_name='project.dataset.embeddings', ... embedding_column='embedding', ... columns=['content', 'language'], ... neighbor_count=5, ... # For column 'language', value comes from ... # chunk.metadata['language'] ... metadata_restriction_template="language = '{language}'" ... ) >>> # When processing a chunk with metadata={'language': 'en'}, >>> # generates: WHERE language = 'en' Example with nested repeated metadata: Table schema:: embedding: ARRAY<FLOAT64> # Vector embedding content: STRING # Document content metadata: ARRAY<STRUCT> # Nested repeated metadata key: STRING, value: STRING >> Code:: >>> params = BigQueryVectorSearchParameters( ... table_name='project.dataset.embeddings', ... embedding_column='embedding', ... columns=['content', 'metadata'], ... neighbor_count=5, ... # check_metadata(field_name, key_to_search, value_from_chunk) ... metadata_restriction_template=( ... "check_metadata(metadata, 'language', '{language}')" ... ) ... ) >>> # When processing a chunk with metadata={'language': 'en'}, >>> # generates: WHERE check_metadata(metadata, 'language', 'en') >>> # Searches for {key: 'language', value: 'en'} in metadata array Args: project: GCP project ID containing the BigQuery dataset table_name: Fully qualified BigQuery table name containing vectors. embedding_column: Column name containing the embedding vectors. columns: List of columns to retrieve from matched vectors. neighbor_count: Number of similar vectors to return (top-k). metadata_restriction_template: Template string for filtering vectors. Two formats supported: 1. For flattened metadata columns: ``column_name = '{metadata_key}'`` where column_name is the BigQuery column and metadata_key is used to get the value from chunk.metadata[metadata_key]. 2. For nested repeated metadata (ARRAY<STRUCT<key,value>>): ``check_metadata(field_name, 'key_to_match', '{metadata_key}')`` where field_name is the ARRAY<STRUCT> column in BigQuery, key_to_match is the literal key to search for in the array, and metadata_key is used to get value from chunk.metadata[metadata_key]. Multiple conditions can be combined using AND/OR operators. For example:: >>> # Combine metadata check with column filter >>> template = ( ... "check_metadata(metadata, 'language', '{language}') " ... "AND source = '{source}'" ... ) >>> # When chunk.metadata = {'language': 'en', 'source': 'web'} >>> # Generates: WHERE >>> # check_metadata(metadata, 'language', 'en') >>> # AND source = 'web' distance_type: Optional distance metric to use. Supported values: COSINE (default), EUCLIDEAN, or DOT_PRODUCT. options: Optional dictionary of additional VECTOR_SEARCH options. """ project: str table_name: str embedding_column: str columns: List[str] neighbor_count: int metadata_restriction_template: Optional[str] = None distance_type: Optional[str] = None options: Optional[Dict[str, Any]] = None
[docs] def format_query(self, chunks: List[Chunk]) -> str: """Format the vector search query template.""" base_columns_str = ", ".join(f"base.{col}" for col in self.columns) columns_str = ", ".join(self.columns) distance_clause = ( f", distance_type => '{self.distance_type}'" if self.distance_type else "") options_clause = (f", options => {self.options}" if self.options else "") # Create metadata check function only if needed metadata_fn = """ CREATE TEMP FUNCTION check_metadata( metadata ARRAY<STRUCT<key STRING, value STRING>>, search_key STRING, search_value STRING ) AS (( SELECT COUNT(*) > 0 FROM UNNEST(metadata) WHERE key = search_key AND value = search_value )); """ if self.metadata_restriction_template else "" # Group chunks by their metadata conditions condition_groups = defaultdict(list) if self.metadata_restriction_template: for chunk in chunks: condition = self.metadata_restriction_template.format(**chunk.metadata) condition_groups[condition].append(chunk) else: # No metadata filtering - all chunks in one group condition_groups[""] = chunks # Generate VECTOR_SEARCH subqueries for each condition group vector_searches = [] for condition, group_chunks in condition_groups.items(): # Create embeddings subquery for this group embedding_unions = [] for chunk in group_chunks: if chunk.embedding is None or chunk.embedding.dense_embedding is None: raise ValueError(f"Chunk {chunk.id} missing embedding") embedding_str = ( f"SELECT '{chunk.id}' as id, " f"{[float(x) for x in chunk.embedding.dense_embedding]} " f"as embedding") embedding_unions.append(embedding_str) group_embeddings = " UNION ALL ".join(embedding_unions) # Create VECTOR_SEARCH for this condition group where_clause = f"WHERE {condition}" if condition else "" # Create VECTOR_SEARCH for this condition group vector_search = f""" SELECT query.id, ARRAY_AGG( STRUCT({base_columns_str}) ) as chunks FROM VECTOR_SEARCH( (SELECT {columns_str}, {self.embedding_column} FROM `{self.table_name}` {where_clause}), '{self.embedding_column}', (SELECT * FROM ({group_embeddings})), top_k => {self.neighbor_count} {distance_clause} {options_clause} ) GROUP BY query.id """ vector_searches.append(vector_search) # Combine all vector searches combined_searches = " UNION ALL ".join(vector_searches) return f""" {metadata_fn} {combined_searches} """
[docs] class BigQueryVectorSearchEnrichmentHandler( EnrichmentSourceHandler[Union[Chunk, List[Chunk]], List[Tuple[Chunk, Dict[str, Any]]]]): """Enrichment handler that performs vector similarity search using BigQuery. This handler enriches Chunks by finding similar vectors in a BigQuery table using the VECTOR_SEARCH function. It supports batching requests for efficiency and preserves the original Chunk metadata while adding the search results. Example: >>> from apache_beam.ml.rag.types import Chunk, Content, Embedding >>> >>> # Configure vector search >>> params = BigQueryVectorSearchParameters( ... table_name='project.dataset.embeddings', ... embedding_column='embedding', ... columns=['content', 'metadata'], ... neighbor_count=2, ... metadata_restriction_template="language = '{language}'" ... ) >>> >>> # Create handler >>> handler = BigQueryVectorSearchEnrichmentHandler( ... project='my-project', ... vector_search_parameters=params, ... min_batch_size=100, ... max_batch_size=1000 ... ) >>> >>> # Use in pipeline >>> with beam.Pipeline() as p: ... enriched = ( ... p ... | beam.Create([ ... Chunk( ... id='query1', ... embedding=Embedding(dense_embedding=[0.1, 0.2, 0.3]), ... content=Content(text='test query'), ... metadata={'language': 'en'} ... ) ... ]) ... | Enrichment(handler) ... ) Args: vector_search_parameters: Configuration for the vector search query min_batch_size: Minimum number of chunks to batch before processing max_batch_size: Maximum number of chunks to process in one batch **kwargs: Additional arguments passed to bigquery.Client The handler will: 1. Batch incoming chunks according to batch size parameters 2. Format and execute vector search query for each batch 3. Join results back to original chunks 4. Return tuples of (original_chunk, search_results) """ def __init__( self, vector_search_parameters: BigQueryVectorSearchParameters, *, min_batch_size: int = 1, max_batch_size: int = 1000, **kwargs): self.project = vector_search_parameters.project self.vector_search_parameters = vector_search_parameters self.kwargs = kwargs self._batching_kwargs = { 'min_batch_size': min_batch_size, 'max_batch_size': max_batch_size } self.join_fn = join_fn self.use_custom_types = True def __enter__(self): self.client = bigquery.Client(project=self.project, **self.kwargs) def __call__(self, request: Union[Chunk, List[Chunk]], *args, **kwargs) -> List[Tuple[Chunk, Dict[str, Any]]]: """Process request(s) using BigQuery vector search. Args: request: Single Chunk with embedding or list of Chunk's with embeddings to process Returns: Chunk(s) where chunk.metadata['enrichment_output'] contains the data retrieved via BigQuery VECTOR_SEARCH. """ # Convert single request to list for uniform processing requests = request if isinstance(request, list) else [request] # Generate and execute query query = self.vector_search_parameters.format_query(requests) query_job = self.client.query(query) results = query_job.result() # Create results dict with empty chunks list as default results_by_id = {} for result_row in results: result_dict = dict(result_row.items()) results_by_id[result_row.id] = result_dict # Return all chunks in original order, with empty results if no matches response = [] for chunk in requests: result_dict = results_by_id.get(chunk.id, {}) response.append((chunk, result_dict)) return response def __exit__(self, exc_type, exc_val, exc_tb): self.client.close()
[docs] def batch_elements_kwargs(self) -> Dict[str, int]: """Returns kwargs for beam.BatchElements.""" return self._batching_kwargs
[docs] def join_fn(left: Embedding, right: Dict[str, Any]) -> Embedding: left.metadata['enrichment_data'] = right return left