apache_beam.runners.interactive.sql.beam_sql_magics module
Module of beam_sql cell magic that executes a Beam SQL.
Only works within an IPython kernel.
- class apache_beam.runners.interactive.sql.beam_sql_magics.BeamSqlParser[source]
- Bases: - object- A parser to parse beam_sql inputs. - parse(args: List[str]) Namespace | None[source]
- Parses a list of string inputs. - The parsed namespace contains these attributes:
- output_name: Optional[str], the output variable name. verbose: bool, whether to display more details of the magic execution. query: Optional[List[str]], the beam SQL query to execute. 
 - Returns:
- The parsed args or None if fail to parse. 
 
 
- apache_beam.runners.interactive.sql.beam_sql_magics.on_error(error_msg, *args)[source]
- Logs the error and the usage example. 
- class apache_beam.runners.interactive.sql.beam_sql_magics.BeamSqlMagics(**kwargs: Any)[source]
- Bases: - Magics- beam_sql(line: str, cell: str | None = None) PValue | None[source]
- The beam_sql line/cell magic that executes a Beam SQL. - Parameters:
- line – the string on the same line after the beam_sql magic. 
- cell – everything else in the same notebook cell as a string. If None, beam_sql is used as line magic. Otherwise, cell magic. 
 
 - Returns None if running into an error or waiting for user input (running on a selected runner remotely), otherwise a PValue as if a SqlTransform is applied. 
 - magics = {'cell': {'beam_sql': 'beam_sql'}, 'line': {'beam_sql': 'beam_sql'}}
 - registered = True
 
- apache_beam.runners.interactive.sql.beam_sql_magics.collect_data_for_local_run(query: str, found: Dict[str, PCollection])[source]
- apache_beam.runners.interactive.sql.beam_sql_magics.apply_sql(query: str, output_name: str | None, found: Dict[str, PCollection], run: bool = True) Tuple[str, PValue | SqlNode, SqlChain][source]
- Applies a SqlTransform with the given sql and queried PCollections. - Parameters:
- query – The SQL query executed in the magic. 
- output_name – (optional) The output variable name in __main__ module. 
- found – The PCollections with variable names found to be used in the query. 
- run – Whether to prepare the SQL pipeline for a local run or not. 
 
- Returns:
- A tuple of values. First str value is the output variable name in __main__ module, auto-generated if not provided. Second value: if run, it’s a PValue; otherwise, a SqlNode tracks the SQL without applying it or executing it. Third value: SqlChain is a chain of SqlNodes that have been applied. 
 
- apache_beam.runners.interactive.sql.beam_sql_magics.pcolls_from_streaming_cache(user_pipeline: Pipeline, query_pipeline: Pipeline, name_to_pcoll: Dict[str, PCollection]) Dict[str, PCollection][source]
- Reads PCollection cache through the TestStream. - Parameters:
- user_pipeline – The beam.Pipeline object defined by the user in the notebook. 
- query_pipeline – The beam.Pipeline object built by the magic to execute the SQL query. 
- name_to_pcoll – PCollections with variable names used in the SQL query. 
 
- Returns:
- A Dict[str, beam.PCollection], where each PCollection is tagged with their PCollection variable names, read from the cache. 
 - When the user_pipeline has unbounded sources, we force all cache reads to go through the TestStream even if they are bounded sources.