apache_beam.ml.rag.ingestion.mysql_common module
- apache_beam.ml.rag.ingestion.mysql_common.chunk_embedding_fn(chunk: Chunk) str [source]
Convert embedding to MySQL vector string format.
Formats dense embedding as a MySQL-compatible vector string. Example: [1.0, 2.0] -> ‘[1.0,2.0]’
- Parameters:
chunk – Input Chunk object.
- Returns:
MySQL vector string representation of the embedding.
- Return type:
- Raises:
ValueError – If chunk has no dense embedding.
- class apache_beam.ml.rag.ingestion.mysql_common.ColumnSpec(column_name: str, python_type: Type, value_fn: Callable[[Chunk], Any], placeholder: str = '?')[source]
Bases:
object
Specification for mapping Chunk fields to MySQL columns for insertion.
Defines how to extract and format values from Chunks into MySQL database columns, handling the full pipeline from Python value to SQL insertion.
The insertion process works as follows: - value_fn extracts a value from the Chunk and formats it as needed - The value is stored in a NamedTuple field with the specified python_type - During SQL insertion, the value is bound to a ? placeholder
- python_type
Python type for the NamedTuple field that will hold the value. Must be compatible with
RowCoder
.- Type:
Type
- value_fn
Function to extract and format the value from a Chunk. Takes a Chunk and returns a value of python_type.
- Type:
Callable[[apache_beam.ml.rag.types.Chunk], Any]
- placeholder
Optional placeholder to apply typecasts or functions to value ? placeholder e.g. “string_to_vector(?)” for vector columns.
- Type:
Examples
Basic text column (uses standard JDBC type mapping):
>>> ColumnSpec.text( ... column_name="content", ... value_fn=lambda chunk: chunk.content.text ... ) ... # Results in: INSERT INTO table (content) VALUES (?)
Timestamp from metadata:
>>> ColumnSpec( ... column_name="created_at", ... python_type=str, ... value_fn=lambda chunk: chunk.metadata.get("timestamp") ... ) ... # Results in: INSERT INTO table (created_at) VALUES (?)
- Factory Methods:
text: Creates a text column specification. integer: Creates an integer column specification. float: Creates a float column specification. vector: Creates a vector column specification with string_to_vector(). json: Creates a JSON column specification.
- classmethod text(column_name: str, value_fn: Callable[[Chunk], Any]) ColumnSpec [source]
Create a text column specification.
- classmethod integer(column_name: str, value_fn: Callable[[Chunk], Any]) ColumnSpec [source]
Create an integer column specification.
- classmethod float(column_name: str, value_fn: Callable[[Chunk], Any]) ColumnSpec [source]
Create a float column specification.
- classmethod vector(column_name: str, value_fn: ~typing.Callable[[~apache_beam.ml.rag.types.Chunk], ~typing.Any] = <function chunk_embedding_fn>) ColumnSpec [source]
Create a vector column specification with string_to_vector() function.
- apache_beam.ml.rag.ingestion.mysql_common.embedding_to_string(embedding: List[float]) str [source]
Convert embedding to MySQL vector string format.
- class apache_beam.ml.rag.ingestion.mysql_common.ColumnSpecsBuilder[source]
Bases:
object
Builder for
ColumnSpec
’s with chainable methods.- static with_defaults() ColumnSpecsBuilder [source]
Add all default column specifications.
- with_id_spec(column_name: str = 'id', python_type: ~typing.Type = <class 'str'>, convert_fn: ~typing.Callable[[str], ~typing.Any] | None = None) ColumnSpecsBuilder [source]
Add ID
ColumnSpec
with optional type and conversion.- Parameters:
column_name – Name for the ID column (defaults to “id”)
python_type – Python type for the column (defaults to str)
convert_fn – Optional function to convert the chunk ID If None, uses ID as-is
- Returns:
Self for method chaining
Example
>>> builder.with_id_spec( ... column_name="doc_id", ... python_type=int, ... convert_fn=lambda id: int(id.split('_')[1]) ... )
- with_content_spec(column_name: str = 'content', python_type: ~typing.Type = <class 'str'>, convert_fn: ~typing.Callable[[str], ~typing.Any] | None = None) ColumnSpecsBuilder [source]
Add content
ColumnSpec
with optional type and conversion.- Parameters:
column_name – Name for the content column (defaults to “content”)
python_type – Python type for the column (defaults to str)
convert_fn – Optional function to convert the content text If None, uses content text as-is
- Returns:
Self for method chaining
Example
>>> builder.with_content_spec( ... column_name="content_length", ... python_type=int, ... convert_fn=len # Store content length instead of content ... )
- with_metadata_spec(column_name: str = 'metadata', python_type: ~typing.Type = <class 'str'>, convert_fn: ~typing.Callable[[~typing.Dict[str, ~typing.Any]], ~typing.Any] | None = None) ColumnSpecsBuilder [source]
Add metadata
ColumnSpec
with optional type and conversion.- Parameters:
column_name – Name for the metadata column (defaults to “metadata”)
python_type – Python type for the column (defaults to str)
convert_fn – Optional function to convert the metadata dictionary If None and python_type is str, converts to JSON string
- Returns:
Self for method chaining
Example
>>> builder.with_metadata_spec( ... column_name="meta_tags", ... python_type=str, ... convert_fn=lambda meta: ','.join(meta.keys()) ... )
- with_embedding_spec(column_name: str = 'embedding', convert_fn: ~typing.Callable[[~typing.List[float]], ~typing.Any] = <function embedding_to_string>) ColumnSpecsBuilder [source]
Add embedding
ColumnSpec
with optional conversion.- Parameters:
column_name – Name for the embedding column (defaults to “embedding”)
convert_fn – Optional function to convert the dense embedding values If None, uses default MySQL vector format
- Returns:
Self for method chaining
Example
>>> builder.with_embedding_spec( ... column_name="embedding_vector", ... convert_fn=lambda values: '[' + ','.join(f"{x:.4f}" ... for x in values) + ']' ... )
- add_metadata_field(field: str, python_type: Type, column_name: str | None = None, convert_fn: Callable[[Any], Any] | None = None, default: Any | None = None) ColumnSpecsBuilder [source]
Add a
ColumnSpec
that extracts and converts a field from chunk metadata.- Parameters:
field – Key to extract from chunk metadata
python_type – Python type for the column (e.g. str, int, float)
column_name – Name for the column (defaults to metadata field name)
convert_fn – Optional function to convert the extracted value to desired type. If None, value is used as-is
default – Default value if field is missing from metadata
- Returns:
Self for chaining
Examples
Simple string field: >>> builder.add_metadata_field(“source”, str)
Integer with default: >>> builder.add_metadata_field( … field=”count”, … python_type=int, … column_name=”item_count”, … default=0 … )
Float with conversion and default: >>> builder.add_metadata_field( … field=”confidence”, … python_type=float, … convert_fn=lambda x: round(float(x), 2), … default=0.0 … )
Timestamp with conversion: >>> builder.add_metadata_field( … field=”created_at”, … python_type=str, … convert_fn=lambda ts: ts.replace(‘T’, ‘ ‘) … )
- add_custom_column_spec(spec: ColumnSpec) ColumnSpecsBuilder [source]
Add a custom
ColumnSpec
to the builder.Use this method when you need complete control over the
ColumnSpec
, including custom value extraction and type handling.- Parameters:
spec – A
ColumnSpec
instance defining the column name, type, value extraction, and optional MySQL function.- Returns:
Self for method chaining
Examples
Custom text column from chunk metadata: >>> builder.add_custom_column_spec( … ColumnSpec.text( … column_name=”source_and_id”, … value_fn=lambda chunk: … f”{chunk.metadata.get(‘source’)}_{chunk.id}” … ) … )
- build() List[ColumnSpec] [source]
Build the final list of column specifications.
- class apache_beam.ml.rag.ingestion.mysql_common.ConflictResolution(action: Literal['UPDATE', 'IGNORE'] = 'UPDATE', update_fields: List[str] | None = None, primary_key_field: str | None = None)[source]
Bases:
object
Specification for how to handle conflicts during insert.
Configures conflict handling behavior when inserting records that may violate unique constraints using MySQL’s ON DUPLICATE KEY UPDATE syntax.
MySQL automatically detects conflicts based on PRIMARY KEY or UNIQUE constraints defined on the table.
- action
How to handle conflicts - either “UPDATE” or “IGNORE”. UPDATE: Updates existing record with new values. IGNORE: Skips conflicting records (uses no-op update).
- Type:
Literal[‘UPDATE’, ‘IGNORE’]
- update_fields
Optional list of fields to update on conflict. If None, all fields are updated (for UPDATE action only).
- Type:
List[str] | None
- primary_key_field
Required for IGNORE action. The primary key field name to use for the no-op update.
- Type:
str | None
Examples
Update all fields on conflict: >>> ConflictResolution(action=”UPDATE”)
Update specific fields on conflict: >>> ConflictResolution( … action=”UPDATE”, … update_fields=[“embedding”, “content”] … )
Ignore conflicts with explicit primary key: >>> ConflictResolution( … action=”IGNORE”, … primary_key_field=”id” … )
Ignore conflicts with custom primary key: >>> ConflictResolution( … action=”IGNORE”, … primary_key_field=”custom_id” … )