Source code for apache_beam.testing.load_tests.dataflow_cost_benchmark

#
# Licensed to the Apache Software Foundation (ASF) under one or more
# contributor license agreements.  See the NOTICE file distributed with
# this work for additional information regarding copyright ownership.
# The ASF licenses this file to You under the Apache License, Version 2.0
# (the "License"); you may not use this file except in compliance with
# the License.  You may obtain a copy of the License at
#
#    http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

# pytype: skip-file

import logging
import re
import time
from datetime import datetime
from typing import Any
from typing import Optional

from google.cloud import monitoring_v3
from google.protobuf.duration_pb2 import Duration

import apache_beam.testing.load_tests.dataflow_cost_consts as costs
from apache_beam.metrics.execution import MetricResult
from apache_beam.runners.dataflow.dataflow_runner import DataflowPipelineResult
from apache_beam.runners.dataflow.internal.apiclient import DataflowApplicationClient
from apache_beam.runners.runner import PipelineState
from apache_beam.testing.load_tests.load_test import LoadTest


[docs] class DataflowCostBenchmark(LoadTest): """Base class for Dataflow performance tests which export metrics to external databases: BigQuery or/and InfluxDB. Calculates the expected cost for running the job on Dataflow in region us-central1. Refer to :class:`~apache_beam.testing.load_tests.LoadTestOptions` for more information on the required pipeline options. If using InfluxDB with Basic HTTP authentication enabled, provide the following environment options: `INFLUXDB_USER` and `INFLUXDB_USER_PASSWORD`. If the hardware configuration for the job includes use of a GPU, please specify the version in use with the Accelerator enumeration. This is used to calculate the cost of the job later, as different accelerators have different billing rates per hour of use. """ WORKER_START_PATTERN = re.compile( r'^All workers have finished the startup processes and ' r'began to receive work requests.*$') WORKER_STOP_PATTERN = re.compile(r'^Stopping worker pool.*$') def __init__( self, metrics_namespace: Optional[str] = None, is_streaming: bool = False, gpu: Optional[costs.Accelerator] = None, pcollection: str = 'ProcessOutput.out0'): """ Initializes DataflowCostBenchmark. Args: metrics_namespace (Optional[str]): Namespace for metrics. is_streaming (bool): Whether the pipeline is streaming or batch. gpu (Optional[costs.Accelerator]): Optional GPU type. pcollection (str): PCollection name to monitor throughput. """ self.is_streaming = is_streaming self.gpu = gpu self.pcollection = pcollection super().__init__(metrics_namespace=metrics_namespace) self.dataflow_client = DataflowApplicationClient( self.pipeline.get_pipeline_options()) self.monitoring_client = monitoring_v3.MetricServiceClient()
[docs] def run(self) -> None: try: self.test() if not hasattr(self, 'result'): self.result = self.pipeline.run() state = self.result.wait_until_finish(duration=self.timeout_ms) assert state != PipelineState.FAILED logging.info( 'Pipeline complete, sleeping for 4 minutes to allow resource ' 'metrics to populate.') time.sleep(240) self.extra_metrics = self._retrieve_cost_metrics(self.result) additional_metrics = self._get_additional_metrics(self.result) self.extra_metrics.update(additional_metrics) logging.info(self.extra_metrics) self._metrics_monitor.publish_metrics(self.result, self.extra_metrics) finally: self.cleanup()
def _retrieve_cost_metrics(self, result: DataflowPipelineResult) -> dict[str, Any]: """Calculates estimated cost based on pipeline resource usage.""" job_id = result.job_id() metrics = result.metrics().all_metrics(job_id) metrics_dict = self._process_metrics_list(metrics) cost = 0.0 if self.is_streaming: cost += metrics_dict.get( "TotalVcpuTime", 0.0) / 3600 * costs.VCPU_PER_HR_STREAMING cost += metrics_dict.get( "TotalMemoryUsage", 0.0) / 1000 / 3600 * costs.MEM_PER_GB_HR_STREAMING cost += metrics_dict.get( "TotalStreamingDataProcessed", 0.0) * costs.SHUFFLE_PER_GB_STREAMING else: cost += metrics_dict.get( "TotalVcpuTime", 0.0) / 3600 * costs.VCPU_PER_HR_BATCH cost += metrics_dict.get( "TotalMemoryUsage", 0.0) / 1000 / 3600 * costs.MEM_PER_GB_HR_BATCH cost += metrics_dict.get( "TotalStreamingDataProcessed", 0.0) * costs.SHUFFLE_PER_GB_BATCH if self.gpu: rate = costs.ACCELERATOR_TO_COST[self.gpu] cost += metrics_dict.get("TotalGpuTime", 0.0) / 3600 * rate cost += metrics_dict.get("TotalPdUsage", 0.0) / 3600 * costs.PD_PER_GB_HR cost += metrics_dict.get( "TotalSsdUsage", 0.0) / 3600 * costs.PD_SSD_PER_GB_HR metrics_dict["EstimatedCost"] = cost return metrics_dict def _process_metrics_list(self, metrics: list[MetricResult]) -> dict[str, Any]: system_metrics = {} for entry in metrics: metric_key = entry.key metric = metric_key.metric if metric_key.step == '' and metric.namespace == 'dataflow/v1b3': system_metrics[metric.name] = entry.committed or 0.0 return system_metrics def _get_worker_time_interval( self, job_id: str) -> tuple[Optional[str], Optional[str]]: """Extracts worker start and stop times from job messages.""" messages, _ = self.dataflow_client.list_messages( job_id=job_id, start_time=None, end_time=None, minimum_importance='JOB_MESSAGE_DETAILED') start_time, end_time = None, None for message in messages: text = message.messageText if text: if self.WORKER_START_PATTERN.match(text): start_time = message.time if self.WORKER_STOP_PATTERN.match(text): end_time = message.time return start_time, end_time def _get_throughput_metrics( self, project: str, job_id: str, start_time: str, end_time: str) -> dict[str, float]: interval = monitoring_v3.TimeInterval( start_time=start_time, end_time=end_time) aggregation = monitoring_v3.Aggregation( alignment_period=Duration(seconds=60), per_series_aligner=monitoring_v3.Aggregation.Aligner.ALIGN_MEAN) requests = { "Bytes": monitoring_v3.ListTimeSeriesRequest( name=f"projects/{project}", filter=f'metric.type=' f'"dataflow.googleapis.com/job/estimated_bytes_produced_count" ' f'AND metric.labels.job_id=' f'"{job_id}" AND metric.labels.pcollection="{self.pcollection}"', interval=interval, aggregation=aggregation), "Elements": monitoring_v3.ListTimeSeriesRequest( name=f"projects/{project}", filter=f'metric.type="dataflow.googleapis.com/job/element_count" ' f'AND metric.labels.job_id="{job_id}" ' f'AND metric.labels.pcollection="{self.pcollection}"', interval=interval, aggregation=aggregation) } metrics = {} for key, req in requests.items(): time_series = self.monitoring_client.list_time_series(request=req) values = [ point.value.double_value for series in time_series for point in series.points ] metrics[f"AvgThroughput{key}"] = sum(values) / len( values) if values else 0.0 return metrics def _get_job_runtime(self, start_time: str, end_time: str) -> float: """Calculates the job runtime duration in seconds.""" start_dt = datetime.fromisoformat(start_time[:-1]) end_dt = datetime.fromisoformat(end_time[:-1]) return (end_dt - start_dt).total_seconds() def _get_additional_metrics(self, result: DataflowPipelineResult) -> dict[str, Any]: job_id = result.job_id() job = self.dataflow_client.get_job(job_id) project = job.projectId start_time, end_time = self._get_worker_time_interval(job_id) if not start_time or not end_time: logging.warning('Could not find valid worker start/end times.') return {} throughput_metrics = self._get_throughput_metrics( project, job_id, start_time, end_time) return { **throughput_metrics, "JobRuntimeSeconds": self._get_job_runtime(start_time, end_time), }