#
# Licensed to the Apache Software Foundation (ASF) under one or more
# contributor license agreements. See the NOTICE file distributed with
# this work for additional information regarding copyright ownership.
# The ASF licenses this file to You under the Apache License, Version 2.0
# (the "License"); you may not use this file except in compliance with
# the License. You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
"""A runner that allows running of Beam pipelines interactively.
This module is experimental. No backwards-compatibility guarantees.
"""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import logging
import apache_beam as beam
from apache_beam import runners
from apache_beam.runners.direct import direct_runner
from apache_beam.runners.interactive import cache_manager as cache
from apache_beam.runners.interactive import pipeline_analyzer
from apache_beam.runners.interactive.display import display_manager
from apache_beam.runners.interactive.display import pipeline_graph_renderer
# size of PCollection samples cached.
SAMPLE_SIZE = 8
[docs]class InteractiveRunner(runners.PipelineRunner):
"""An interactive runner for Beam Python pipelines.
Allows interactively building and running Beam Python pipelines.
"""
def __init__(self, underlying_runner=None, cache_dir=None,
render_option=None):
"""Constructor of InteractiveRunner.
Args:
underlying_runner: (runner.PipelineRunner)
cache_dir: (str) the directory where PCollection caches are kept
render_option: (str) this parameter decides how the pipeline graph is
rendered. See display.pipeline_graph_renderer for available options.
"""
self._underlying_runner = (underlying_runner
or direct_runner.DirectRunner())
self._cache_manager = cache.FileBasedCacheManager(cache_dir)
self._renderer = pipeline_graph_renderer.get_renderer(render_option)
self._in_session = False
[docs] def set_render_option(self, render_option):
"""Sets the rendering option.
Args:
render_option: (str) this parameter decides how the pipeline graph is
rendered. See display.pipeline_graph_renderer for available options.
"""
self._renderer = pipeline_graph_renderer.get_renderer(render_option)
[docs] def start_session(self):
"""Start the session that keeps back-end managers and workers alive.
"""
if self._in_session:
return
enter = getattr(self._underlying_runner, '__enter__', None)
if enter is not None:
logging.info('Starting session.')
self._in_session = True
enter()
else:
logging.error('Keep alive not supported.')
[docs] def end_session(self):
"""End the session that keeps backend managers and workers alive.
"""
if not self._in_session:
return
exit = getattr(self._underlying_runner, '__exit__', None)
if exit is not None:
self._in_session = False
logging.info('Ending session.')
exit(None, None, None)
[docs] def cleanup(self):
self._cache_manager.cleanup()
[docs] def apply(self, transform, pvalueish):
# TODO(qinyeli, BEAM-646): Remove runner interception of apply.
return self._underlying_runner.apply(transform, pvalueish)
[docs] def run_pipeline(self, pipeline):
if not hasattr(self, '_desired_cache_labels'):
self._desired_cache_labels = set()
# Invoke a round trip through the runner API. This makes sure the Pipeline
# proto is stable.
pipeline = beam.pipeline.Pipeline.from_runner_api(
pipeline.to_runner_api(use_fake_coders=True),
pipeline.runner,
pipeline._options)
# Snapshot the pipeline in a portable proto before mutating it.
pipeline_proto, original_context = pipeline.to_runner_api(
return_context=True, use_fake_coders=True)
pcolls_to_pcoll_id = self._pcolls_to_pcoll_id(pipeline, original_context)
analyzer = pipeline_analyzer.PipelineAnalyzer(self._cache_manager,
pipeline_proto,
self._underlying_runner,
pipeline._options,
self._desired_cache_labels)
# Should be only accessed for debugging purpose.
self._analyzer = analyzer
pipeline_to_execute = beam.pipeline.Pipeline.from_runner_api(
analyzer.pipeline_proto_to_execute(),
self._underlying_runner,
pipeline._options)
display = display_manager.DisplayManager(
pipeline_proto=pipeline_proto,
pipeline_analyzer=analyzer,
cache_manager=self._cache_manager,
pipeline_graph_renderer=self._renderer)
display.start_periodic_update()
result = pipeline_to_execute.run()
result.wait_until_finish()
display.stop_periodic_update()
return PipelineResult(result, self, self._analyzer.pipeline_info(),
self._cache_manager, pcolls_to_pcoll_id)
def _pcolls_to_pcoll_id(self, pipeline, original_context):
"""Returns a dict mapping PCollections string to PCollection IDs.
Using a PipelineVisitor to iterate over every node in the pipeline,
records the mapping from PCollections to PCollections IDs. This mapping
will be used to query cached PCollections.
Args:
pipeline: (pipeline.Pipeline)
original_context: (pipeline_context.PipelineContext)
Returns:
(dict from str to str) a dict mapping str(pcoll) to pcoll_id.
"""
pcolls_to_pcoll_id = {}
from apache_beam.pipeline import PipelineVisitor # pylint: disable=import-error
class PCollVisitor(PipelineVisitor): # pylint: disable=used-before-assignment
""""A visitor that records input and output values to be replaced.
Input and output values that should be updated are recorded in maps
input_replacements and output_replacements respectively.
We cannot update input and output values while visiting since that
results in validation errors.
"""
def enter_composite_transform(self, transform_node):
self.visit_transform(transform_node)
def visit_transform(self, transform_node):
for pcoll in transform_node.outputs.values():
pcolls_to_pcoll_id[str(pcoll)] = original_context.pcollections.get_id(
pcoll)
pipeline.visit(PCollVisitor())
return pcolls_to_pcoll_id
[docs]class PipelineResult(beam.runners.runner.PipelineResult):
"""Provides access to information about a pipeline."""
def __init__(self, underlying_result, runner, pipeline_info, cache_manager,
pcolls_to_pcoll_id):
super(PipelineResult, self).__init__(underlying_result.state)
self._runner = runner
self._pipeline_info = pipeline_info
self._cache_manager = cache_manager
self._pcolls_to_pcoll_id = pcolls_to_pcoll_id
def _cache_label(self, pcoll):
pcoll_id = self._pcolls_to_pcoll_id[str(pcoll)]
return self._pipeline_info.cache_label(pcoll_id)
[docs] def wait_until_finish(self):
# PipelineResult is not constructed until pipeline execution is finished.
return
[docs] def get(self, pcoll):
cache_label = self._cache_label(pcoll)
if self._cache_manager.exists('full', cache_label):
pcoll_list, _ = self._cache_manager.read('full', cache_label)
return pcoll_list
else:
self._runner._desired_cache_labels.add(cache_label) # pylint: disable=protected-access
raise ValueError('PCollection not available, please run the pipeline.')
[docs] def sample(self, pcoll):
cache_label = self._cache_label(pcoll)
if self._cache_manager.exists('sample', cache_label):
return self._cache_manager.read('sample', cache_label)
else:
self._runner._desired_cache_labels.add(cache_label) # pylint: disable=protected-access
raise ValueError('PCollection not available, please run the pipeline.')