@Experimental(value=SOURCE_SINK) public class HadoopFormatIO extends java.lang.Object
HadoopFormatIO
is a Transform for reading data from any source or writing data to any
sink which implements Hadoop InputFormat
or OutputFormat
. For example: Cassandra,
Elasticsearch, HBase, Redis, Postgres etc. HadoopFormatIO
has to make several performance
trade-offs in connecting to InputFormat
or OutputFormat
, so if there is another
Beam IO Transform specifically for connecting to your data source of choice, we would recommend
using that one, but this IO Transform allows you to connect to many data sources/sinks that do
not yet have a Beam IO Transform.
HadoopFormatIO
You will need to pass a Hadoop Configuration
with parameters specifying how the read
will occur. Many properties of the Configuration are optional, and some are required for certain
InputFormat
classes, but the following properties must be set for all InputFormats:
mapreduce.job.inputformat.class
: The InputFormat
class used to connect to
your data source of choice.
key.class
: The key class returned by the InputFormat
in mapreduce.job.inputformat.class
.
value.class
: The value class returned by the InputFormat
in mapreduce.job.inputformat.class
.
{ Configuration myHadoopConfiguration = new Configuration(false); // Set Hadoop InputFormat, key and value class in configuration myHadoopConfiguration.setClass("mapreduce.job.inputformat.class", MyDbInputFormatClass, InputFormat.class); myHadoopConfiguration.setClass("key.class", MyDbInputFormatKeyClass, Object.class); myHadoopConfiguration.setClass("value.class", MyDbInputFormatValueClass, Object.class); }
You will need to check to see if the key and value classes output by the InputFormat
have a Beam Coder
available. If not, you can use withKeyTranslation/withValueTranslation
to specify a method transforming instances of those classes into another class that is supported
by a Beam Coder
. These settings are optional and you don't need to specify translation
for both key and value. If you specify a translation, you will need to make sure the K or V of
the read transform match the output type of the translation.
You will need to set appropriate InputFormat key and value class (i.e. "key.class" and
"value.class") in Hadoop Configuration
. If you set different InputFormat key or value
class than InputFormat's actual key or value class then, it may result in an error like
"unexpected extra bytes after decoding" while the decoding process of key/value object happens.
Hence, it is important to set appropriate InputFormat key and value class.
Pipeline p = ...; // Create pipeline.
// Read data only with Hadoop configuration.
p.apply("read",
HadoopFormatIO.<InputFormatKeyClass, InputFormatKeyClass>read()
.withConfiguration(myHadoopConfiguration);
// Read data with configuration and key translation (Example scenario: Beam Coder is not
available for key class hence key translation is required.).
SimpleFunction<InputFormatKeyClass, MyKeyClass> myOutputKeyType =
new SimpleFunction<InputFormatKeyClass, MyKeyClass>() {
public MyKeyClass apply(InputFormatKeyClass input) {
// ...logic to transform InputFormatKeyClass to MyKeyClass
}
};
p.apply("read",
HadoopFormatIO.<MyKeyClass, InputFormatKeyClass>read()
.withConfiguration(myHadoopConfiguration)
.withKeyTranslation(myOutputKeyType);
// Read data with configuration and value translation (Example scenario: Beam Coder is not available for value class hence value translation is required.).
SimpleFunction<InputFormatValueClass, MyValueClass> myOutputValueType =
new SimpleFunction<InputFormatValueClass, MyValueClass>() {
public MyValueClass apply(InputFormatValueClass input) {
// ...logic to transform InputFormatValueClass to MyValueClass
}
};
p.apply("read",
HadoopFormatIO.<InputFormatKeyClass, MyValueClass>read()
.withConfiguration(myHadoopConfiguration)
.withValueTranslation(myOutputValueType);
Hadoop formats typically work with Writable data structures which are mutable and instances are reused by the input format reader. Therefore, to not to have elements which can change value after they are emitted from read, this IO will clone each key value read from underlying hadoop input format (unless they are in the list of well known immutable types). However, in cases where used input format does not reuse instances for key/value or translation functions are used which already output immutable types, such clone of values can be needless penalty. In these cases IO can be instructed to skip key/value cloning.
HadoopFormatIO.Read<InputFormatKeyClass, MyValueClass> read = ...
p.apply("read", read
.withSkipKeyClone(true)
.withSkipValueClone(true));
IMPORTANT! In case of using DBInputFormat
to read data from RDBMS, Beam parallelizes
the process by using LIMIT and OFFSET clauses of SQL query to fetch different ranges of records
(as a split) by different workers. To guarantee the same order and proper split of results you
need to order them by one or more keys (either PRIMARY or UNIQUE). It can be done during
configuration step, for example:
Configuration conf = new Configuration();
conf.set(DBConfiguration.INPUT_TABLE_NAME_PROPERTY, tableName);
conf.setStrings(DBConfiguration.INPUT_FIELD_NAMES_PROPERTY, "id", "name");
conf.set(DBConfiguration.INPUT_ORDER_BY_PROPERTY, "id ASC");
HadoopFormatIO
You will need to pass a Hadoop Configuration
with parameters specifying how the write
will occur. Many properties of the Configuration are optional, and some are required for certain
OutputFormat
classes, but the following properties must be set for all OutputFormats:
mapreduce.job.id
: The identifier of the write job. E.g.: end timestamp of window.
mapreduce.job.outputformat.class
: The OutputFormat
class used to connect to
your data sink of choice.
mapreduce.job.output.key.class
: The key class passed to the OutputFormat
in
mapreduce.job.outputformat.class
.
mapreduce.job.output.value.class
: The value class passed to the OutputFormat
in mapreduce.job.outputformat.class
.
mapreduce.job.reduces
: Number of reduce tasks. Value is equal to number of write
tasks which will be generated. This property is not required for HadoopFormatIO.Write.PartitionedWriterBuilder.withoutPartitioning()
write.
mapreduce.job.partitioner.class
: Hadoop partitioner class which will be used for
distributing of records among partitions. This property is not required for HadoopFormatIO.Write.PartitionedWriterBuilder.withoutPartitioning()
write.
OUTPUT_FORMAT_CLASS_ATTR
.
For example:
Configuration myHadoopConfiguration = new Configuration(false);
// Set Hadoop OutputFormat, key and value class in configuration
myHadoopConfiguration.setClass("mapreduce.job.outputformat.class",
MyDbOutputFormatClass, OutputFormat.class);
myHadoopConfiguration.setClass("mapreduce.job.output.key.class",
MyDbOutputFormatKeyClass, Object.class);
myHadoopConfiguration.setClass("mapreduce.job.output.value.class",
MyDbOutputFormatValueClass, Object.class);
myHadoopConfiguration.setClass("mapreduce.job.partitioner.class",
MyPartitionerClass, Object.class);
myHadoopConfiguration.setInt("mapreduce.job.reduces", 2);
You will need to set OutputFormat key and value class (i.e. "mapreduce.job.output.key.class"
and "mapreduce.job.output.value.class") in Hadoop Configuration
which are equal to KeyT
and ValueT
. If you set different OutputFormat key or value class than
OutputFormat's actual key or value class then, it will throw IllegalArgumentException
//Data which will we want to write
PCollection<KV<Text, LongWritable>> boundedWordsCount = ...
//Hadoop configuration for write
//We have partitioned write, so Partitioner and reducers count have to be set - see withPartitioning() javadoc
Configuration myHadoopConfiguration = ...
//path to directory with locks
String locksDirPath = ...;
boundedWordsCount.apply(
"writeBatch",
HadoopFormatIO.<Text, LongWritable>write()
.withConfiguration(myHadoopConfiguration)
.withPartitioning()
.withExternalSynchronization(new HDFSSynchronization(locksDirPath)));
// Data which will we want to write
PCollection<KV<Text, LongWritable>> unboundedWordsCount = ...;
// Transformation which transforms data of one window into one hadoop configuration
PTransform<PCollection<? extends KV<Text, LongWritable>>, PCollectionView<Configuration>>
configTransform = ...;
unboundedWordsCount.apply(
"writeStream",
HadoopFormatIO.<Text, LongWritable>write()
.withConfigurationTransform(configTransform)
.withExternalSynchronization(new HDFSSynchronization(locksDirPath)));
}
Modifier and Type | Class and Description |
---|---|
static class |
HadoopFormatIO.HadoopInputFormatBoundedSource<K,V>
Bounded source implementation for
HadoopFormatIO . |
static class |
HadoopFormatIO.Read<K,V>
A
PTransform that reads from any data source which implements Hadoop InputFormat. |
static class |
HadoopFormatIO.SerializableSplit
A wrapper to allow Hadoop
InputSplit to be serialized using
Java's standard serialization mechanisms. |
static class |
HadoopFormatIO.Write<KeyT,ValueT>
A
PTransform that writes to any data sink which implements Hadoop OutputFormat. |
Modifier and Type | Field and Description |
---|---|
static java.lang.String |
JOB_ID
|
static java.lang.String |
NUM_REDUCES
|
static java.lang.String |
OUTPUT_DIR
|
static java.lang.String |
OUTPUT_FORMAT_CLASS_ATTR
|
static java.lang.String |
OUTPUT_KEY_CLASS
|
static java.lang.String |
OUTPUT_VALUE_CLASS
|
static java.lang.String |
PARTITIONER_CLASS_ATTR
|
Constructor and Description |
---|
HadoopFormatIO() |
Modifier and Type | Method and Description |
---|---|
static <K,V> HadoopFormatIO.Read<K,V> |
read()
Creates an uninitialized
HadoopFormatIO.Read . |
static <KeyT,ValueT> |
write()
Creates an
Write.Builder for creation of Write Transformation. |
public static final java.lang.String OUTPUT_FORMAT_CLASS_ATTR
public static final java.lang.String OUTPUT_KEY_CLASS
public static final java.lang.String OUTPUT_VALUE_CLASS
public static final java.lang.String NUM_REDUCES
public static final java.lang.String PARTITIONER_CLASS_ATTR
public static final java.lang.String JOB_ID
public static final java.lang.String OUTPUT_DIR
public static <K,V> HadoopFormatIO.Read<K,V> read()
HadoopFormatIO.Read
. Before use, the Read
must be
initialized with a HadoopFormatIO.Read#withConfiguration(HadoopConfiguration) that specifies
the source. A key/value translation may also optionally be specified using HadoopFormatIO.Read.withKeyTranslation(org.apache.beam.sdk.transforms.SimpleFunction<?, K>)
/ HadoopFormatIO.Read.withValueTranslation(org.apache.beam.sdk.transforms.SimpleFunction<?, V>)
.public static <KeyT,ValueT> HadoopFormatIO.Write.WriteBuilder<KeyT,ValueT> write()
Write.Builder
for creation of Write Transformation. Before creation of the
transformation, chain of builders must be set.KeyT
- Type of keys to be written.ValueT
- Type of values to be written.