K - the type of the keys of the input and output PCollectionsV - the type of the values of the input PCollection and the elements of the Iterables in the output PCollectionpublic class GroupByKey<K,V> extends PTransform<PCollection<KV<K,V>>,PCollection<KV<K,java.lang.Iterable<V>>>>
GroupByKey<K, V> takes a PCollection<KV<K, V>>, groups the values by key and
windows, and returns a PCollection<KV<K, Iterable<V>>> representing a map from each
distinct key and window of the input PCollection to an Iterable over all the
values associated with that key in the input per window. Absent repeatedly-firing triggering, each key in the output PCollection is unique within each
window.
GroupByKey is analogous to converting a multi-map into a uni-map, and related to
GROUP BY in SQL. It corresponds to the "shuffle" step between the Mapper and the Reducer
in the MapReduce framework.
Two keys of type K are compared for equality not by regular Java Object.equals(java.lang.Object), but instead by first encoding each of the keys using the Coder of the
keys of the input PCollection, and then comparing the encoded bytes. This admits
efficient parallel evaluation. Note that this requires that the Coder of the keys be
deterministic (see Coder.verifyDeterministic()). If the key Coder is not
deterministic, an exception is thrown at pipeline construction time.
By default, the Coder of the keys of the output PCollection is the same as
that of the keys of the input, and the Coder of the elements of the Iterable
values of the output PCollection is the same as the Coder of the values of the
input.
Example of use:
PCollection<KV<String, Doc>> urlDocPairs = ...; PCollection<KV<String, Iterable<Doc>>> urlToDocs = urlDocPairs.apply(GroupByKey.<String, Doc>create()); PCollection<R> results = urlToDocs.apply(ParDo.of(new DoFn<KV<String, Iterable<Doc>>, R>(){@ProcessElement public void processElement(ProcessContext c) { String url = c.element().getKey(); Iterable<Doc> docsWithThatUrl = c.element().getValue(); ... process all docs having that url ... }}));
GroupByKey is a key primitive in data-parallel processing, since it is the main way to
efficiently bring associated data together into one location. It is also a key determiner of the
performance of a data-parallel pipeline.
See CoGroupByKey for a way to group multiple input
PCollections by a common key at once.
See Combine.PerKey for a common pattern of GroupByKey followed by Combine.GroupedValues.
When grouping, windows that can be merged according to the WindowFn of the input
PCollection will be merged together, and a window pane corresponding to the new, merged
window will be created. The items in this pane will be emitted when a trigger fires. By default
this will be when the input sources estimate there will be no more data for the window. See
AfterWatermark for details on the estimation.
The timestamp for each emitted pane is determined by the Window.withTimestampCombiner(TimestampCombiner) windowing operation}. The output PCollection will have the same WindowFn as the input.
If the input PCollection contains late data or the requested
TriggerFn can fire before the watermark, then there may be multiple elements output by a GroupByKey that correspond to the same key and window.
If the WindowFn of the input requires merging, it is not valid to apply another GroupByKey without first applying a new WindowFn or applying Window.remerge().
name, resourceHints| Modifier and Type | Method and Description |
|---|---|
static void |
applicableTo(PCollection<?> input) |
static <K,V> GroupByKey<K,V> |
create()
Returns a
GroupByKey<K, V> PTransform. |
PCollection<KV<K,java.lang.Iterable<V>>> |
expand(PCollection<KV<K,V>> input)
Override this method to specify how this
PTransform should be expanded on the given
InputT. |
boolean |
fewKeys()
Returns whether it groups just few keys.
|
static <K,V> Coder<V> |
getInputValueCoder(Coder<KV<K,V>> inputCoder)
Returns the
Coder of the values of the input to this transform. |
static <K,V> Coder<K> |
getKeyCoder(Coder<KV<K,V>> inputCoder)
Returns the
Coder of the keys of the input to this transform, which is also used as the
Coder of the keys of the output of this transform. |
static <K,V> KvCoder<K,java.lang.Iterable<V>> |
getOutputKvCoder(Coder<KV<K,V>> inputCoder)
Returns the
Coder of the output of this transform. |
void |
populateDisplayData(DisplayData.Builder builder)
Register display data for the given transform or component.
|
WindowingStrategy<?,?> |
updateWindowingStrategy(WindowingStrategy<?,?> inputStrategy) |
void |
validate(@Nullable PipelineOptions options,
java.util.Map<TupleTag<?>,PCollection<?>> inputs,
java.util.Map<TupleTag<?>,PCollection<?>> outputs)
Called before running the Pipeline to verify this transform, its inputs, and outputs are fully
and correctly specified.
|
compose, compose, getAdditionalInputs, getDefaultOutputCoder, getDefaultOutputCoder, getDefaultOutputCoder, getKindString, getName, getResourceHints, setResourceHints, toString, validatepublic static <K,V> GroupByKey<K,V> create()
GroupByKey<K, V> PTransform.K - the type of the keys of the input and output PCollectionsV - the type of the values of the input PCollection and the elements of the
Iterables in the output PCollectionpublic boolean fewKeys()
public static void applicableTo(PCollection<?> input)
public void validate(@Nullable PipelineOptions options, java.util.Map<TupleTag<?>,PCollection<?>> inputs, java.util.Map<TupleTag<?>,PCollection<?>> outputs)
PTransformBy default, delegates to PTransform.validate(PipelineOptions).
validate in class PTransform<PCollection<KV<K,V>>,PCollection<KV<K,java.lang.Iterable<V>>>>public WindowingStrategy<?,?> updateWindowingStrategy(WindowingStrategy<?,?> inputStrategy)
public PCollection<KV<K,java.lang.Iterable<V>>> expand(PCollection<KV<K,V>> input)
PTransformPTransform should be expanded on the given
InputT.
NOTE: This method should not be called directly. Instead apply the PTransform should
be applied to the InputT using the apply method.
Composite transforms, which are defined in terms of other transforms, should return the output of one of the composed transforms. Non-composite transforms, which do not apply any transforms internally, should return a new unbound output and register evaluators (via backend-specific registration methods).
expand in class PTransform<PCollection<KV<K,V>>,PCollection<KV<K,java.lang.Iterable<V>>>>public static <K,V> Coder<K> getKeyCoder(Coder<KV<K,V>> inputCoder)
Coder of the keys of the input to this transform, which is also used as the
Coder of the keys of the output of this transform.public static <K,V> Coder<V> getInputValueCoder(Coder<KV<K,V>> inputCoder)
Coder of the values of the input to this transform.public static <K,V> KvCoder<K,java.lang.Iterable<V>> getOutputKvCoder(Coder<KV<K,V>> inputCoder)
Coder of the output of this transform.public void populateDisplayData(DisplayData.Builder builder)
PTransformpopulateDisplayData(DisplayData.Builder) is invoked by Pipeline runners to collect
display data via DisplayData.from(HasDisplayData). Implementations may call super.populateDisplayData(builder) in order to register display data in the current namespace,
but should otherwise use subcomponent.populateDisplayData(builder) to use the namespace
of the subcomponent.
By default, does not register any display data. Implementors may override this method to provide their own display data.
populateDisplayData in interface HasDisplayDatapopulateDisplayData in class PTransform<PCollection<KV<K,V>>,PCollection<KV<K,java.lang.Iterable<V>>>>builder - The builder to populate with display data.HasDisplayData