@Experimental(value=SOURCE_SINK) public class HadoopInputFormatIO extends java.lang.Object
HadoopInputFormatIO
is a Transform for reading data from any source which
implements Hadoop InputFormat
. For example- Cassandra, Elasticsearch, HBase, Redis,
Postgres etc. HadoopInputFormatIO
has to make several performance trade-offs in
connecting to InputFormat
, so if there is another Beam IO Transform specifically for
connecting to your data source of choice, we would recommend using that one, but this IO
Transform allows you to connect to many data sources that do not yet have a Beam IO Transform.
You will need to pass a Hadoop Configuration
with parameters specifying how the read
will occur. Many properties of the Configuration are optional, and some are required for certain
InputFormat
classes, but the following properties must be set for all InputFormats:
mapreduce.job.inputformat.class
: The InputFormat
class used to connect to
your data source of choice.key.class
: The key class returned by the InputFormat
in
mapreduce.job.inputformat.class
.value.class
: The value class returned by the InputFormat
in
mapreduce.job.inputformat.class
.{ Configuration myHadoopConfiguration = new Configuration(false); // Set Hadoop InputFormat, key and value class in configuration myHadoopConfiguration.setClass("mapreduce.job.inputformat.class", MyDbInputFormatClass, InputFormat.class); myHadoopConfiguration.setClass("key.class", MyDbInputFormatKeyClass, Object.class); myHadoopConfiguration.setClass("value.class", MyDbInputFormatValueClass, Object.class); }
You will need to check to see if the key and value classes output by the InputFormat
have a Beam Coder
available. If not, you can use withKeyTranslation/withValueTranslation
to specify a method transforming instances of those classes into another class that is supported
by a Beam Coder
. These settings are optional and you don't need to specify translation
for both key and value. If you specify a translation, you will need to make sure the K or V of
the read transform match the output type of the translation.
You will need to set appropriate InputFormat key and value class (i.e. "key.class" and
"value.class") in Hadoop Configuration
. If you set different InputFormat key or
value class than InputFormat's actual key or value class then, it may result in an error like
"unexpected extra bytes after decoding" while the decoding process of key/value object happens.
Hence, it is important to set appropriate InputFormat key and value class.
HadoopInputFormatIO
Pipeline p = ...; // Create pipeline.
// Read data only with Hadoop configuration.
p.apply("read",
HadoopInputFormatIO.<InputFormatKeyClass, InputFormatKeyClass>read()
.withConfiguration(myHadoopConfiguration);
// Read data with configuration and key translation (Example scenario: Beam Coder is not
available for key class hence key translation is required.).
SimpleFunction<InputFormatKeyClass, MyKeyClass> myOutputKeyType =
new SimpleFunction<InputFormatKeyClass, MyKeyClass>() {
public MyKeyClass apply(InputFormatKeyClass input) {
// ...logic to transform InputFormatKeyClass to MyKeyClass
}
};
p.apply("read",
HadoopInputFormatIO.<MyKeyClass, InputFormatKeyClass>read()
.withConfiguration(myHadoopConfiguration)
.withKeyTranslation(myOutputKeyType);
// Read data with configuration and value translation (Example scenario: Beam Coder is not available for value class hence value translation is required.).
SimpleFunction<InputFormatValueClass, MyValueClass> myOutputValueType =
new SimpleFunction<InputFormatValueClass, MyValueClass>() {
public MyValueClass apply(InputFormatValueClass input) {
// ...logic to transform InputFormatValueClass to MyValueClass
}
};
p.apply("read",
HadoopInputFormatIO.<InputFormatKeyClass, MyValueClass>read()
.withConfiguration(myHadoopConfiguration)
.withValueTranslation(myOutputValueType);
IMPORTANT! In case of using DBInputFormat
to read data from RDBMS, Beam parallelizes
the process by using LIMIT and OFFSET clauses of SQL query to fetch different ranges of records
(as a split) by different workers. To guarantee the same order and proper split of results you
need to order them by one or more keys (either PRIMARY or UNIQUE). It can be done during
configuration step, for example:
Configuration conf = new Configuration();
conf.set(DBConfiguration.INPUT_TABLE_NAME_PROPERTY, tableName);
conf.setStrings(DBConfiguration.INPUT_FIELD_NAMES_PROPERTY, "id", "name");
conf.set(DBConfiguration.INPUT_ORDER_BY_PROPERTY, "id ASC");
Modifier and Type | Class and Description |
---|---|
static class |
HadoopInputFormatIO.HadoopInputFormatBoundedSource<K,V>
Bounded source implementation for
HadoopInputFormatIO . |
static class |
HadoopInputFormatIO.Read<K,V>
A
PTransform that reads from any data source which implements Hadoop InputFormat. |
static class |
HadoopInputFormatIO.SerializableSplit
A wrapper to allow Hadoop
InputSplit to be serialized using
Java's standard serialization mechanisms. |
Constructor and Description |
---|
HadoopInputFormatIO() |
Modifier and Type | Method and Description |
---|---|
static <K,V> HadoopInputFormatIO.Read<K,V> |
read()
Creates an uninitialized
HadoopInputFormatIO.Read . |
public static <K,V> HadoopInputFormatIO.Read<K,V> read()
HadoopInputFormatIO.Read
. Before use, the Read
must
be initialized with a HadoopInputFormatIO.Read#withConfiguration(HadoopConfiguration) that
specifies the source. A key/value translation may also optionally be specified using
HadoopInputFormatIO.Read.withKeyTranslation(org.apache.beam.sdk.transforms.SimpleFunction<?, K>)
/
HadoopInputFormatIO.Read.withValueTranslation(org.apache.beam.sdk.transforms.SimpleFunction<?, V>)
.