public class ParquetIO
extends java.lang.Object
ParquetIO source returns a PCollection for Parquet files. The elements in the
 PCollection are Avro GenericRecord.
 
To configure the ParquetIO.Read, you have to provide the file patterns (from) of the Parquet
 files and the schema.
 
For example:
 PCollection<GenericRecord> records = pipeline.apply(ParquetIO.read(SCHEMA).from("/foo/bar"));
 ...
 As ParquetIO.Read is based on FileIO, it supports any filesystem (hdfs, ...).
 
When using schemas created via reflection, it may be useful to generate GenericRecord
 instances rather than instances of the class associated with the schema. ParquetIO.Read and ParquetIO.ReadFiles provide ParquetIO.Read.withAvroDataModel(GenericData) allowing implementations
 to set the data model associated with the AvroParquetReader
 
For more advanced use cases, like reading each file in a PCollection of FileIO.ReadableFile, use the ParquetIO.ReadFiles transform.
 
For example:
 PCollection<FileIO.ReadableFile> files = pipeline
   .apply(FileIO.match().filepattern(options.getInputFilepattern())
   .apply(FileIO.readMatches());
 PCollection<GenericRecord> output = files.apply(ParquetIO.readFiles(SCHEMA));
 ParquetIO leverages splittable reading by using Splittable DoFn. It initially splits the files into the blocks of 64MB and may dynamically split further for higher read efficiency.
Reading with projection can be enabled with the projection schema as following. Splittable reading is enabled when reading with projection. The projection_schema contains only the column that we would like to read and encoder_schema contains the schema to encode the output with the unwanted columns changed to nullable. Partial reading provide decrease of reading time due to partial processing of the data and partial encoding. The decrease in the reading time depends on the relative position of the columns. Memory allocation is optimised depending on the encoding schema. Note that the improvement is not as significant comparing to the proportion of the data requested, since the processing time saved is only the time to read the unwanted columns, the reader will still go over the data set according to the encoding schema since data for each column in a row is stored interleaved.
 PCollection<GenericRecord> records =
   pipeline
     .apply(
       ParquetIO.read(SCHEMA).from("/foo/bar").withProjection(Projection_schema,Encoder_Schema));
 To read records from files whose schema is unknown at pipeline construction time or differs
 between files, use parseGenericRecords(SerializableFunction) - in this case, you will
 need to specify a parsing function for converting each GenericRecord into a value of your
 custom type.
 
For example:
 Pipeline p = ...;
 PCollection<Foo> records =
     p.apply(
       ParquetIO.parseGenericRecords(
           new SerializableFunction<GenericRecord, Foo>() {
               public Foo apply(GenericRecord record) {
                   // If needed, access the schema of the record using record.getSchema()
                   return ...;
               }
           })
           .from(...));
 // For reading from files
  PCollection<FileIO.ReadableFile> files = p.apply(...);
  PCollection<Foo> records =
     files
       .apply(
           ParquetIO.parseFilesGenericRecords(
               new SerializableFunction<GenericRecord, Foo>() {
                   public Foo apply(GenericRecord record) {
                       // If needed, access the schema of the record using record.getSchema()
                       return ...;
                   }
           }));
 If you want to use SQL or schema based operations on an Parquet-based PCollection, you must configure the read transform to infer the Beam schema and automatically setup the Beam related coders by doing:
 PCollection<GenericRecord> parquetRecords =
   p.apply(ParquetIO.read(...).from(...).withBeamSchemas(true));
 PCollection<String>:
 
 PCollection<String> filePatterns = p.apply(...);
 PCollection<GenericRecord> parquetRecords =
   filePatterns
     .apply(ParquetIO.readFiles(...).withBeamSchemas(true));
 ParquetIO.Sink allows you to write a PCollection of GenericRecord into
 a Parquet file. It can be used with the general-purpose FileIO transforms with
 FileIO.write/writeDynamic specifically.
 
By default, ParquetIO.Sink produces output files that are compressed using the CompressionCodec.SNAPPY. This default can be changed or overridden
 using ParquetIO.Sink.withCompressionCodec(CompressionCodecName).
 
For example:
 pipeline
   .apply(...) // PCollection<GenericRecord>
   .apply(FileIO
     .<GenericRecord>write()
     .via(ParquetIO.sink(SCHEMA)
       .withCompressionCodec(CompressionCodecName.SNAPPY))
     .to("destination/path")
     .withSuffix(".parquet"));
 | Modifier and Type | Class and Description | 
|---|---|
| static class  | ParquetIO.Parse<T>Implementation of  parseGenericRecords(SerializableFunction). | 
| static class  | ParquetIO.ParseFiles<T>Implementation of  parseFilesGenericRecords(SerializableFunction). | 
| static class  | ParquetIO.ReadImplementation of  read(Schema). | 
| static class  | ParquetIO.ReadFilesImplementation of  readFiles(Schema). | 
| static class  | ParquetIO.SinkImplementation of  sink(org.apache.avro.Schema). | 
| Modifier and Type | Method and Description | 
|---|---|
| static <T> ParquetIO.ParseFiles<T> | parseFilesGenericRecords(SerializableFunction<GenericRecord,T> parseFn)Reads  GenericRecordfrom Parquet files and converts to user defined type using providedparseFn. | 
| static <T> ParquetIO.Parse<T> | parseGenericRecords(SerializableFunction<GenericRecord,T> parseFn)Reads  GenericRecordfrom a Parquet file (or multiple Parquet files matching the
 pattern) and converts to user defined type using provided parseFn. | 
| static ParquetIO.Read | read(Schema schema)Reads  GenericRecordfrom a Parquet file (or multiple Parquet files matching the
 pattern). | 
| static ParquetIO.ReadFiles | readFiles(Schema schema)Like  read(Schema), but reads each file in aPCollectionofFileIO.ReadableFile, which allows more flexible usage. | 
| static ParquetIO.Sink | sink(Schema schema)Creates a  ParquetIO.Sinkthat, for use withFileIO.write(). | 
public static ParquetIO.Read read(Schema schema)
GenericRecord from a Parquet file (or multiple Parquet files matching the
 pattern).public static ParquetIO.ReadFiles readFiles(Schema schema)
read(Schema), but reads each file in a PCollection of FileIO.ReadableFile, which allows more flexible usage.public static <T> ParquetIO.Parse<T> parseGenericRecords(SerializableFunction<GenericRecord,T> parseFn)
GenericRecord from a Parquet file (or multiple Parquet files matching the
 pattern) and converts to user defined type using provided parseFn.public static <T> ParquetIO.ParseFiles<T> parseFilesGenericRecords(SerializableFunction<GenericRecord,T> parseFn)
GenericRecord from Parquet files and converts to user defined type using provided
 parseFn.public static ParquetIO.Sink sink(Schema schema)
ParquetIO.Sink that, for use with FileIO.write().