apache_beam.typehints.batch module
Utilities for working with batched types in the Beam SDK.
A batched type is a type B that is logically equivalent to Sequence[E], where E
is some other type. Typically B has a different physical representation than
Sequence[E] for performance reasons.
A trivial example is B=np.array(dtype=np.int64), E=int.
-
class
apache_beam.typehints.batch.
BatchConverter
(batch_type, element_type)[source]
Bases: typing.Generic
-
produce_batch
(elements: Sequence[E]) → B[source]
Convert an instance of List[E] to a single instance of B.
-
explode_batch
(batch: B) → Iterator[E][source]
Convert an instance of B to Iterator[E].
-
combine_batches
(batches: Sequence[B]) → B[source]
-
get_length
(batch: B) → int[source]
-
static
register
(batch_converter_constructor: Callable[[type, type], BatchConverter])[source]
-
static
from_typehints
(*, element_type, batch_type) → apache_beam.typehints.batch.BatchConverter[source]
-
batch_type
-
element_type
-
class
apache_beam.typehints.batch.
ListBatchConverter
(batch_type, element_type)[source]
Bases: apache_beam.typehints.batch.BatchConverter
-
static
from_typehints
(element_type, batch_type)[source]
-
produce_batch
(elements)[source]
-
explode_batch
(batch)[source]
-
combine_batches
(batches)[source]
-
get_length
(batch)[source]
-
class
apache_beam.typehints.batch.
NumpyBatchConverter
(batch_type, element_type, dtype, element_shape=(), partition_dimension=0)[source]
Bases: apache_beam.typehints.batch.BatchConverter
-
static
from_typehints
(element_type, batch_type) → Optional[apache_beam.typehints.batch.NumpyBatchConverter][source]
-
produce_batch
(elements)[source]
-
explode_batch
(batch)[source]
Convert an instance of B to Generator[E].
-
combine_batches
(batches)[source]
-
get_length
(batch)[source]
-
class
apache_beam.typehints.batch.
NumpyTypeHint
[source]
Bases: object
-
class
NumpyTypeConstraint
(dtype, shape=())[source]
Bases: apache_beam.typehints.typehints.TypeConstraint
-
type_check
(batch)[source]