apache_beam.typehints.row_type module¶
- 
class apache_beam.typehints.row_type.RowTypeConstraint(fields: Sequence[Tuple[str, type]], user_type, schema_options: Optional[Sequence[Tuple[str, Any]]] = None, field_options: Optional[Dict[str, Sequence[Tuple[str, Any]]]] = None)[source]¶
- Bases: - apache_beam.typehints.typehints.TypeConstraint- For internal use only, no backwards comatibility guaratees. See https://beam.apache.org/documentation/programming-guide/#schemas-for-pl-types for guidance on creating PCollections with inferred schemas. - Note RowTypeConstraint does not currently store arbitrary functions for converting to/from the user type. Instead, we only support - NamedTupleuser types and make the follow assumptions:- The user type can be constructed with field values as arguments in order
(i.e. constructor(*field_values)).
- Field values can be accessed from instances of the user type by attribute
(i.e. with getattr(obj, field_name)).
 - In the future we will add support for dataclasses ([#22085](https://github.com/apache/beam/issues/22085)) which also satisfy these assumptions. - The RowTypeConstraint constructor should not be called directly (even internally to Beam). Prefer static methods - from_user_typeor- from_fields.- Parameters: - fields – a list of (name, type) tuples, representing the schema inferred from user_type.
- user_type – constructor for a user type (e.g. NamedTuple class) that is used to represent this schema in user code.
- schema_options – A list of (key, value) tuples representing schema-level options.
- field_options – A dictionary representing field-level options. Dictionary keys are field names, and dictionary values are lists of (key, value) tuples representing field-level options for that field.
 - 
static from_user_type(user_type: type, schema_options: Optional[Sequence[Tuple[str, Any]]] = None, field_options: Optional[Dict[str, Sequence[Tuple[str, Any]]]] = None) → Optional[apache_beam.typehints.row_type.RowTypeConstraint][source]¶
 - 
static from_fields(fields: Sequence[Tuple[str, type]], schema_id: Optional[str] = None, schema_options: Optional[Sequence[Tuple[str, Any]]] = None, field_options: Optional[Dict[str, Sequence[Tuple[str, Any]]]] = None, schema_registry: Optional[apache_beam.typehints.schema_registry.SchemaTypeRegistry] = None) → apache_beam.typehints.row_type.RowTypeConstraint[source]¶
 - 
user_type¶
 - 
schema_id¶
 - 
schema_options¶
 
- The user type can be constructed with field values as arguments in order
(i.e. 
- 
class apache_beam.typehints.row_type.GeneratedClassRowTypeConstraint(fields, schema_id: Optional[str] = None, schema_options: Optional[Sequence[Tuple[str, Any]]] = None, field_options: Optional[Dict[str, Sequence[Tuple[str, Any]]]] = None, schema_registry: Optional[apache_beam.typehints.schema_registry.SchemaTypeRegistry] = None)[source]¶
- Bases: - apache_beam.typehints.row_type.RowTypeConstraint- Specialization of RowTypeConstraint which relies on a generated user_type. - Since the generated user_type cannot be pickled, we supply a custom __reduce__ function that will regenerate the user_type.