apache_beam.dataframe.frames module
Analogs for pandas.DataFrame
and pandas.Series
:
DeferredDataFrame
and DeferredSeries
.
These classes are effectively wrappers around a schema-aware
PCollection
that provide a set of operations
compatible with the pandas API.
Note that we aim for the Beam DataFrame API to be completely compatible with the pandas API, but there are some features that are currently unimplemented for various reasons. Pay particular attention to the ‘Differences from pandas’ section for each operation to understand where we diverge.
- class apache_beam.dataframe.frames.DeferredSeries(expr)[source]
Bases:
DeferredDataFrameOrSeries
- property name
Return the name of the Series.
The name of a Series becomes its index or column name if it is used to form a DataFrame. It is also used whenever displaying the Series using the interpreter.
- Returns:
The name of the DeferredSeries, also the column name if part of a DeferredDataFrame.
- Return type:
label (hashable object)
Differences from pandas
This operation has no known divergences from the pandas API.
See also
DeferredSeries.rename
Sets the DeferredSeries name when given a scalar input.
Index.name
Corresponding Index property.
Examples
NOTE: These examples are pulled directly from the pandas documentation for convenience. Usage of the Beam DataFrame API will look different because it is a deferred API.
The Series name can be set initially when calling the constructor. >>> s = pd.Series([1, 2, 3], dtype=np.int64, name='Numbers') >>> s 0 1 1 2 2 3 Name: Numbers, dtype: int64 >>> s.name = "Integers" >>> s 0 1 1 2 2 3 Name: Integers, dtype: int64 The name of a Series within a DataFrame is its column name. >>> df = pd.DataFrame([[1, 2], [3, 4], [5, 6]], ... columns=["Odd Numbers", "Even Numbers"]) >>> df Odd Numbers Even Numbers 0 1 2 1 3 4 2 5 6 >>> df["Even Numbers"].name 'Even Numbers'
- property hasnans
Return True if there are any NaNs.
Enables various performance speedups.
- Return type:
Differences from pandas
This operation has no known divergences from the pandas API.
Examples
NOTE: These examples are pulled directly from the pandas documentation for convenience. Usage of the Beam DataFrame API will look different because it is a deferred API.
>>> s = pd.Series([1, 2, 3, None]) >>> s 0 1.0 1 2.0 2 3.0 3 NaN dtype: float64 >>> s.hasnans True
- property dtype
Return the dtype object of the underlying data.
Differences from pandas
This operation has no known divergences from the pandas API.
Examples
NOTE: These examples are pulled directly from the pandas documentation for convenience. Usage of the Beam DataFrame API will look different because it is a deferred API.
>>> s = pd.Series([1, 2, 3]) >>> s.dtype dtype('int64')
- property dtypes
Return the dtype object of the underlying data.
Differences from pandas
This operation has no known divergences from the pandas API.
Examples
NOTE: These examples are pulled directly from the pandas documentation for convenience. Usage of the Beam DataFrame API will look different because it is a deferred API.
>>> s = pd.Series([1, 2, 3]) >>> s.dtype dtype('int64')
- keys()[source]
Return alias for index.
- Returns:
Index of the DeferredSeries.
- Return type:
Differences from pandas
This operation has no known divergences from the pandas API.
Examples
NOTE: These examples are pulled directly from the pandas documentation for convenience. Usage of the Beam DataFrame API will look different because it is a deferred API.
>>> s = pd.Series([1, 2, 3], index=[0, 1, 2]) >>> s.keys() Index([0, 1, 2], dtype='int64')
- T(**kwargs)
Return the transpose, which is by definition self.
Differences from pandas
This operation has no known divergences from the pandas API.
Examples
NOTE: These examples are pulled directly from the pandas documentation for convenience. Usage of the Beam DataFrame API will look different because it is a deferred API.
For Series: >>> s = pd.Series(['Ant', 'Bear', 'Cow']) >>> s 0 Ant 1 Bear 2 Cow dtype: object >>> s.T 0 Ant 1 Bear 2 Cow dtype: object For Index: >>> idx = pd.Index([1, 2, 3]) >>> idx.T Index([1, 2, 3], dtype='int64')
- transpose(**kwargs)
Return the transpose, which is by definition self.
- Return type:
%(klass)s
Differences from pandas
This operation has no known divergences from the pandas API.
- property shape
pandas.Series.shape()
is not yet supported in the Beam DataFrame API because it produces an output type that is not deferred.For more information see https://s.apache.org/dataframe-non-deferred-result.
- append(to_append, ignore_index, verify_integrity, **kwargs)[source]
This method has been removed in the current version of Pandas.
- align(other, join, axis, level, method, **kwargs)[source]
Align two objects on their axes with the specified join method.
Join method is specified for each axis Index.
- Parameters:
other (DeferredDataFrame or DeferredSeries)
join ({'outer', 'inner', 'left', 'right'}, default 'outer') –
Type of alignment to be performed.
left: use only keys from left frame, preserve key order.
right: use only keys from right frame, preserve key order.
outer: use union of keys from both frames, sort keys lexicographically.
inner: use intersection of keys from both frames, preserve the order of the left keys.
axis (allowed axis of the other object, default None) – Align on index (0), columns (1), or both (None).
level (int or level name, default None) – Broadcast across a level, matching Index values on the passed MultiIndex level.
copy (bool, default True) – Always returns new objects. If copy=False and no reindexing is required then original objects are returned.
fill_value (scalar, default np.nan) – Value to use for missing values. Defaults to NaN, but can be any “compatible” value.
method ({'backfill', 'bfill', 'pad', 'ffill', None}, default None) –
Method to use for filling holes in reindexed DeferredSeries:
pad / ffill: propagate last valid observation forward to next valid.
backfill / bfill: use NEXT valid observation to fill gap.
Deprecated since version 2.1.
limit (int, default None) –
If method is specified, this is the maximum number of consecutive NaN values to forward/backward fill. In other words, if there is a gap with more than this number of consecutive NaNs, it will only be partially filled. If method is not specified, this is the maximum number of entries along the entire axis where NaNs will be filled. Must be greater than 0 if not None.
Deprecated since version 2.1.
fill_axis ({0 or 'index'} for DeferredSeries, {0 or 'index', 1 or 'columns'} for DeferredDataFrame, default 0) –
Filling axis, method and limit.
Deprecated since version 2.1.
broadcast_axis ({0 or 'index'} for DeferredSeries, {0 or 'index', 1 or 'columns'} for DeferredDataFrame, default None) –
Broadcast values along this axis, if aligning two objects of different dimensions.
Deprecated since version 2.1.
- Returns:
Aligned objects.
- Return type:
Differences from pandas
Aligning per-level is not yet supported. Only the default,
level=None
, is allowed.Filling NaN values via
method
is not supported, because it is order-sensitive. Only the default,method=None
, is allowed.Examples
NOTE: These examples are pulled directly from the pandas documentation for convenience. Usage of the Beam DataFrame API will look different because it is a deferred API. In addition, some arguments shown here may not be supported, see ‘Differences from pandas’ for details.
>>> df = pd.DataFrame( ... [[1, 2, 3, 4], [6, 7, 8, 9]], columns=["D", "B", "E", "A"], index=[1, 2] ... ) >>> other = pd.DataFrame( ... [[10, 20, 30, 40], [60, 70, 80, 90], [600, 700, 800, 900]], ... columns=["A", "B", "C", "D"], ... index=[2, 3, 4], ... ) >>> df D B E A 1 1 2 3 4 2 6 7 8 9 >>> other A B C D 2 10 20 30 40 3 60 70 80 90 4 600 700 800 900 Align on columns: >>> left, right = df.align(other, join="outer", axis=1) >>> left A B C D E 1 4 2 NaN 1 3 2 9 7 NaN 6 8 >>> right A B C D E 2 10 20 30 40 NaN 3 60 70 80 90 NaN 4 600 700 800 900 NaN We can also align on the index: >>> left, right = df.align(other, join="outer", axis=0) >>> left D B E A 1 1.0 2.0 3.0 4.0 2 6.0 7.0 8.0 9.0 3 NaN NaN NaN NaN 4 NaN NaN NaN NaN >>> right A B C D 1 NaN NaN NaN NaN 2 10.0 20.0 30.0 40.0 3 60.0 70.0 80.0 90.0 4 600.0 700.0 800.0 900.0 Finally, the default `axis=None` will align on both index and columns: >>> left, right = df.align(other, join="outer", axis=None) >>> left A B C D E 1 4.0 2.0 NaN 1.0 3.0 2 9.0 7.0 NaN 6.0 8.0 3 NaN NaN NaN NaN NaN 4 NaN NaN NaN NaN NaN >>> right A B C D E 1 NaN NaN NaN NaN NaN 2 10.0 20.0 30.0 40.0 NaN 3 60.0 70.0 80.0 90.0 NaN 4 600.0 700.0 800.0 900.0 NaN
- argsort(**kwargs)
pandas.Series.argsort()
is not yet supported in the Beam DataFrame API because it is sensitive to the order of the data.For more information see https://s.apache.org/dataframe-order-sensitive-operations.
- property array
pandas.Series.array()
is not yet supported in the Beam DataFrame API because it produces an output type that is not deferred.For more information see https://s.apache.org/dataframe-non-deferred-result.
- get(**kwargs)
pandas.Series.get()
is not yet supported in the Beam DataFrame API because the columns in the output DataFrame depend on the data.For more information see https://s.apache.org/dataframe-non-deferred-columns.
- ravel(**kwargs)
pandas.Series.ravel()
is not yet supported in the Beam DataFrame API because it produces an output type that is not deferred.For more information see https://s.apache.org/dataframe-non-deferred-result.
- slice_shift(**kwargs)
pandas.Series.slice_shift()
is not yet supported in the Beam DataFrame API because it is deprecated in pandas.
- tshift(**kwargs)
pandas.Series.tshift()
is not yet supported in the Beam DataFrame API because it is deprecated in pandas.
- rename(**kwargs)
Alter Series index labels or name.
Function / dict values must be unique (1-to-1). Labels not contained in a dict / Series will be left as-is. Extra labels listed don’t throw an error.
Alternatively, change
Series.name
with a scalar value.See the user guide for more.
- Parameters:
index (scalar, hashable sequence, dict-like or function optional) – Functions or dict-like are transformations to apply to the index. Scalar or hashable sequence-like will alter the
DeferredSeries.name
attribute.axis ({0 or 'index'}) – Unused. Parameter needed for compatibility with DeferredDataFrame.
copy (bool, default True) – Also copy underlying data.
inplace (bool, default False) – Whether to return a new DeferredSeries. If True the value of copy is ignored.
level (int or level name, default None) – In case of MultiIndex, only rename labels in the specified level.
errors ({'ignore', 'raise'}, default 'ignore') – If ‘raise’, raise KeyError when a dict-like mapper or index contains labels that are not present in the index being transformed. If ‘ignore’, existing keys will be renamed and extra keys will be ignored.
- Returns:
DeferredSeries with index labels or name altered or None if
inplace=True
.- Return type:
DeferredSeries or None
Differences from pandas
This operation has no known divergences from the pandas API.
See also
DeferredDataFrame.rename
Corresponding DeferredDataFrame method.
DeferredSeries.rename_axis
Set the name of the axis.
Examples
NOTE: These examples are pulled directly from the pandas documentation for convenience. Usage of the Beam DataFrame API will look different because it is a deferred API.
>>> s = pd.Series([1, 2, 3]) >>> s 0 1 1 2 2 3 dtype: int64 >>> s.rename("my_name") # scalar, changes Series.name 0 1 1 2 2 3 Name: my_name, dtype: int64 >>> s.rename(lambda x: x ** 2) # function, changes labels 0 1 1 2 4 3 dtype: int64 >>> s.rename({1: 3, 2: 5}) # mapping, changes labels 0 1 3 2 5 3 dtype: int64
- between(**kwargs)
Return boolean Series equivalent to left <= series <= right.
This function returns a boolean vector containing True wherever the corresponding Series element is between the boundary values left and right. NA values are treated as False.
- Parameters:
left (scalar or list-like) – Left boundary.
right (scalar or list-like) – Right boundary.
inclusive ({"both", "neither", "left", "right"}) –
Include boundaries. Whether to set each bound as closed or open.
Changed in version 1.3.0.
- Returns:
DeferredSeries representing whether each element is between left and right (inclusive).
- Return type:
Differences from pandas
This operation has no known divergences from the pandas API.
See also
DeferredSeries.gt
Greater than of series and other.
DeferredSeries.lt
Less than of series and other.
Notes
This function is equivalent to
(left <= ser) & (ser <= right)
Examples
NOTE: These examples are pulled directly from the pandas documentation for convenience. Usage of the Beam DataFrame API will look different because it is a deferred API.
>>> s = pd.Series([2, 0, 4, 8, np.nan]) Boundary values are included by default: >>> s.between(1, 4) 0 True 1 False 2 True 3 False 4 False dtype: bool With `inclusive` set to ``"neither"`` boundary values are excluded: >>> s.between(1, 4, inclusive="neither") 0 True 1 False 2 False 3 False 4 False dtype: bool `left` and `right` can be any scalar value: >>> s = pd.Series(['Alice', 'Bob', 'Carol', 'Eve']) >>> s.between('Anna', 'Daniel') 0 False 1 True 2 True 3 False dtype: bool
- add_suffix(**kwargs)
Suffix labels with string suffix.
For Series, the row labels are suffixed. For DataFrame, the column labels are suffixed.
- Parameters:
suffix (str) – The string to add after each label.
axis ({0 or 'index', 1 or 'columns', None}, default None) –
Axis to add suffix on
Added in version 2.0.0.
- Returns:
New DeferredSeries or DeferredDataFrame with updated labels.
- Return type:
Differences from pandas
This operation has no known divergences from the pandas API.
See also
DeferredSeries.add_prefix
Prefix row labels with string prefix.
DeferredDataFrame.add_prefix
Prefix column labels with string prefix.
Examples
NOTE: These examples are pulled directly from the pandas documentation for convenience. Usage of the Beam DataFrame API will look different because it is a deferred API.
>>> s = pd.Series([1, 2, 3, 4]) >>> s 0 1 1 2 2 3 3 4 dtype: int64 >>> s.add_suffix('_item') 0_item 1 1_item 2 2_item 3 3_item 4 dtype: int64 >>> df = pd.DataFrame({'A': [1, 2, 3, 4], 'B': [3, 4, 5, 6]}) >>> df A B 0 1 3 1 2 4 2 3 5 3 4 6 >>> df.add_suffix('_col') A_col B_col 0 1 3 1 2 4 2 3 5 3 4 6
- add_prefix(**kwargs)
Prefix labels with string prefix.
For Series, the row labels are prefixed. For DataFrame, the column labels are prefixed.
- Parameters:
prefix (str) – The string to add before each label.
axis ({0 or 'index', 1 or 'columns', None}, default None) –
Axis to add prefix on
Added in version 2.0.0.
- Returns:
New DeferredSeries or DeferredDataFrame with updated labels.
- Return type:
Differences from pandas
This operation has no known divergences from the pandas API.
See also
DeferredSeries.add_suffix
Suffix row labels with string suffix.
DeferredDataFrame.add_suffix
Suffix column labels with string suffix.
Examples
NOTE: These examples are pulled directly from the pandas documentation for convenience. Usage of the Beam DataFrame API will look different because it is a deferred API.
>>> s = pd.Series([1, 2, 3, 4]) >>> s 0 1 1 2 2 3 3 4 dtype: int64 >>> s.add_prefix('item_') item_0 1 item_1 2 item_2 3 item_3 4 dtype: int64 >>> df = pd.DataFrame({'A': [1, 2, 3, 4], 'B': [3, 4, 5, 6]}) >>> df A B 0 1 3 1 2 4 2 3 5 3 4 6 >>> df.add_prefix('col_') col_A col_B 0 1 3 1 2 4 2 3 5 3 4 6
- info(**kwargs)
pandas.Series.info()
is not yet supported in the Beam DataFrame API because it produces an output type that is not deferred.For more information see https://s.apache.org/dataframe-non-deferred-result.
- idxmin(**kwargs)[source]
Return the row label of the minimum value.
If multiple values equal the minimum, the first row label with that value is returned.
- Parameters:
axis ({0 or 'index'}) – Unused. Parameter needed for compatibility with DeferredDataFrame.
skipna (bool, default True) – Exclude NA/null values. If the entire DeferredSeries is NA, the result will be NA.
*args – Additional arguments and keywords have no effect but might be accepted for compatibility with NumPy.
**kwargs – Additional arguments and keywords have no effect but might be accepted for compatibility with NumPy.
- Returns:
Label of the minimum value.
- Return type:
- Raises:
ValueError – If the DeferredSeries is empty.
Differences from pandas
This operation has no known divergences from the pandas API.
See also
numpy.argmin
Return indices of the minimum values along the given axis.
DeferredDataFrame.idxmin
Return index of first occurrence of minimum over requested axis.
DeferredSeries.idxmax
Return index label of the first occurrence of maximum of values.
Notes
This method is the DeferredSeries version of
ndarray.argmin
. This method returns the label of the minimum, whilendarray.argmin
returns the position. To get the position, useseries.values.argmin()
.Examples
NOTE: These examples are pulled directly from the pandas documentation for convenience. Usage of the Beam DataFrame API will look different because it is a deferred API.
>>> s = pd.Series(data=[1, None, 4, 1], ... index=['A', 'B', 'C', 'D']) >>> s A 1.0 B NaN C 4.0 D 1.0 dtype: float64 >>> s.idxmin() 'A' If `skipna` is False and there is an NA value in the data, the function returns ``nan``. >>> s.idxmin(skipna=False) nan
- idxmax(**kwargs)[source]
Return the row label of the maximum value.
If multiple values equal the maximum, the first row label with that value is returned.
- Parameters:
axis ({0 or 'index'}) – Unused. Parameter needed for compatibility with DeferredDataFrame.
skipna (bool, default True) – Exclude NA/null values. If the entire DeferredSeries is NA, the result will be NA.
*args – Additional arguments and keywords have no effect but might be accepted for compatibility with NumPy.
**kwargs – Additional arguments and keywords have no effect but might be accepted for compatibility with NumPy.
- Returns:
Label of the maximum value.
- Return type:
- Raises:
ValueError – If the DeferredSeries is empty.
Differences from pandas
This operation has no known divergences from the pandas API.
See also
numpy.argmax
Return indices of the maximum values along the given axis.
DeferredDataFrame.idxmax
Return index of first occurrence of maximum over requested axis.
DeferredSeries.idxmin
Return index label of the first occurrence of minimum of values.
Notes
This method is the DeferredSeries version of
ndarray.argmax
. This method returns the label of the maximum, whilendarray.argmax
returns the position. To get the position, useseries.values.argmax()
.Examples
NOTE: These examples are pulled directly from the pandas documentation for convenience. Usage of the Beam DataFrame API will look different because it is a deferred API.
>>> s = pd.Series(data=[1, None, 4, 3, 4], ... index=['A', 'B', 'C', 'D', 'E']) >>> s A 1.0 B NaN C 4.0 D 3.0 E 4.0 dtype: float64 >>> s.idxmax() 'C' If `skipna` is False and there is an NA value in the data, the function returns ``nan``. >>> s.idxmax(skipna=False) nan
- explode(ignore_index)[source]
Transform each element of a list-like to a row.
- Parameters:
ignore_index (bool, default False) – If True, the resulting index will be labeled 0, 1, …, n - 1.
- Returns:
Exploded lists to rows; index will be duplicated for these rows.
- Return type:
Differences from pandas
This operation has no known divergences from the pandas API.
See also
DeferredSeries.str.split
Split string values on specified separator.
DeferredSeries.unstack
Unstack, a.k.a. pivot, DeferredSeries with MultiIndex to produce DeferredDataFrame.
DeferredDataFrame.melt
Unpivot a DeferredDataFrame from wide format to long format.
DeferredDataFrame.explode
Explode a DeferredDataFrame from list-like columns to long format.
Notes
This routine will explode list-likes including lists, tuples, sets, DeferredSeries, and np.ndarray. The result dtype of the subset rows will be object. Scalars will be returned unchanged, and empty list-likes will result in a np.nan for that row. In addition, the ordering of elements in the output will be non-deterministic when exploding sets.
Reference the user guide for more examples.
Examples
NOTE: These examples are pulled directly from the pandas documentation for convenience. Usage of the Beam DataFrame API will look different because it is a deferred API.
>>> s = pd.Series([[1, 2, 3], 'foo', [], [3, 4]]) >>> s 0 [1, 2, 3] 1 foo 2 [] 3 [3, 4] dtype: object >>> s.explode() 0 1 0 2 0 3 1 foo 2 NaN 3 3 3 4 dtype: object
- dot(other)[source]
Compute the matrix multiplication between the DataFrame and other.
This method computes the matrix product between the DataFrame and the values of an other Series, DataFrame or a numpy array.
It can also be called using
self @ other
.- Parameters:
other (DeferredSeries, DeferredDataFrame or array-like) – The other object to compute the matrix product with.
- Returns:
If other is a DeferredSeries, return the matrix product between self and other as a DeferredSeries. If other is a DeferredDataFrame or a numpy.array, return the matrix product of self and other in a DeferredDataFrame of a np.array.
- Return type:
Differences from pandas
other
must be aDeferredDataFrame
orDeferredSeries
instance. Computing the dot product with an array-like is not supported because it is order-sensitive.See also
DeferredSeries.dot
Similar method for DeferredSeries.
Notes
The dimensions of DeferredDataFrame and other must be compatible in order to compute the matrix multiplication. In addition, the column names of DeferredDataFrame and the index of other must contain the same values, as they will be aligned prior to the multiplication.
The dot method for DeferredSeries computes the inner product, instead of the matrix product here.
Examples
NOTE: These examples are pulled directly from the pandas documentation for convenience. Usage of the Beam DataFrame API will look different because it is a deferred API. In addition, some arguments shown here may not be supported, see ‘Differences from pandas’ for details.
Here we multiply a DataFrame with a Series. >>> df = pd.DataFrame([[0, 1, -2, -1], [1, 1, 1, 1]]) >>> s = pd.Series([1, 1, 2, 1]) >>> df.dot(s) 0 -4 1 5 dtype: int64 Here we multiply a DataFrame with another DataFrame. >>> other = pd.DataFrame([[0, 1], [1, 2], [-1, -1], [2, 0]]) >>> df.dot(other) 0 1 0 1 4 1 2 2 Note that the dot method give the same result as @ >>> df @ other 0 1 0 1 4 1 2 2 The dot method works also if other is an np.array. >>> arr = np.array([[0, 1], [1, 2], [-1, -1], [2, 0]]) >>> df.dot(arr) 0 1 0 1 4 1 2 2 Note how shuffling of the objects does not change the result. >>> s2 = s.reindex([1, 0, 2, 3]) >>> df.dot(s2) 0 -4 1 5 dtype: int64
- nunique(**kwargs)[source]
Return number of unique elements in the object.
Excludes NA values by default.
Differences from pandas
This operation has no known divergences from the pandas API.
See also
DeferredDataFrame.nunique
Method nunique for DeferredDataFrame.
DeferredSeries.count
Count non-NA/null observations in the DeferredSeries.
Examples
NOTE: These examples are pulled directly from the pandas documentation for convenience. Usage of the Beam DataFrame API will look different because it is a deferred API.
>>> s = pd.Series([1, 3, 5, 7, 7]) >>> s 0 1 1 3 2 5 3 7 4 7 dtype: int64 >>> s.nunique() 4
- quantile(q, **kwargs)[source]
Return value at the given quantile.
- Parameters:
q (float or array-like, default 0.5 (50% quantile)) – The quantile(s) to compute, which can lie in range: 0 <= q <= 1.
interpolation ({'linear', 'lower', 'higher', 'midpoint', 'nearest'}) –
This optional parameter specifies the interpolation method to use, when the desired quantile lies between two data points i and j:
linear: i + (j - i) * fraction, where fraction is the fractional part of the index surrounded by i and j.
lower: i.
higher: j.
nearest: i or j whichever is nearest.
midpoint: (i + j) / 2.
- Returns:
If
q
is an array, a DeferredSeries will be returned where the index isq
and the values are the quantiles, otherwise a float will be returned.- Return type:
Differences from pandas
quantile is not parallelizable. See Issue 20933 tracking the possible addition of an approximate, parallelizable implementation of quantile.
See also
core.window.Rolling.quantile
Calculate the rolling quantile.
numpy.percentile
Returns the q-th percentile(s) of the array elements.
Examples
NOTE: These examples are pulled directly from the pandas documentation for convenience. Usage of the Beam DataFrame API will look different because it is a deferred API. In addition, some arguments shown here may not be supported, see ‘Differences from pandas’ for details.
>>> s = pd.Series([1, 2, 3, 4]) >>> s.quantile(.5) 2.5 >>> s.quantile([.25, .5, .75]) 0.25 1.75 0.50 2.50 0.75 3.25 dtype: float64
- std(*args, **kwargs)[source]
Return sample standard deviation over requested axis.
Normalized by N-1 by default. This can be changed using the ddof argument.
- Parameters:
axis ({index (0)}) – For DeferredSeries this parameter is unused and defaults to 0.
skipna (bool, default True) – Exclude NA/null values. If an entire row/column is NA, the result will be NA.
ddof (int, default 1) – Delta Degrees of Freedom. The divisor used in calculations is N - ddof, where N represents the number of elements.
numeric_only (bool, default False) – Include only float, int, boolean columns. Not implemented for DeferredSeries.
- Return type:
scalar or DeferredSeries (if level specified)
Differences from pandas
This operation has no known divergences from the pandas API.
Notes
To have the same behaviour as numpy.std, use ddof=0 (instead of the default ddof=1)
Examples
NOTE: These examples are pulled directly from the pandas documentation for convenience. Usage of the Beam DataFrame API will look different because it is a deferred API.
>>> df = pd.DataFrame({'person_id': [0, 1, 2, 3], ... 'age': [21, 25, 62, 43], ... 'height': [1.61, 1.87, 1.49, 2.01]} ... ).set_index('person_id') >>> df age height person_id 0 21 1.61 1 25 1.87 2 62 1.49 3 43 2.01 The standard deviation of the columns can be found as follows: >>> df.std() age 18.786076 height 0.237417 dtype: float64 Alternatively, `ddof=0` can be set to normalize by N instead of N-1: >>> df.std(ddof=0) age 16.269219 height 0.205609 dtype: float64
- mean(skipna, **kwargs)[source]
Return the mean of the values over the requested axis.
- Parameters:
axis ({index (0)}) –
Axis for the function to be applied on. For DeferredSeries this parameter is unused and defaults to 0.
For DeferredDataFrames, specifying
axis=None
will apply the aggregation across both axes.Added in version 2.0.0.
skipna (bool, default True) – Exclude NA/null values when computing the result.
numeric_only (bool, default False) – Include only float, int, boolean columns. Not implemented for DeferredSeries.
**kwargs – Additional keyword arguments to be passed to the function.
- Return type:
scalar or scalar
Examples
scalar or scalar Examples -------- >>> s = pd.Series([1, 2, 3]) >>> s.mean() 2.0 With a DataFrame >>> df = pd.DataFrame({'a': [1, 2], 'b': [2, 3]}, index=['tiger', 'zebra']) >>> df a b tiger 1 2 zebra 2 3 >>> df.mean() a 1.5 b 2.5 dtype: float64 Using axis=1 >>> df.mean(axis=1) tiger 1.5 zebra 2.5 dtype: float64 In this case, `numeric_only` should be set to `True` to avoid getting an error. >>> df = pd.DataFrame({'a': [1, 2], 'b': ['T', 'Z']}, ... index=['tiger', 'zebra']) >>> df.mean(numeric_only=True) a 1.5 dtype: float64 -------- >>> s = pd.Series([1, 2, 3]) >>> s.mean() 2.0 With a DataFrame >>> df = pd.DataFrame({'a': [1, 2], 'b': [2, 3]}, index=['tiger', 'zebra']) >>> df a b tiger 1 2 zebra 2 3 >>> df.mean() a 1.5 b 2.5 dtype: float64 Using axis=1 >>> df.mean(axis=1) tiger 1.5 zebra 2.5 dtype: float64 In this case, `numeric_only` should be set to `True` to avoid getting an error. >>> df = pd.DataFrame({'a': [1, 2], 'b': ['T', 'Z']}, ... index=['tiger', 'zebra']) >>> df.mean(numeric_only=True) a 1.5 dtype: float64
Differences from pandas
This operation has no known divergences from the pandas API.
- var(axis, skipna, level, ddof, **kwargs)[source]
Return unbiased variance over requested axis.
Normalized by N-1 by default. This can be changed using the ddof argument.
- Parameters:
axis ({index (0)}) – For DeferredSeries this parameter is unused and defaults to 0.
skipna (bool, default True) – Exclude NA/null values. If an entire row/column is NA, the result will be NA.
ddof (int, default 1) – Delta Degrees of Freedom. The divisor used in calculations is N - ddof, where N represents the number of elements.
numeric_only (bool, default False) – Include only float, int, boolean columns. Not implemented for DeferredSeries.
- Return type:
scalar or DeferredSeries (if level specified)
Differences from pandas
This operation has no known divergences from the pandas API.
Examples
NOTE: These examples are pulled directly from the pandas documentation for convenience. Usage of the Beam DataFrame API will look different because it is a deferred API.
>>> df = pd.DataFrame({'person_id': [0, 1, 2, 3], ... 'age': [21, 25, 62, 43], ... 'height': [1.61, 1.87, 1.49, 2.01]} ... ).set_index('person_id') >>> df age height person_id 0 21 1.61 1 25 1.87 2 62 1.49 3 43 2.01 >>> df.var() age 352.916667 height 0.056367 dtype: float64 Alternatively, ``ddof=0`` can be set to normalize by N instead of N-1: >>> df.var(ddof=0) age 264.687500 height 0.042275 dtype: float64
- corr(other, method, min_periods)[source]
Compute correlation with other Series, excluding missing values.
The two Series objects are not required to be the same length and will be aligned internally before the correlation function is applied.
- Parameters:
other (DeferredSeries) – DeferredSeries with which to compute the correlation.
method ({'pearson', 'kendall', 'spearman'} or callable) –
Method used to compute correlation:
pearson : Standard correlation coefficient
kendall : Kendall Tau correlation coefficient
spearman : Spearman rank correlation
callable: Callable with input two 1d ndarrays and returning a float.
Warning
Note that the returned matrix from corr will have 1 along the diagonals and will be symmetric regardless of the callable’s behavior.
min_periods (int, optional) – Minimum number of observations needed to have a valid result.
- Returns:
Correlation with other.
- Return type:
Differences from pandas
Only
method='pearson'
is currently parallelizable.See also
DeferredDataFrame.corr
Compute pairwise correlation between columns.
DeferredDataFrame.corrwith
Compute pairwise correlation with another DeferredDataFrame or DeferredSeries.
Notes
Pearson, Kendall and Spearman correlation are currently computed using pairwise complete observations.
Automatic data alignment: as with all pandas operations, automatic data alignment is performed for this method.
corr()
automatically considers values with matching indices.Examples
NOTE: These examples are pulled directly from the pandas documentation for convenience. Usage of the Beam DataFrame API will look different because it is a deferred API. In addition, some arguments shown here may not be supported, see ‘Differences from pandas’ for details.
>>> def histogram_intersection(a, b): ... v = np.minimum(a, b).sum().round(decimals=1) ... return v >>> s1 = pd.Series([.2, .0, .6, .2]) >>> s2 = pd.Series([.3, .6, .0, .1]) >>> s1.corr(s2, method=histogram_intersection) 0.3 Pandas auto-aligns the values with matching indices >>> s1 = pd.Series([1, 2, 3], index=[0, 1, 2]) >>> s2 = pd.Series([1, 2, 3], index=[2, 1, 0]) >>> s1.corr(s2) -1.0
- skew(axis, skipna, level, numeric_only, **kwargs)[source]
Return unbiased skew over requested axis.
Normalized by N-1.
- Parameters:
axis ({index (0)}) –
Axis for the function to be applied on. For DeferredSeries this parameter is unused and defaults to 0.
For DeferredDataFrames, specifying
axis=None
will apply the aggregation across both axes.Added in version 2.0.0.
skipna (bool, default True) – Exclude NA/null values when computing the result.
numeric_only (bool, default False) – Include only float, int, boolean columns. Not implemented for DeferredSeries.
**kwargs – Additional keyword arguments to be passed to the function.
- Return type:
scalar or scalar
Examples
scalar or scalar Examples -------- >>> s = pd.Series([1, 2, 3]) >>> s.skew() 0.0 With a DataFrame >>> df = pd.DataFrame({'a': [1, 2, 3], 'b': [2, 3, 4], 'c': [1, 3, 5]}, ... index=['tiger', 'zebra', 'cow']) >>> df a b c tiger 1 2 1 zebra 2 3 3 cow 3 4 5 >>> df.skew() a 0.0 b 0.0 c 0.0 dtype: float64 Using axis=1 >>> df.skew(axis=1) tiger 1.732051 zebra -1.732051 cow 0.000000 dtype: float64 In this case, `numeric_only` should be set to `True` to avoid getting an error. >>> df = pd.DataFrame({'a': [1, 2, 3], 'b': ['T', 'Z', 'X']}, ... index=['tiger', 'zebra', 'cow']) >>> df.skew(numeric_only=True) a 0.0 dtype: float64 -------- >>> s = pd.Series([1, 2, 3]) >>> s.skew() 0.0 With a DataFrame >>> df = pd.DataFrame({'a': [1, 2, 3], 'b': [2, 3, 4], 'c': [1, 3, 5]}, ... index=['tiger', 'zebra', 'cow']) >>> df a b c tiger 1 2 1 zebra 2 3 3 cow 3 4 5 >>> df.skew() a 0.0 b 0.0 c 0.0 dtype: float64 Using axis=1 >>> df.skew(axis=1) tiger 1.732051 zebra -1.732051 cow 0.000000 dtype: float64 In this case, `numeric_only` should be set to `True` to avoid getting an error. >>> df = pd.DataFrame({'a': [1, 2, 3], 'b': ['T', 'Z', 'X']}, ... index=['tiger', 'zebra', 'cow']) >>> df.skew(numeric_only=True) a 0.0 dtype: float64
Differences from pandas
This operation has no known divergences from the pandas API.
- kurtosis(axis, skipna, level, numeric_only, **kwargs)[source]
Return unbiased kurtosis over requested axis.
Kurtosis obtained using Fisher’s definition of kurtosis (kurtosis of normal == 0.0). Normalized by N-1.
- Parameters:
axis ({index (0)}) –
Axis for the function to be applied on. For DeferredSeries this parameter is unused and defaults to 0.
For DeferredDataFrames, specifying
axis=None
will apply the aggregation across both axes.Added in version 2.0.0.
skipna (bool, default True) – Exclude NA/null values when computing the result.
numeric_only (bool, default False) – Include only float, int, boolean columns. Not implemented for DeferredSeries.
**kwargs – Additional keyword arguments to be passed to the function.
- Return type:
scalar or scalar
Examples
scalar or scalar Examples -------- >>> s = pd.Series([1, 2, 2, 3], index=['cat', 'dog', 'dog', 'mouse']) >>> s cat 1 dog 2 dog 2 mouse 3 dtype: int64 >>> s.kurt() 1.5 With a DataFrame >>> df = pd.DataFrame({'a': [1, 2, 2, 3], 'b': [3, 4, 4, 4]}, ... index=['cat', 'dog', 'dog', 'mouse']) >>> df a b cat 1 3 dog 2 4 dog 2 4 mouse 3 4 >>> df.kurt() a 1.5 b 4.0 dtype: float64 With axis=None >>> df.kurt(axis=None).round(6) -0.988693 Using axis=1 >>> df = pd.DataFrame({'a': [1, 2], 'b': [3, 4], 'c': [3, 4], 'd': [1, 2]}, ... index=['cat', 'dog']) >>> df.kurt(axis=1) cat -6.0 dog -6.0 dtype: float64 -------- >>> s = pd.Series([1, 2, 2, 3], index=['cat', 'dog', 'dog', 'mouse']) >>> s cat 1 dog 2 dog 2 mouse 3 dtype: int64 >>> s.kurt() 1.5 With a DataFrame >>> df = pd.DataFrame({'a': [1, 2, 2, 3], 'b': [3, 4, 4, 4]}, ... index=['cat', 'dog', 'dog', 'mouse']) >>> df a b cat 1 3 dog 2 4 dog 2 4 mouse 3 4 >>> df.kurt() a 1.5 b 4.0 dtype: float64 With axis=None >>> df.kurt(axis=None).round(6) -0.988693 Using axis=1 >>> df = pd.DataFrame({'a': [1, 2], 'b': [3, 4], 'c': [3, 4], 'd': [1, 2]}, ... index=['cat', 'dog']) >>> df.kurt(axis=1) cat -6.0 dog -6.0 dtype: float64
Differences from pandas
This operation has no known divergences from the pandas API.
- kurt(*args, **kwargs)[source]
Return unbiased kurtosis over requested axis.
Kurtosis obtained using Fisher’s definition of kurtosis (kurtosis of normal == 0.0). Normalized by N-1.
- Parameters:
axis ({index (0)}) –
Axis for the function to be applied on. For DeferredSeries this parameter is unused and defaults to 0.
For DeferredDataFrames, specifying
axis=None
will apply the aggregation across both axes.Added in version 2.0.0.
skipna (bool, default True) – Exclude NA/null values when computing the result.
numeric_only (bool, default False) – Include only float, int, boolean columns. Not implemented for DeferredSeries.
**kwargs – Additional keyword arguments to be passed to the function.
- Return type:
scalar or scalar
Examples
scalar or scalar Examples -------- >>> s = pd.Series([1, 2, 2, 3], index=['cat', 'dog', 'dog', 'mouse']) >>> s cat 1 dog 2 dog 2 mouse 3 dtype: int64 >>> s.kurt() 1.5 With a DataFrame >>> df = pd.DataFrame({'a': [1, 2, 2, 3], 'b': [3, 4, 4, 4]}, ... index=['cat', 'dog', 'dog', 'mouse']) >>> df a b cat 1 3 dog 2 4 dog 2 4 mouse 3 4 >>> df.kurt() a 1.5 b 4.0 dtype: float64 With axis=None >>> df.kurt(axis=None).round(6) -0.988693 Using axis=1 >>> df = pd.DataFrame({'a': [1, 2], 'b': [3, 4], 'c': [3, 4], 'd': [1, 2]}, ... index=['cat', 'dog']) >>> df.kurt(axis=1) cat -6.0 dog -6.0 dtype: float64 -------- >>> s = pd.Series([1, 2, 2, 3], index=['cat', 'dog', 'dog', 'mouse']) >>> s cat 1 dog 2 dog 2 mouse 3 dtype: int64 >>> s.kurt() 1.5 With a DataFrame >>> df = pd.DataFrame({'a': [1, 2, 2, 3], 'b': [3, 4, 4, 4]}, ... index=['cat', 'dog', 'dog', 'mouse']) >>> df a b cat 1 3 dog 2 4 dog 2 4 mouse 3 4 >>> df.kurt() a 1.5 b 4.0 dtype: float64 With axis=None >>> df.kurt(axis=None).round(6) -0.988693 Using axis=1 >>> df = pd.DataFrame({'a': [1, 2], 'b': [3, 4], 'c': [3, 4], 'd': [1, 2]}, ... index=['cat', 'dog']) >>> df.kurt(axis=1) cat -6.0 dog -6.0 dtype: float64
Differences from pandas
This operation has no known divergences from the pandas API.
- cov(other, min_periods, ddof)[source]
Compute covariance with Series, excluding missing values.
The two Series objects are not required to be the same length and will be aligned internally before the covariance is calculated.
- Parameters:
other (DeferredSeries) – DeferredSeries with which to compute the covariance.
min_periods (int, optional) – Minimum number of observations needed to have a valid result.
ddof (int, default 1) – Delta degrees of freedom. The divisor used in calculations is
N - ddof
, whereN
represents the number of elements.
- Returns:
Covariance between DeferredSeries and other normalized by N-1 (unbiased estimator).
- Return type:
Differences from pandas
This operation has no known divergences from the pandas API.
See also
DeferredDataFrame.cov
Compute pairwise covariance of columns.
Examples
NOTE: These examples are pulled directly from the pandas documentation for convenience. Usage of the Beam DataFrame API will look different because it is a deferred API.
>>> s1 = pd.Series([0.90010907, 0.13484424, 0.62036035]) >>> s2 = pd.Series([0.12528585, 0.26962463, 0.51111198]) >>> s1.cov(s2) -0.01685762652715874
- dropna(**kwargs)[source]
Return a new Series with missing values removed.
See the User Guide for more on which values are considered missing, and how to work with missing data.
- Parameters:
axis ({0 or 'index'}) – Unused. Parameter needed for compatibility with DeferredDataFrame.
inplace (bool, default False) – If True, do operation inplace and return None.
how (str, optional) – Not in use. Kept for compatibility.
ignore_index (bool, default
False
) –If
True
, the resulting axis will be labeled 0, 1, …, n - 1.Added in version 2.0.0.
- Returns:
DeferredSeries with NA entries dropped from it or None if
inplace=True
.- Return type:
DeferredSeries or None
Differences from pandas
This operation has no known divergences from the pandas API.
See also
DeferredSeries.isna
Indicate missing values.
DeferredSeries.notna
Indicate existing (non-missing) values.
DeferredSeries.fillna
Replace missing values.
DeferredDataFrame.dropna
Drop rows or columns which contain NA values.
Index.dropna
Drop missing indices.
Examples
NOTE: These examples are pulled directly from the pandas documentation for convenience. Usage of the Beam DataFrame API will look different because it is a deferred API.
>>> ser = pd.Series([1., 2., np.nan]) >>> ser 0 1.0 1 2.0 2 NaN dtype: float64 Drop NA values from a Series. >>> ser.dropna() 0 1.0 1 2.0 dtype: float64 Empty strings are not considered NA values. ``None`` is considered an NA value. >>> ser = pd.Series([np.nan, 2, pd.NaT, '', None, 'I stay']) >>> ser 0 NaN 1 2 2 NaT 3 4 None 5 I stay dtype: object >>> ser.dropna() 1 2 3 5 I stay dtype: object
- set_axis(labels, **kwargs)[source]
Assign desired index to given axis.
Indexes for row labels can be changed by assigning a list-like or Index.
- Parameters:
labels (list-like, Index) – The values for the new index.
axis ({0 or 'index'}, default 0) – The axis to update. The value 0 identifies the rows. For DeferredSeries this parameter is unused and defaults to 0.
copy (bool, default True) –
Whether to make a copy of the underlying data.
Added in version 1.5.0.
- Returns:
An object of type DeferredSeries.
- Return type:
Differences from pandas
This operation has no known divergences from the pandas API.
See also
Series.rename_axis
Alter the name of the index.
Examples
Series.rename_axis : Alter the name of the index. Examples -------- >>> s = pd.Series([1, 2, 3]) >>> s 0 1 1 2 2 3 dtype: int64 >>> s.set_axis(['a', 'b', 'c'], axis=0) a 1 b 2 c 3 dtype: int64 -------- >>> s = pd.Series([1, 2, 3]) >>> s 0 1 1 2 2 3 dtype: int64 >>> s.set_axis(['a', 'b', 'c'], axis=0) a 1 b 2 c 3 dtype: int64
- isnull(**kwargs)
Detect missing values.
Return a boolean same-sized object indicating if the values are NA. NA values, such as None or
numpy.NaN
, gets mapped to True values. Everything else gets mapped to False values. Characters such as empty strings''
ornumpy.inf
are not considered NA values (unless you setpandas.options.mode.use_inf_as_na = True
).- Returns:
Mask of bool values for each element in DeferredSeries that indicates whether an element is an NA value.
- Return type:
Differences from pandas
This operation has no known divergences from the pandas API.
See also
DeferredSeries.isnull
Alias of isna.
DeferredSeries.notna
Boolean inverse of isna.
DeferredSeries.dropna
Omit axes labels with missing values.
isna
Top-level isna.
Examples
NOTE: These examples are pulled directly from the pandas documentation for convenience. Usage of the Beam DataFrame API will look different because it is a deferred API.
Show which entries in a DataFrame are NA. >>> df = pd.DataFrame(dict(age=[5, 6, np.nan], ... born=[pd.NaT, pd.Timestamp('1939-05-27'), ... pd.Timestamp('1940-04-25')], ... name=['Alfred', 'Batman', ''], ... toy=[None, 'Batmobile', 'Joker'])) >>> df age born name toy 0 5.0 NaT Alfred None 1 6.0 1939-05-27 Batman Batmobile 2 NaN 1940-04-25 Joker >>> df.isna() age born name toy 0 False True False True 1 False False False False 2 True False False False Show which entries in a Series are NA. >>> ser = pd.Series([5, 6, np.nan]) >>> ser 0 5.0 1 6.0 2 NaN dtype: float64 >>> ser.isna() 0 False 1 False 2 True dtype: bool
- isna(**kwargs)
Detect missing values.
Return a boolean same-sized object indicating if the values are NA. NA values, such as None or
numpy.NaN
, gets mapped to True values. Everything else gets mapped to False values. Characters such as empty strings''
ornumpy.inf
are not considered NA values (unless you setpandas.options.mode.use_inf_as_na = True
).- Returns:
Mask of bool values for each element in DeferredSeries that indicates whether an element is an NA value.
- Return type:
Differences from pandas
This operation has no known divergences from the pandas API.
See also
DeferredSeries.isnull
Alias of isna.
DeferredSeries.notna
Boolean inverse of isna.
DeferredSeries.dropna
Omit axes labels with missing values.
isna
Top-level isna.
Examples
NOTE: These examples are pulled directly from the pandas documentation for convenience. Usage of the Beam DataFrame API will look different because it is a deferred API.
Show which entries in a DataFrame are NA. >>> df = pd.DataFrame(dict(age=[5, 6, np.nan], ... born=[pd.NaT, pd.Timestamp('1939-05-27'), ... pd.Timestamp('1940-04-25')], ... name=['Alfred', 'Batman', ''], ... toy=[None, 'Batmobile', 'Joker'])) >>> df age born name toy 0 5.0 NaT Alfred None 1 6.0 1939-05-27 Batman Batmobile 2 NaN 1940-04-25 Joker >>> df.isna() age born name toy 0 False True False True 1 False False False False 2 True False False False Show which entries in a Series are NA. >>> ser = pd.Series([5, 6, np.nan]) >>> ser 0 5.0 1 6.0 2 NaN dtype: float64 >>> ser.isna() 0 False 1 False 2 True dtype: bool
- notnull(**kwargs)
Detect existing (non-missing) values.
Return a boolean same-sized object indicating if the values are not NA. Non-missing values get mapped to True. Characters such as empty strings
''
ornumpy.inf
are not considered NA values (unless you setpandas.options.mode.use_inf_as_na = True
). NA values, such as None ornumpy.NaN
, get mapped to False values.- Returns:
Mask of bool values for each element in DeferredSeries that indicates whether an element is not an NA value.
- Return type:
Differences from pandas
This operation has no known divergences from the pandas API.
See also
DeferredSeries.notnull
Alias of notna.
DeferredSeries.isna
Boolean inverse of notna.
DeferredSeries.dropna
Omit axes labels with missing values.
notna
Top-level notna.
Examples
NOTE: These examples are pulled directly from the pandas documentation for convenience. Usage of the Beam DataFrame API will look different because it is a deferred API.
Show which entries in a DataFrame are not NA. >>> df = pd.DataFrame(dict(age=[5, 6, np.nan], ... born=[pd.NaT, pd.Timestamp('1939-05-27'), ... pd.Timestamp('1940-04-25')], ... name=['Alfred', 'Batman', ''], ... toy=[None, 'Batmobile', 'Joker'])) >>> df age born name toy 0 5.0 NaT Alfred None 1 6.0 1939-05-27 Batman Batmobile 2 NaN 1940-04-25 Joker >>> df.notna() age born name toy 0 True False True False 1 True True True True 2 False True True True Show which entries in a Series are not NA. >>> ser = pd.Series([5, 6, np.nan]) >>> ser 0 5.0 1 6.0 2 NaN dtype: float64 >>> ser.notna() 0 True 1 True 2 False dtype: bool
- notna(**kwargs)
Detect existing (non-missing) values.
Return a boolean same-sized object indicating if the values are not NA. Non-missing values get mapped to True. Characters such as empty strings
''
ornumpy.inf
are not considered NA values (unless you setpandas.options.mode.use_inf_as_na = True
). NA values, such as None ornumpy.NaN
, get mapped to False values.- Returns:
Mask of bool values for each element in DeferredSeries that indicates whether an element is not an NA value.
- Return type:
Differences from pandas
This operation has no known divergences from the pandas API.
See also
DeferredSeries.notnull
Alias of notna.
DeferredSeries.isna
Boolean inverse of notna.
DeferredSeries.dropna
Omit axes labels with missing values.
notna
Top-level notna.
Examples
NOTE: These examples are pulled directly from the pandas documentation for convenience. Usage of the Beam DataFrame API will look different because it is a deferred API.
Show which entries in a DataFrame are not NA. >>> df = pd.DataFrame(dict(age=[5, 6, np.nan], ... born=[pd.NaT, pd.Timestamp('1939-05-27'), ... pd.Timestamp('1940-04-25')], ... name=['Alfred', 'Batman', ''], ... toy=[None, 'Batmobile', 'Joker'])) >>> df age born name toy 0 5.0 NaT Alfred None 1 6.0 1939-05-27 Batman Batmobile 2 NaN 1940-04-25 Joker >>> df.notna() age born name toy 0 True False True False 1 True True True True 2 False True True True Show which entries in a Series are not NA. >>> ser = pd.Series([5, 6, np.nan]) >>> ser 0 5.0 1 6.0 2 NaN dtype: float64 >>> ser.notna() 0 True 1 True 2 False dtype: bool
- items(**kwargs)
pandas.Series.items()
is not yet supported in the Beam DataFrame API because it produces an output type that is not deferred.For more information see https://s.apache.org/dataframe-non-deferred-result.
- iteritems(**kwargs)
pandas.Series.iteritems()
is not yet supported in the Beam DataFrame API because it produces an output type that is not deferred.For more information see https://s.apache.org/dataframe-non-deferred-result.
- tolist(**kwargs)
pandas.Series.tolist()
is not yet supported in the Beam DataFrame API because it produces an output type that is not deferred.For more information see https://s.apache.org/dataframe-non-deferred-result.
- to_numpy(**kwargs)
pandas.Series.to_numpy()
is not yet supported in the Beam DataFrame API because it produces an output type that is not deferred.For more information see https://s.apache.org/dataframe-non-deferred-result.
- to_string(**kwargs)
pandas.Series.to_string()
is not yet supported in the Beam DataFrame API because it produces an output type that is not deferred.For more information see https://s.apache.org/dataframe-non-deferred-result.
- duplicated(keep)[source]
Indicate duplicate Series values.
Duplicated values are indicated as
True
values in the resulting Series. Either all duplicates, all except the first or all except the last occurrence of duplicates can be indicated.- Parameters:
keep ({'first', 'last', False}, default 'first') –
Method to handle dropping duplicates:
’first’ : Mark duplicates as
True
except for the first occurrence.’last’ : Mark duplicates as
True
except for the last occurrence.False
: Mark all duplicates asTrue
.
- Returns:
DeferredSeries indicating whether each value has occurred in the preceding values.
- Return type:
Differences from pandas
Only
keep=False
andkeep="any"
are supported. Other values ofkeep
make this an order-sensitive operation. Notekeep="any"
is a Beam-specific option that guarantees only one duplicate will be kept, but unlike"first"
and"last"
it makes no guarantees about _which_ duplicate element is kept.See also
Index.duplicated
Equivalent method on pandas.Index.
DeferredDataFrame.duplicated
Equivalent method on pandas.DeferredDataFrame.
DeferredSeries.drop_duplicates
Remove duplicate values from DeferredSeries.
Examples
NOTE: These examples are pulled directly from the pandas documentation for convenience. Usage of the Beam DataFrame API will look different because it is a deferred API. In addition, some arguments shown here may not be supported, see ‘Differences from pandas’ for details.
By default, for each set of duplicated values, the first occurrence is set on False and all others on True: >>> animals = pd.Series(['llama', 'cow', 'llama', 'beetle', 'llama']) >>> animals.duplicated() 0 False 1 False 2 True 3 False 4 True dtype: bool which is equivalent to >>> animals.duplicated(keep='first') 0 False 1 False 2 True 3 False 4 True dtype: bool By using 'last', the last occurrence of each set of duplicated values is set on False and all others on True: >>> animals.duplicated(keep='last') 0 True 1 False 2 True 3 False 4 False dtype: bool By setting keep on ``False``, all duplicates are True: >>> animals.duplicated(keep=False) 0 True 1 False 2 True 3 False 4 True dtype: bool
- drop_duplicates(keep)[source]
Return Series with duplicate values removed.
- Parameters:
keep ({‘first’, ‘last’,
False
}, default ‘first’) –Method to handle dropping duplicates:
’first’ : Drop duplicates except for the first occurrence.
’last’ : Drop duplicates except for the last occurrence.
False
: Drop all duplicates.
inplace (bool, default
False
) – IfTrue
, performs operation inplace and returns None.ignore_index (bool, default
False
) –If
True
, the resulting axis will be labeled 0, 1, …, n - 1.Added in version 2.0.0.
- Returns:
DeferredSeries with duplicates dropped or None if
inplace=True
.- Return type:
DeferredSeries or None
Differences from pandas
Only
keep=False
andkeep="any"
are supported. Other values ofkeep
make this an order-sensitive operation. Notekeep="any"
is a Beam-specific option that guarantees only one duplicate will be kept, but unlike"first"
and"last"
it makes no guarantees about _which_ duplicate element is kept.See also
Index.drop_duplicates
Equivalent method on Index.
DeferredDataFrame.drop_duplicates
Equivalent method on DeferredDataFrame.
DeferredSeries.duplicated
Related method on DeferredSeries, indicating duplicate DeferredSeries values.
DeferredSeries.unique
Return unique values as an array.
Examples
NOTE: These examples are pulled directly from the pandas documentation for convenience. Usage of the Beam DataFrame API will look different because it is a deferred API. In addition, some arguments shown here may not be supported, see ‘Differences from pandas’ for details.
Generate a Series with duplicated entries. >>> s = pd.Series(['llama', 'cow', 'llama', 'beetle', 'llama', 'hippo'], ... name='animal') >>> s 0 llama 1 cow 2 llama 3 beetle 4 llama 5 hippo Name: animal, dtype: object With the 'keep' parameter, the selection behaviour of duplicated values can be changed. The value 'first' keeps the first occurrence for each set of duplicated entries. The default value of keep is 'first'. >>> s.drop_duplicates() 0 llama 1 cow 3 beetle 5 hippo Name: animal, dtype: object The value 'last' for parameter 'keep' keeps the last occurrence for each set of duplicated entries. >>> s.drop_duplicates(keep='last') 1 cow 3 beetle 4 llama 5 hippo Name: animal, dtype: object The value ``False`` for parameter 'keep' discards all sets of duplicated entries. >>> s.drop_duplicates(keep=False) 1 cow 3 beetle 5 hippo Name: animal, dtype: object
- sample(**kwargs)[source]
Return a random sample of items from an axis of object.
You can use random_state for reproducibility.
- Parameters:
n (int, optional) – Number of items from axis to return. Cannot be used with frac. Default = 1 if frac = None.
frac (float, optional) – Fraction of axis items to return. Cannot be used with n.
replace (bool, default False) – Allow or disallow sampling of the same row more than once.
weights (str or ndarray-like, optional) – Default ‘None’ results in equal probability weighting. If passed a DeferredSeries, will align with target object on index. Index values in weights not found in sampled object will be ignored and index values in sampled object not in weights will be assigned weights of zero. If called on a DeferredDataFrame, will accept the name of a column when axis = 0. Unless weights are a DeferredSeries, weights must be same length as axis being sampled. If weights do not sum to 1, they will be normalized to sum to 1. Missing values in the weights column will be treated as zero. Infinite values not allowed.
random_state (int, array-like, BitGenerator, np.random.RandomState, np.random.Generator, optional) –
If int, array-like, or BitGenerator, seed for random number generator. If np.random.RandomState or np.random.Generator, use as given.
Changed in version 1.4.0: np.random.Generator objects now accepted
axis ({0 or 'index', 1 or 'columns', None}, default None) – Axis to sample. Accepts axis number or name. Default is stat axis for given data type. For DeferredSeries this parameter is unused and defaults to None.
ignore_index (bool, default False) –
If True, the resulting index will be labeled 0, 1, …, n - 1.
Added in version 1.3.0.
- Returns:
A new object of same type as caller containing n items randomly sampled from the caller object.
- Return type:
Differences from pandas
Only
n
and/orweights
may be specified.frac
,random_state
, andreplace=True
are not yet supported. See Issue 21010.Note that pandas will raise an error if
n
is larger than the length of the dataset, while the Beam DataFrame API will simply return the full dataset in that case.See also
DeferredDataFrameGroupBy.sample
Generates random samples from each group of a DeferredDataFrame object.
DeferredSeriesGroupBy.sample
Generates random samples from each group of a DeferredSeries object.
numpy.random.choice
Generates a random sample from a given 1-D numpy array.
Notes
If frac > 1, replacement should be set to True.
Examples
NOTE: These examples are pulled directly from the pandas documentation for convenience. Usage of the Beam DataFrame API will look different because it is a deferred API. In addition, some arguments shown here may not be supported, see ‘Differences from pandas’ for details.
>>> df = pd.DataFrame({'num_legs': [2, 4, 8, 0], ... 'num_wings': [2, 0, 0, 0], ... 'num_specimen_seen': [10, 2, 1, 8]}, ... index=['falcon', 'dog', 'spider', 'fish']) >>> df num_legs num_wings num_specimen_seen falcon 2 2 10 dog 4 0 2 spider 8 0 1 fish 0 0 8 Extract 3 random elements from the ``Series`` ``df['num_legs']``: Note that we use `random_state` to ensure the reproducibility of the examples. >>> df['num_legs'].sample(n=3, random_state=1) fish 0 spider 8 falcon 2 Name: num_legs, dtype: int64 A random 50% sample of the ``DataFrame`` with replacement: >>> df.sample(frac=0.5, replace=True, random_state=1) num_legs num_wings num_specimen_seen dog 4 0 2 fish 0 0 8 An upsample sample of the ``DataFrame`` with replacement: Note that `replace` parameter has to be `True` for `frac` parameter > 1. >>> df.sample(frac=2, replace=True, random_state=1) num_legs num_wings num_specimen_seen dog 4 0 2 fish 0 0 8 falcon 2 2 10 falcon 2 2 10 fish 0 0 8 dog 4 0 2 fish 0 0 8 dog 4 0 2 Using a DataFrame column as weights. Rows with larger value in the `num_specimen_seen` column are more likely to be sampled. >>> df.sample(n=2, weights='num_specimen_seen', random_state=1) num_legs num_wings num_specimen_seen falcon 2 2 10 fish 0 0 8
- aggregate(func, axis, *args, **kwargs)[source]
Aggregate using one or more operations over the specified axis.
- Parameters:
func (function, str, list or dict) –
Function to use for aggregating the data. If a function, must either work when passed a DeferredSeries or when passed to DeferredSeries.apply.
Accepted combinations are:
function
string function name
list of functions and/or function names, e.g.
[np.sum, 'mean']
dict of axis labels -> functions, function names or list of such.
axis ({0 or 'index'}) – Unused. Parameter needed for compatibility with DeferredDataFrame.
*args – Positional arguments to pass to func.
**kwargs – Keyword arguments to pass to func.
- Returns:
The return can be:
scalar : when DeferredSeries.agg is called with single function
DeferredSeries : when DeferredDataFrame.agg is called with a single function
DeferredDataFrame : when DeferredDataFrame.agg is called with several functions
Return scalar, DeferredSeries or DeferredDataFrame.
- Return type:
scalar, DeferredSeries or DeferredDataFrame
Differences from pandas
Some aggregation methods cannot be parallelized, and computing them will require collecting all data on a single machine.
See also
DeferredSeries.apply
Invoke function on a DeferredSeries.
DeferredSeries.transform
Transform function producing a DeferredSeries with like indexes.
Notes
The aggregation operations are always performed over an axis, either the index (default) or the column axis. This behavior is different from numpy aggregation functions (mean, median, prod, sum, std, var), where the default is to compute the aggregation of the flattened array, e.g.,
numpy.mean(arr_2d)
as opposed tonumpy.mean(arr_2d, axis=0)
.agg is an alias for aggregate. Use the alias.
Functions that mutate the passed object can produce unexpected behavior or errors and are not supported. See Mutating with User Defined Function (UDF) methods for more details.
A passed user-defined-function will be passed a DeferredSeries for evaluation.
Examples
NOTE: These examples are pulled directly from the pandas documentation for convenience. Usage of the Beam DataFrame API will look different because it is a deferred API. In addition, some arguments shown here may not be supported, see ‘Differences from pandas’ for details.
>>> s = pd.Series([1, 2, 3, 4]) >>> s 0 1 1 2 2 3 3 4 dtype: int64 >>> s.agg('min') 1 >>> s.agg(['min', 'max']) min 1 max 4 dtype: int64
- agg(func, axis, *args, **kwargs)
Aggregate using one or more operations over the specified axis.
- Parameters:
func (function, str, list or dict) –
Function to use for aggregating the data. If a function, must either work when passed a DeferredSeries or when passed to DeferredSeries.apply.
Accepted combinations are:
function
string function name
list of functions and/or function names, e.g.
[np.sum, 'mean']
dict of axis labels -> functions, function names or list of such.
axis ({0 or 'index'}) – Unused. Parameter needed for compatibility with DeferredDataFrame.
*args – Positional arguments to pass to func.
**kwargs – Keyword arguments to pass to func.
- Returns:
The return can be:
scalar : when DeferredSeries.agg is called with single function
DeferredSeries : when DeferredDataFrame.agg is called with a single function
DeferredDataFrame : when DeferredDataFrame.agg is called with several functions
Return scalar, DeferredSeries or DeferredDataFrame.
- Return type:
scalar, DeferredSeries or DeferredDataFrame
Differences from pandas
Some aggregation methods cannot be parallelized, and computing them will require collecting all data on a single machine.
See also
DeferredSeries.apply
Invoke function on a DeferredSeries.
DeferredSeries.transform
Transform function producing a DeferredSeries with like indexes.
Notes
The aggregation operations are always performed over an axis, either the index (default) or the column axis. This behavior is different from numpy aggregation functions (mean, median, prod, sum, std, var), where the default is to compute the aggregation of the flattened array, e.g.,
numpy.mean(arr_2d)
as opposed tonumpy.mean(arr_2d, axis=0)
.agg is an alias for aggregate. Use the alias.
Functions that mutate the passed object can produce unexpected behavior or errors and are not supported. See Mutating with User Defined Function (UDF) methods for more details.
A passed user-defined-function will be passed a DeferredSeries for evaluation.
Examples
NOTE: These examples are pulled directly from the pandas documentation for convenience. Usage of the Beam DataFrame API will look different because it is a deferred API. In addition, some arguments shown here may not be supported, see ‘Differences from pandas’ for details.
>>> s = pd.Series([1, 2, 3, 4]) >>> s 0 1 1 2 2 3 3 4 dtype: int64 >>> s.agg('min') 1 >>> s.agg(['min', 'max']) min 1 max 4 dtype: int64
- property axes
Return a list of the row axis labels.
Differences from pandas
This operation has no known divergences from the pandas API.
- clip(**kwargs)
Trim values at input threshold(s).
Assigns values outside boundary to boundary values. Thresholds can be singular values or array like, and in the latter case the clipping is performed element-wise in the specified axis.
- Parameters:
lower (float or array-like, default None) – Minimum threshold value. All values below this threshold will be set to it. A missing threshold (e.g NA) will not clip the value.
upper (float or array-like, default None) – Maximum threshold value. All values above this threshold will be set to it. A missing threshold (e.g NA) will not clip the value.
axis ({{0 or 'index', 1 or 'columns', None}}, default None) – Align object with lower and upper along the given axis. For DeferredSeries this parameter is unused and defaults to None.
inplace (bool, default False) – Whether to perform the operation in place on the data.
*args – Additional keywords have no effect but might be accepted for compatibility with numpy.
**kwargs – Additional keywords have no effect but might be accepted for compatibility with numpy.
- Returns:
Same type as calling object with the values outside the clip boundaries replaced or None if
inplace=True
.- Return type:
DeferredSeries or DeferredDataFrame or None
Differences from pandas
This operation has no known divergences from the pandas API.
See also
DeferredSeries.clip
Trim values at input threshold in series.
DeferredDataFrame.clip
Trim values at input threshold in dataframe.
numpy.clip
Clip (limit) the values in an array.
Examples
NOTE: These examples are pulled directly from the pandas documentation for convenience. Usage of the Beam DataFrame API will look different because it is a deferred API.
>>> data = {'col_0': [9, -3, 0, -1, 5], 'col_1': [-2, -7, 6, 8, -5]} >>> df = pd.DataFrame(data) >>> df col_0 col_1 0 9 -2 1 -3 -7 2 0 6 3 -1 8 4 5 -5 Clips per column using lower and upper thresholds: >>> df.clip(-4, 6) col_0 col_1 0 6 -2 1 -3 -4 2 0 6 3 -1 6 4 5 -4 Clips using specific lower and upper thresholds per column element: >>> t = pd.Series([2, -4, -1, 6, 3]) >>> t 0 2 1 -4 2 -1 3 6 4 3 dtype: int64 >>> df.clip(t, t + 4, axis=0) col_0 col_1 0 6 2 1 -3 -4 2 0 3 3 6 8 4 5 3 Clips using specific lower threshold per column element, with missing values: >>> t = pd.Series([2, -4, np.nan, 6, 3]) >>> t 0 2.0 1 -4.0 2 NaN 3 6.0 4 3.0 dtype: float64 >>> df.clip(t, axis=0) col_0 col_1 0 9 2 1 -3 -4 2 0 6 3 6 8 4 5 3
- all(*args, **kwargs)
Return whether all elements are True, potentially over an axis.
Returns True unless there at least one element within a series or along a Dataframe axis that is False or equivalent (e.g. zero or empty).
- Parameters:
axis ({0 or 'index', 1 or 'columns', None}, default 0) –
Indicate which axis or axes should be reduced. For DeferredSeries this parameter is unused and defaults to 0.
0 / ‘index’ : reduce the index, return a DeferredSeries whose index is the original column labels.
1 / ‘columns’ : reduce the columns, return a DeferredSeries whose index is the original index.
None : reduce all axes, return a scalar.
bool_only (bool, default False) – Include only boolean columns. Not implemented for DeferredSeries.
skipna (bool, default True) – Exclude NA/null values. If the entire row/column is NA and skipna is True, then the result will be True, as for an empty row/column. If skipna is False, then NA are treated as True, because these are not equal to zero.
**kwargs (any, default None) – Additional keywords have no effect but might be accepted for compatibility with NumPy.
- Returns:
If level is specified, then, DeferredSeries is returned; otherwise, scalar is returned.
- Return type:
scalar or DeferredSeries
Differences from pandas
This operation has no known divergences from the pandas API.
See also
DeferredSeries.all
Return True if all elements are True.
DeferredDataFrame.any
Return True if one (or more) elements are True.
Examples
NOTE: These examples are pulled directly from the pandas documentation for convenience. Usage of the Beam DataFrame API will look different because it is a deferred API.
**Series** >>> pd.Series([True, True]).all() True >>> pd.Series([True, False]).all() False >>> pd.Series([], dtype="float64").all() True >>> pd.Series([np.nan]).all() True >>> pd.Series([np.nan]).all(skipna=False) True **DataFrames** Create a dataframe from a dictionary. >>> df = pd.DataFrame({'col1': [True, True], 'col2': [True, False]}) >>> df col1 col2 0 True True 1 True False Default behaviour checks if values in each column all return True. >>> df.all() col1 True col2 False dtype: bool Specify ``axis='columns'`` to check if values in each row all return True. >>> df.all(axis='columns') 0 True 1 False dtype: bool Or ``axis=None`` for whether every value is True. >>> df.all(axis=None) False
- any(*args, **kwargs)
Return whether any element is True, potentially over an axis.
Returns False unless there is at least one element within a series or along a Dataframe axis that is True or equivalent (e.g. non-zero or non-empty).
- Parameters:
axis ({0 or 'index', 1 or 'columns', None}, default 0) –
Indicate which axis or axes should be reduced. For DeferredSeries this parameter is unused and defaults to 0.
0 / ‘index’ : reduce the index, return a DeferredSeries whose index is the original column labels.
1 / ‘columns’ : reduce the columns, return a DeferredSeries whose index is the original index.
None : reduce all axes, return a scalar.
bool_only (bool, default False) – Include only boolean columns. Not implemented for DeferredSeries.
skipna (bool, default True) – Exclude NA/null values. If the entire row/column is NA and skipna is True, then the result will be False, as for an empty row/column. If skipna is False, then NA are treated as True, because these are not equal to zero.
**kwargs (any, default None) – Additional keywords have no effect but might be accepted for compatibility with NumPy.
- Returns:
If level is specified, then, DeferredSeries is returned; otherwise, scalar is returned.
- Return type:
scalar or DeferredSeries
Differences from pandas
This operation has no known divergences from the pandas API.
See also
numpy.any
Numpy version of this method.
DeferredSeries.any
Return whether any element is True.
DeferredSeries.all
Return whether all elements are True.
DeferredDataFrame.any
Return whether any element is True over requested axis.
DeferredDataFrame.all
Return whether all elements are True over requested axis.
Examples
NOTE: These examples are pulled directly from the pandas documentation for convenience. Usage of the Beam DataFrame API will look different because it is a deferred API.
**Series** For Series input, the output is a scalar indicating whether any element is True. >>> pd.Series([False, False]).any() False >>> pd.Series([True, False]).any() True >>> pd.Series([], dtype="float64").any() False >>> pd.Series([np.nan]).any() False >>> pd.Series([np.nan]).any(skipna=False) True **DataFrame** Whether each column contains at least one True element (the default). >>> df = pd.DataFrame({"A": [1, 2], "B": [0, 2], "C": [0, 0]}) >>> df A B C 0 1 0 0 1 2 2 0 >>> df.any() A True B True C False dtype: bool Aggregating over the columns. >>> df = pd.DataFrame({"A": [True, False], "B": [1, 2]}) >>> df A B 0 True 1 1 False 2 >>> df.any(axis='columns') 0 True 1 True dtype: bool >>> df = pd.DataFrame({"A": [True, False], "B": [1, 0]}) >>> df A B 0 True 1 1 False 0 >>> df.any(axis='columns') 0 True 1 False dtype: bool Aggregating over the entire DataFrame with ``axis=None``. >>> df.any(axis=None) True `any` for an empty DataFrame is an empty Series. >>> pd.DataFrame([]).any() Series([], dtype: bool)
- count(*args, **kwargs)
Return number of non-NA/null observations in the Series.
- Returns:
Number of non-null values in the DeferredSeries.
- Return type:
int or DeferredSeries (if level specified)
Differences from pandas
This operation has no known divergences from the pandas API.
See also
DeferredDataFrame.count
Count non-NA cells for each column or row.
Examples
NOTE: These examples are pulled directly from the pandas documentation for convenience. Usage of the Beam DataFrame API will look different because it is a deferred API.
>>> s = pd.Series([0.0, 1.0, np.nan]) >>> s.count() 2
- describe(*args, **kwargs)
Generate descriptive statistics.
Descriptive statistics include those that summarize the central tendency, dispersion and shape of a dataset’s distribution, excluding
NaN
values.Analyzes both numeric and object series, as well as
DataFrame
column sets of mixed data types. The output will vary depending on what is provided. Refer to the notes below for more detail.- Parameters:
percentiles (list-like of numbers, optional) – The percentiles to include in the output. All should fall between 0 and 1. The default is
[.25, .5, .75]
, which returns the 25th, 50th, and 75th percentiles.include ('all', list-like of dtypes or None (default), optional) –
A white list of data types to include in the result. Ignored for
DeferredSeries
. Here are the options:’all’ : All columns of the input will be included in the output.
A list-like of dtypes : Limits the results to the provided data types. To limit the result to numeric types submit
numpy.number
. To limit it instead to object columns submit thenumpy.object
data type. Strings can also be used in the style ofselect_dtypes
(e.g.df.describe(include=['O'])
). To select pandas categorical columns, use'category'
None (default) : The result will include all numeric columns.
exclude (list-like of dtypes or None (default), optional,) –
A black list of data types to omit from the result. Ignored for
DeferredSeries
. Here are the options:A list-like of dtypes : Excludes the provided data types from the result. To exclude numeric types submit
numpy.number
. To exclude object columns submit the data typenumpy.object
. Strings can also be used in the style ofselect_dtypes
(e.g.df.describe(exclude=['O'])
). To exclude pandas categorical columns, use'category'
None (default) : The result will exclude nothing.
- Returns:
Summary statistics of the DeferredSeries or Dataframe provided.
- Return type:
Differences from pandas
describe
cannot currently be parallelized. It will require collecting all data on a single node.See also
DeferredDataFrame.count
Count number of non-NA/null observations.
DeferredDataFrame.max
Maximum of the values in the object.
DeferredDataFrame.min
Minimum of the values in the object.
DeferredDataFrame.mean
Mean of the values.
DeferredDataFrame.std
Standard deviation of the observations.
DeferredDataFrame.select_dtypes
Subset of a DeferredDataFrame including/excluding columns based on their dtype.
Notes
For numeric data, the result’s index will include
count
,mean
,std
,min
,max
as well as lower,50
and upper percentiles. By default the lower percentile is25
and the upper percentile is75
. The50
percentile is the same as the median.For object data (e.g. strings or timestamps), the result’s index will include
count
,unique
,top
, andfreq
. Thetop
is the most common value. Thefreq
is the most common value’s frequency. Timestamps also include thefirst
andlast
items.If multiple object values have the highest count, then the
count
andtop
results will be arbitrarily chosen from among those with the highest count.For mixed data types provided via a
DeferredDataFrame
, the default is to return only an analysis of numeric columns. If the dataframe consists only of object and categorical data without any numeric columns, the default is to return an analysis of both the object and categorical columns. Ifinclude='all'
is provided as an option, the result will include a union of attributes of each type.The include and exclude parameters can be used to limit which columns in a
DeferredDataFrame
are analyzed for the output. The parameters are ignored when analyzing aDeferredSeries
.Examples
NOTE: These examples are pulled directly from the pandas documentation for convenience. Usage of the Beam DataFrame API will look different because it is a deferred API. In addition, some arguments shown here may not be supported, see ‘Differences from pandas’ for details.
Describing a numeric ``Series``. >>> s = pd.Series([1, 2, 3]) >>> s.describe() count 3.0 mean 2.0 std 1.0 min 1.0 25% 1.5 50% 2.0 75% 2.5 max 3.0 dtype: float64 Describing a categorical ``Series``. >>> s = pd.Series(['a', 'a', 'b', 'c']) >>> s.describe() count 4 unique 3 top a freq 2 dtype: object Describing a timestamp ``Series``. >>> s = pd.Series([ ... np.datetime64("2000-01-01"), ... np.datetime64("2010-01-01"), ... np.datetime64("2010-01-01") ... ]) >>> s.describe() count 3 mean 2006-09-01 08:00:00 min 2000-01-01 00:00:00 25% 2004-12-31 12:00:00 50% 2010-01-01 00:00:00 75% 2010-01-01 00:00:00 max 2010-01-01 00:00:00 dtype: object Describing a ``DataFrame``. By default only numeric fields are returned. >>> df = pd.DataFrame({'categorical': pd.Categorical(['d','e','f']), ... 'numeric': [1, 2, 3], ... 'object': ['a', 'b', 'c'] ... }) >>> df.describe() numeric count 3.0 mean 2.0 std 1.0 min 1.0 25% 1.5 50% 2.0 75% 2.5 max 3.0 Describing all columns of a ``DataFrame`` regardless of data type. >>> df.describe(include='all') categorical numeric object count 3 3.0 3 unique 3 NaN 3 top f NaN a freq 1 NaN 1 mean NaN 2.0 NaN std NaN 1.0 NaN min NaN 1.0 NaN 25% NaN 1.5 NaN 50% NaN 2.0 NaN 75% NaN 2.5 NaN max NaN 3.0 NaN Describing a column from a ``DataFrame`` by accessing it as an attribute. >>> df.numeric.describe() count 3.0 mean 2.0 std 1.0 min 1.0 25% 1.5 50% 2.0 75% 2.5 max 3.0 Name: numeric, dtype: float64 Including only numeric columns in a ``DataFrame`` description. >>> df.describe(include=[np.number]) numeric count 3.0 mean 2.0 std 1.0 min 1.0 25% 1.5 50% 2.0 75% 2.5 max 3.0 Including only string columns in a ``DataFrame`` description. >>> df.describe(include=[object]) object count 3 unique 3 top a freq 1 Including only categorical columns from a ``DataFrame`` description. >>> df.describe(include=['category']) categorical count 3 unique 3 top d freq 1 Excluding numeric columns from a ``DataFrame`` description. >>> df.describe(exclude=[np.number]) categorical object count 3 3 unique 3 3 top f a freq 1 1 Excluding object columns from a ``DataFrame`` description. >>> df.describe(exclude=[object]) categorical numeric count 3 3.0 unique 3 NaN top f NaN freq 1 NaN mean NaN 2.0 std NaN 1.0 min NaN 1.0 25% NaN 1.5 50% NaN 2.0 75% NaN 2.5 max NaN 3.0
- min(*args, **kwargs)
Return the minimum of the values over the requested axis.
If you want the index of the minimum, use
idxmin
. This is the equivalent of thenumpy.ndarray
methodargmin
.- Parameters:
axis ({index (0)}) –
Axis for the function to be applied on. For DeferredSeries this parameter is unused and defaults to 0.
For DeferredDataFrames, specifying
axis=None
will apply the aggregation across both axes.Added in version 2.0.0.
skipna (bool, default True) – Exclude NA/null values when computing the result.
numeric_only (bool, default False) – Include only float, int, boolean columns. Not implemented for DeferredSeries.
**kwargs – Additional keyword arguments to be passed to the function.
- Return type:
scalar or scalar
Differences from pandas
This operation has no known divergences from the pandas API.
See also
DeferredSeries.sum
Return the sum.
DeferredSeries.min
Return the minimum.
DeferredSeries.max
Return the maximum.
DeferredSeries.idxmin
Return the index of the minimum.
DeferredSeries.idxmax
Return the index of the maximum.
DeferredDataFrame.sum
Return the sum over the requested axis.
DeferredDataFrame.min
Return the minimum over the requested axis.
DeferredDataFrame.max
Return the maximum over the requested axis.
DeferredDataFrame.idxmin
Return the index of the minimum over the requested axis.
DeferredDataFrame.idxmax
Return the index of the maximum over the requested axis.
Examples
NOTE: These examples are pulled directly from the pandas documentation for convenience. Usage of the Beam DataFrame API will look different because it is a deferred API.
>>> idx = pd.MultiIndex.from_arrays([ ... ['warm', 'warm', 'cold', 'cold'], ... ['dog', 'falcon', 'fish', 'spider']], ... names=['blooded', 'animal']) >>> s = pd.Series([4, 2, 0, 8], name='legs', index=idx) >>> s blooded animal warm dog 4 falcon 2 cold fish 0 spider 8 Name: legs, dtype: int64 >>> s.min() 0
- max(*args, **kwargs)
Return the maximum of the values over the requested axis.
If you want the index of the maximum, use
idxmax
. This is the equivalent of thenumpy.ndarray
methodargmax
.- Parameters:
axis ({index (0)}) –
Axis for the function to be applied on. For DeferredSeries this parameter is unused and defaults to 0.
For DeferredDataFrames, specifying
axis=None
will apply the aggregation across both axes.Added in version 2.0.0.
skipna (bool, default True) – Exclude NA/null values when computing the result.
numeric_only (bool, default False) – Include only float, int, boolean columns. Not implemented for DeferredSeries.
**kwargs – Additional keyword arguments to be passed to the function.
- Return type:
scalar or scalar
Differences from pandas
This operation has no known divergences from the pandas API.
See also
DeferredSeries.sum
Return the sum.
DeferredSeries.min
Return the minimum.
DeferredSeries.max
Return the maximum.
DeferredSeries.idxmin
Return the index of the minimum.
DeferredSeries.idxmax
Return the index of the maximum.
DeferredDataFrame.sum
Return the sum over the requested axis.
DeferredDataFrame.min
Return the minimum over the requested axis.
DeferredDataFrame.max
Return the maximum over the requested axis.
DeferredDataFrame.idxmin
Return the index of the minimum over the requested axis.
DeferredDataFrame.idxmax
Return the index of the maximum over the requested axis.
Examples
NOTE: These examples are pulled directly from the pandas documentation for convenience. Usage of the Beam DataFrame API will look different because it is a deferred API.
>>> idx = pd.MultiIndex.from_arrays([ ... ['warm', 'warm', 'cold', 'cold'], ... ['dog', 'falcon', 'fish', 'spider']], ... names=['blooded', 'animal']) >>> s = pd.Series([4, 2, 0, 8], name='legs', index=idx) >>> s blooded animal warm dog 4 falcon 2 cold fish 0 spider 8 Name: legs, dtype: int64 >>> s.max() 8
- prod(*args, **kwargs)
Return the product of the values over the requested axis.
- Parameters:
axis ({index (0)}) –
Axis for the function to be applied on. For DeferredSeries this parameter is unused and defaults to 0.
For DeferredDataFrames, specifying
axis=None
will apply the aggregation across both axes.Added in version 2.0.0.
skipna (bool, default True) – Exclude NA/null values when computing the result.
numeric_only (bool, default False) – Include only float, int, boolean columns. Not implemented for DeferredSeries.
min_count (int, default 0) – The required number of valid values to perform the operation. If fewer than
min_count
non-NA values are present the result will be NA.**kwargs – Additional keyword arguments to be passed to the function.
- Return type:
scalar or scalar
Differences from pandas
This operation has no known divergences from the pandas API.
See also
DeferredSeries.sum
Return the sum.
DeferredSeries.min
Return the minimum.
DeferredSeries.max
Return the maximum.
DeferredSeries.idxmin
Return the index of the minimum.
DeferredSeries.idxmax
Return the index of the maximum.
DeferredDataFrame.sum
Return the sum over the requested axis.
DeferredDataFrame.min
Return the minimum over the requested axis.
DeferredDataFrame.max
Return the maximum over the requested axis.
DeferredDataFrame.idxmin
Return the index of the minimum over the requested axis.
DeferredDataFrame.idxmax
Return the index of the maximum over the requested axis.
Examples
NOTE: These examples are pulled directly from the pandas documentation for convenience. Usage of the Beam DataFrame API will look different because it is a deferred API.
By default, the product of an empty or all-NA Series is ``1`` >>> pd.Series([], dtype="float64").prod() 1.0 This can be controlled with the ``min_count`` parameter >>> pd.Series([], dtype="float64").prod(min_count=1) nan Thanks to the ``skipna`` parameter, ``min_count`` handles all-NA and empty series identically. >>> pd.Series([np.nan]).prod() 1.0 >>> pd.Series([np.nan]).prod(min_count=1) nan
- product(*args, **kwargs)
Return the product of the values over the requested axis.
- Parameters:
axis ({index (0)}) –
Axis for the function to be applied on. For DeferredSeries this parameter is unused and defaults to 0.
For DeferredDataFrames, specifying
axis=None
will apply the aggregation across both axes.Added in version 2.0.0.
skipna (bool, default True) – Exclude NA/null values when computing the result.
numeric_only (bool, default False) – Include only float, int, boolean columns. Not implemented for DeferredSeries.
min_count (int, default 0) – The required number of valid values to perform the operation. If fewer than
min_count
non-NA values are present the result will be NA.**kwargs – Additional keyword arguments to be passed to the function.
- Return type:
scalar or scalar
Differences from pandas
This operation has no known divergences from the pandas API.
See also
DeferredSeries.sum
Return the sum.
DeferredSeries.min
Return the minimum.
DeferredSeries.max
Return the maximum.
DeferredSeries.idxmin
Return the index of the minimum.
DeferredSeries.idxmax
Return the index of the maximum.
DeferredDataFrame.sum
Return the sum over the requested axis.
DeferredDataFrame.min
Return the minimum over the requested axis.
DeferredDataFrame.max
Return the maximum over the requested axis.
DeferredDataFrame.idxmin
Return the index of the minimum over the requested axis.
DeferredDataFrame.idxmax
Return the index of the maximum over the requested axis.
Examples
NOTE: These examples are pulled directly from the pandas documentation for convenience. Usage of the Beam DataFrame API will look different because it is a deferred API.
By default, the product of an empty or all-NA Series is ``1`` >>> pd.Series([], dtype="float64").prod() 1.0 This can be controlled with the ``min_count`` parameter >>> pd.Series([], dtype="float64").prod(min_count=1) nan Thanks to the ``skipna`` parameter, ``min_count`` handles all-NA and empty series identically. >>> pd.Series([np.nan]).prod() 1.0 >>> pd.Series([np.nan]).prod(min_count=1) nan
- sum(*args, **kwargs)
Return the sum of the values over the requested axis.
This is equivalent to the method
numpy.sum
.- Parameters:
axis ({index (0)}) –
Axis for the function to be applied on. For DeferredSeries this parameter is unused and defaults to 0.
For DeferredDataFrames, specifying
axis=None
will apply the aggregation across both axes.Added in version 2.0.0.
skipna (bool, default True) – Exclude NA/null values when computing the result.
numeric_only (bool, default False) – Include only float, int, boolean columns. Not implemented for DeferredSeries.
min_count (int, default 0) – The required number of valid values to perform the operation. If fewer than
min_count
non-NA values are present the result will be NA.**kwargs – Additional keyword arguments to be passed to the function.
- Return type:
scalar or scalar
Differences from pandas
This operation has no known divergences from the pandas API.
See also
DeferredSeries.sum
Return the sum.
DeferredSeries.min
Return the minimum.
DeferredSeries.max
Return the maximum.
DeferredSeries.idxmin
Return the index of the minimum.
DeferredSeries.idxmax
Return the index of the maximum.
DeferredDataFrame.sum
Return the sum over the requested axis.
DeferredDataFrame.min
Return the minimum over the requested axis.
DeferredDataFrame.max
Return the maximum over the requested axis.
DeferredDataFrame.idxmin
Return the index of the minimum over the requested axis.
DeferredDataFrame.idxmax
Return the index of the maximum over the requested axis.
Examples
NOTE: These examples are pulled directly from the pandas documentation for convenience. Usage of the Beam DataFrame API will look different because it is a deferred API.
>>> idx = pd.MultiIndex.from_arrays([ ... ['warm', 'warm', 'cold', 'cold'], ... ['dog', 'falcon', 'fish', 'spider']], ... names=['blooded', 'animal']) >>> s = pd.Series([4, 2, 0, 8], name='legs', index=idx) >>> s blooded animal warm dog 4 falcon 2 cold fish 0 spider 8 Name: legs, dtype: int64 >>> s.sum() 14 By default, the sum of an empty or all-NA Series is ``0``. >>> pd.Series([], dtype="float64").sum() # min_count=0 is the default 0.0 This can be controlled with the ``min_count`` parameter. For example, if you'd like the sum of an empty series to be NaN, pass ``min_count=1``. >>> pd.Series([], dtype="float64").sum(min_count=1) nan Thanks to the ``skipna`` parameter, ``min_count`` handles all-NA and empty series identically. >>> pd.Series([np.nan]).sum() 0.0 >>> pd.Series([np.nan]).sum(min_count=1) nan
- median(*args, **kwargs)
Return the median of the values over the requested axis.
- Parameters:
axis ({index (0)}) –
Axis for the function to be applied on. For DeferredSeries this parameter is unused and defaults to 0.
For DeferredDataFrames, specifying
axis=None
will apply the aggregation across both axes.Added in version 2.0.0.
skipna (bool, default True) – Exclude NA/null values when computing the result.
numeric_only (bool, default False) – Include only float, int, boolean columns. Not implemented for DeferredSeries.
**kwargs – Additional keyword arguments to be passed to the function.
- Return type:
scalar or scalar
Examples
scalar or scalar Examples -------- >>> s = pd.Series([1, 2, 3]) >>> s.median() 2.0 With a DataFrame >>> df = pd.DataFrame({'a': [1, 2], 'b': [2, 3]}, index=['tiger', 'zebra']) >>> df a b tiger 1 2 zebra 2 3 >>> df.median() a 1.5 b 2.5 dtype: float64 Using axis=1 >>> df.median(axis=1) tiger 1.5 zebra 2.5 dtype: float64 In this case, `numeric_only` should be set to `True` to avoid getting an error. >>> df = pd.DataFrame({'a': [1, 2], 'b': ['T', 'Z']}, ... index=['tiger', 'zebra']) >>> df.median(numeric_only=True) a 1.5 dtype: float64 -------- >>> s = pd.Series([1, 2, 3]) >>> s.median() 2.0 With a DataFrame >>> df = pd.DataFrame({'a': [1, 2], 'b': [2, 3]}, index=['tiger', 'zebra']) >>> df a b tiger 1 2 zebra 2 3 >>> df.median() a 1.5 b 2.5 dtype: float64 Using axis=1 >>> df.median(axis=1) tiger 1.5 zebra 2.5 dtype: float64 In this case, `numeric_only` should be set to `True` to avoid getting an error. >>> df = pd.DataFrame({'a': [1, 2], 'b': ['T', 'Z']}, ... index=['tiger', 'zebra']) >>> df.median(numeric_only=True) a 1.5 dtype: float64
Differences from pandas
median
cannot currently be parallelized. It will require collecting all data on a single node.
- sem(*args, **kwargs)
Return unbiased standard error of the mean over requested axis.
Normalized by N-1 by default. This can be changed using the ddof argument
- Parameters:
axis ({index (0)}) – For DeferredSeries this parameter is unused and defaults to 0.
skipna (bool, default True) – Exclude NA/null values. If an entire row/column is NA, the result will be NA.
ddof (int, default 1) – Delta Degrees of Freedom. The divisor used in calculations is N - ddof, where N represents the number of elements.
numeric_only (bool, default False) – Include only float, int, boolean columns. Not implemented for DeferredSeries.
- Return type:
scalar or Series (if level specified)
Examples
scalar or Series (if level specified) Examples -------- >>> s = pd.Series([1, 2, 3]) >>> s.sem().round(6) 0.57735 With a DataFrame >>> df = pd.DataFrame({'a': [1, 2], 'b': [2, 3]}, index=['tiger', 'zebra']) >>> df a b tiger 1 2 zebra 2 3 >>> df.sem() a 0.5 b 0.5 dtype: float64 Using axis=1 >>> df.sem(axis=1) tiger 0.5 zebra 0.5 dtype: float64 In this case, `numeric_only` should be set to `True` to avoid getting an error. >>> df = pd.DataFrame({'a': [1, 2], 'b': ['T', 'Z']}, ... index=['tiger', 'zebra']) >>> df.sem(numeric_only=True) a 0.5 dtype: float64 -------- >>> s = pd.Series([1, 2, 3]) >>> s.sem().round(6) 0.57735 With a DataFrame >>> df = pd.DataFrame({'a': [1, 2], 'b': [2, 3]}, index=['tiger', 'zebra']) >>> df a b tiger 1 2 zebra 2 3 >>> df.sem() a 0.5 b 0.5 dtype: float64 Using axis=1 >>> df.sem(axis=1) tiger 0.5 zebra 0.5 dtype: float64 In this case, `numeric_only` should be set to `True` to avoid getting an error. >>> df = pd.DataFrame({'a': [1, 2], 'b': ['T', 'Z']}, ... index=['tiger', 'zebra']) >>> df.sem(numeric_only=True) a 0.5 dtype: float64
Differences from pandas
sem
cannot currently be parallelized. It will require collecting all data on a single node.
- argmax(**kwargs)
pandas.Series.argmax()
is not yet supported in the Beam DataFrame API because it is sensitive to the order of the data.For more information see https://s.apache.org/dataframe-order-sensitive-operations.
- argmin(**kwargs)
pandas.Series.argmin()
is not yet supported in the Beam DataFrame API because it is sensitive to the order of the data.For more information see https://s.apache.org/dataframe-order-sensitive-operations.
- cummax(**kwargs)
pandas.Series.cummax()
is not yet supported in the Beam DataFrame API because it is sensitive to the order of the data.For more information see https://s.apache.org/dataframe-order-sensitive-operations.
- cummin(**kwargs)
pandas.Series.cummin()
is not yet supported in the Beam DataFrame API because it is sensitive to the order of the data.For more information see https://s.apache.org/dataframe-order-sensitive-operations.
- cumprod(**kwargs)
pandas.Series.cumprod()
is not yet supported in the Beam DataFrame API because it is sensitive to the order of the data.For more information see https://s.apache.org/dataframe-order-sensitive-operations.
- cumsum(**kwargs)
pandas.Series.cumsum()
is not yet supported in the Beam DataFrame API because it is sensitive to the order of the data.For more information see https://s.apache.org/dataframe-order-sensitive-operations.
- diff(**kwargs)
pandas.Series.diff()
is not yet supported in the Beam DataFrame API because it is sensitive to the order of the data.For more information see https://s.apache.org/dataframe-order-sensitive-operations.
- interpolate(**kwargs)
pandas.Series.interpolate()
is not yet supported in the Beam DataFrame API because it is sensitive to the order of the data.For more information see https://s.apache.org/dataframe-order-sensitive-operations.
- searchsorted(**kwargs)
pandas.Series.searchsorted()
is not yet supported in the Beam DataFrame API because it is sensitive to the order of the data.For more information see https://s.apache.org/dataframe-order-sensitive-operations.
- shift(**kwargs)
pandas.Series.shift()
is not yet supported in the Beam DataFrame API because it is sensitive to the order of the data.For more information see https://s.apache.org/dataframe-order-sensitive-operations.
- pct_change(**kwargs)
pandas.Series.pct_change()
is not yet supported in the Beam DataFrame API because it is sensitive to the order of the data.For more information see https://s.apache.org/dataframe-order-sensitive-operations.
- is_monotonic(**kwargs)
pandas.Series.is_monotonic()
is not yet supported in the Beam DataFrame API because it is sensitive to the order of the data.For more information see https://s.apache.org/dataframe-order-sensitive-operations.
- is_monotonic_increasing(**kwargs)
pandas.Series.is_monotonic_increasing()
is not yet supported in the Beam DataFrame API because it is sensitive to the order of the data.For more information see https://s.apache.org/dataframe-order-sensitive-operations.
- is_monotonic_decreasing(**kwargs)
pandas.Series.is_monotonic_decreasing()
is not yet supported in the Beam DataFrame API because it is sensitive to the order of the data.For more information see https://s.apache.org/dataframe-order-sensitive-operations.
- asof(**kwargs)
pandas.Series.asof()
is not yet supported in the Beam DataFrame API because it is sensitive to the order of the data.For more information see https://s.apache.org/dataframe-order-sensitive-operations.
- first_valid_index(**kwargs)
pandas.Series.first_valid_index()
is not yet supported in the Beam DataFrame API because it is sensitive to the order of the data.For more information see https://s.apache.org/dataframe-order-sensitive-operations.
- last_valid_index(**kwargs)
pandas.Series.last_valid_index()
is not yet supported in the Beam DataFrame API because it is sensitive to the order of the data.For more information see https://s.apache.org/dataframe-order-sensitive-operations.
- autocorr(**kwargs)
pandas.Series.autocorr()
is not yet supported in the Beam DataFrame API because it is sensitive to the order of the data.For more information see https://s.apache.org/dataframe-order-sensitive-operations.
- property iat
pandas.Series.iat()
is not yet supported in the Beam DataFrame API because it is sensitive to the order of the data.For more information see https://s.apache.org/dataframe-order-sensitive-operations.
- head(**kwargs)
pandas.Series.head()
is not yet supported in the Beam DataFrame API because it is order-sensitive.If you want to peek at a large dataset consider using interactive Beam’s
ib.collect
withn
specified, orsample()
. If you want to find the N largest elements, consider usingDeferredDataFrame.nlargest()
.
- tail(**kwargs)
pandas.Series.tail()
is not yet supported in the Beam DataFrame API because it is order-sensitive.If you want to peek at a large dataset consider using interactive Beam’s
ib.collect
withn
specified, orsample()
. If you want to find the N largest elements, consider usingDeferredDataFrame.nlargest()
.
- filter(**kwargs)
Subset the dataframe rows or columns according to the specified index labels.
Note that this routine does not filter a dataframe on its contents. The filter is applied to the labels of the index.
- Parameters:
items (list-like) – Keep labels from axis which are in items.
like (str) – Keep labels from axis for which “like in label == True”.
regex (str (regular expression)) – Keep labels from axis for which re.search(regex, label) == True.
axis ({0 or 'index', 1 or 'columns', None}, default None) – The axis to filter on, expressed either as an index (int) or axis name (str). By default this is the info axis, ‘columns’ for DeferredDataFrame. For DeferredSeries this parameter is unused and defaults to None.
- Return type:
same type as input object
Differences from pandas
This operation has no known divergences from the pandas API.
See also
DeferredDataFrame.loc
Access a group of rows and columns by label(s) or a boolean array.
Notes
The
items
,like
, andregex
parameters are enforced to be mutually exclusive.axis
defaults to the info axis that is used when indexing with[]
.Examples
NOTE: These examples are pulled directly from the pandas documentation for convenience. Usage of the Beam DataFrame API will look different because it is a deferred API.
>>> df = pd.DataFrame(np.array(([1, 2, 3], [4, 5, 6])), ... index=['mouse', 'rabbit'], ... columns=['one', 'two', 'three']) >>> df one two three mouse 1 2 3 rabbit 4 5 6 >>> # select columns by name >>> df.filter(items=['one', 'three']) one three mouse 1 3 rabbit 4 6 >>> # select columns by regular expression >>> df.filter(regex='e$', axis=1) one three mouse 1 3 rabbit 4 6 >>> # select rows containing 'bbi' >>> df.filter(like='bbi', axis=0) one two three rabbit 4 5 6
- memory_usage(**kwargs)
pandas.Series.memory_usage()
is not yet supported in the Beam DataFrame API because it produces an output type that is not deferred.For more information see https://s.apache.org/dataframe-non-deferred-result.
- nbytes(**kwargs)
pandas.Series.nbytes()
is not yet supported in the Beam DataFrame API because it produces an output type that is not deferred.For more information see https://s.apache.org/dataframe-non-deferred-result.
- to_list(**kwargs)
pandas.Series.to_list()
is not yet supported in the Beam DataFrame API because it produces an output type that is not deferred.For more information see https://s.apache.org/dataframe-non-deferred-result.
- factorize(**kwargs)
pandas.Series.factorize()
is not yet supported in the Beam DataFrame API because the columns in the output DataFrame depend on the data.For more information see https://s.apache.org/dataframe-non-deferred-columns.
- nlargest(keep, **kwargs)[source]
Return the largest n elements.
- Parameters:
n (int, default 5) – Return this many descending sorted values.
keep ({'first', 'last', 'all'}, default 'first') –
When there are duplicate values that cannot all fit in a DeferredSeries of n elements:
first
: return the first n occurrences in order of appearance.last
: return the last n occurrences in reverse order of appearance.all
: keep all occurrences. This can result in a DeferredSeries of size larger than n.
- Returns:
The n largest values in the DeferredSeries, sorted in decreasing order.
- Return type:
Differences from pandas
Only
keep=False
andkeep="any"
are supported. Other values ofkeep
make this an order-sensitive operation. Notekeep="any"
is a Beam-specific option that guarantees only one duplicate will be kept, but unlike"first"
and"last"
it makes no guarantees about _which_ duplicate element is kept.See also
DeferredSeries.nsmallest
Get the n smallest elements.
DeferredSeries.sort_values
Sort DeferredSeries by values.
DeferredSeries.head
Return the first n rows.
Notes
Faster than
.sort_values(ascending=False).head(n)
for small n relative to the size of theDeferredSeries
object.Examples
NOTE: These examples are pulled directly from the pandas documentation for convenience. Usage of the Beam DataFrame API will look different because it is a deferred API. In addition, some arguments shown here may not be supported, see ‘Differences from pandas’ for details.
>>> countries_population = {"Italy": 59000000, "France": 65000000, ... "Malta": 434000, "Maldives": 434000, ... "Brunei": 434000, "Iceland": 337000, ... "Nauru": 11300, "Tuvalu": 11300, ... "Anguilla": 11300, "Montserrat": 5200} >>> s = pd.Series(countries_population) >>> s Italy 59000000 France 65000000 Malta 434000 Maldives 434000 Brunei 434000 Iceland 337000 Nauru 11300 Tuvalu 11300 Anguilla 11300 Montserrat 5200 dtype: int64 The `n` largest elements where ``n=5`` by default. >>> s.nlargest() France 65000000 Italy 59000000 Malta 434000 Maldives 434000 Brunei 434000 dtype: int64 The `n` largest elements where ``n=3``. Default `keep` value is 'first' so Malta will be kept. >>> s.nlargest(3) France 65000000 Italy 59000000 Malta 434000 dtype: int64 The `n` largest elements where ``n=3`` and keeping the last duplicates. Brunei will be kept since it is the last with value 434000 based on the index order. >>> s.nlargest(3, keep='last') France 65000000 Italy 59000000 Brunei 434000 dtype: int64 The `n` largest elements where ``n=3`` with all duplicates kept. Note that the returned Series has five elements due to the three duplicates. >>> s.nlargest(3, keep='all') France 65000000 Italy 59000000 Malta 434000 Maldives 434000 Brunei 434000 dtype: int64
- nsmallest(keep, **kwargs)[source]
Return the smallest n elements.
- Parameters:
n (int, default 5) – Return this many ascending sorted values.
keep ({'first', 'last', 'all'}, default 'first') –
When there are duplicate values that cannot all fit in a DeferredSeries of n elements:
first
: return the first n occurrences in order of appearance.last
: return the last n occurrences in reverse order of appearance.all
: keep all occurrences. This can result in a DeferredSeries of size larger than n.
- Returns:
The n smallest values in the DeferredSeries, sorted in increasing order.
- Return type:
Differences from pandas
Only
keep=False
andkeep="any"
are supported. Other values ofkeep
make this an order-sensitive operation. Notekeep="any"
is a Beam-specific option that guarantees only one duplicate will be kept, but unlike"first"
and"last"
it makes no guarantees about _which_ duplicate element is kept.See also
DeferredSeries.nlargest
Get the n largest elements.
DeferredSeries.sort_values
Sort DeferredSeries by values.
DeferredSeries.head
Return the first n rows.
Notes
Faster than
.sort_values().head(n)
for small n relative to the size of theDeferredSeries
object.Examples
NOTE: These examples are pulled directly from the pandas documentation for convenience. Usage of the Beam DataFrame API will look different because it is a deferred API. In addition, some arguments shown here may not be supported, see ‘Differences from pandas’ for details.
>>> countries_population = {"Italy": 59000000, "France": 65000000, ... "Brunei": 434000, "Malta": 434000, ... "Maldives": 434000, "Iceland": 337000, ... "Nauru": 11300, "Tuvalu": 11300, ... "Anguilla": 11300, "Montserrat": 5200} >>> s = pd.Series(countries_population) >>> s Italy 59000000 France 65000000 Brunei 434000 Malta 434000 Maldives 434000 Iceland 337000 Nauru 11300 Tuvalu 11300 Anguilla 11300 Montserrat 5200 dtype: int64 The `n` smallest elements where ``n=5`` by default. >>> s.nsmallest() Montserrat 5200 Nauru 11300 Tuvalu 11300 Anguilla 11300 Iceland 337000 dtype: int64 The `n` smallest elements where ``n=3``. Default `keep` value is 'first' so Nauru and Tuvalu will be kept. >>> s.nsmallest(3) Montserrat 5200 Nauru 11300 Tuvalu 11300 dtype: int64 The `n` smallest elements where ``n=3`` and keeping the last duplicates. Anguilla and Tuvalu will be kept since they are the last with value 11300 based on the index order. >>> s.nsmallest(3, keep='last') Montserrat 5200 Anguilla 11300 Tuvalu 11300 dtype: int64 The `n` smallest elements where ``n=3`` with all duplicates kept. Note that the returned Series has four elements due to the three duplicates. >>> s.nsmallest(3, keep='all') Montserrat 5200 Nauru 11300 Tuvalu 11300 Anguilla 11300 dtype: int64
- property is_unique
Return boolean if values in the object are unique.
- Return type:
Differences from pandas
This operation has no known divergences from the pandas API.
Examples
NOTE: These examples are pulled directly from the pandas documentation for convenience. Usage of the Beam DataFrame API will look different because it is a deferred API.
>>> s = pd.Series([1, 2, 3]) >>> s.is_unique True >>> s = pd.Series([1, 2, 3, 1]) >>> s.is_unique False
- plot(**kwargs)
pandas.Series.plot()
is not yet supported in the Beam DataFrame API because it is a plotting tool.For more information see https://s.apache.org/dataframe-plotting-tools.
- pop(**kwargs)
pandas.Series.pop()
is not yet supported in the Beam DataFrame API because it produces an output type that is not deferred.For more information see https://s.apache.org/dataframe-non-deferred-result.
- rename_axis(**kwargs)
Set the name of the axis for the index or columns.
- Parameters:
mapper (scalar, list-like, optional) – Value to set the axis name attribute.
index (scalar, list-like, dict-like or function, optional) –
A scalar, list-like, dict-like or functions transformations to apply to that axis’ values. Note that the
columns
parameter is not allowed if the object is a DeferredSeries. This parameter only apply for DeferredDataFrame type objects.Use either
mapper
andaxis
to specify the axis to target withmapper
, orindex
and/orcolumns
.columns (scalar, list-like, dict-like or function, optional) –
A scalar, list-like, dict-like or functions transformations to apply to that axis’ values. Note that the
columns
parameter is not allowed if the object is a DeferredSeries. This parameter only apply for DeferredDataFrame type objects.Use either
mapper
andaxis
to specify the axis to target withmapper
, orindex
and/orcolumns
.axis ({0 or 'index', 1 or 'columns'}, default 0) – The axis to rename. For DeferredSeries this parameter is unused and defaults to 0.
copy (bool, default None) – Also copy underlying data.
inplace (bool, default False) – Modifies the object directly, instead of creating a new DeferredSeries or DeferredDataFrame.
- Returns:
The same type as the caller or None if
inplace=True
.- Return type:
DeferredSeries, DeferredDataFrame, or None
Differences from pandas
This operation has no known divergences from the pandas API.
See also
DeferredSeries.rename
Alter DeferredSeries index labels or name.
DeferredDataFrame.rename
Alter DeferredDataFrame index labels or name.
Index.rename
Set new names on index.
Notes
DeferredDataFrame.rename_axis
supports two calling conventions(index=index_mapper, columns=columns_mapper, ...)
(mapper, axis={'index', 'columns'}, ...)
The first calling convention will only modify the names of the index and/or the names of the Index object that is the columns. In this case, the parameter
copy
is ignored.The second calling convention will modify the names of the corresponding index if mapper is a list or a scalar. However, if mapper is dict-like or a function, it will use the deprecated behavior of modifying the axis labels.
We highly recommend using keyword arguments to clarify your intent.
Examples
NOTE: These examples are pulled directly from the pandas documentation for convenience. Usage of the Beam DataFrame API will look different because it is a deferred API.
**Series** >>> s = pd.Series(["dog", "cat", "monkey"]) >>> s 0 dog 1 cat 2 monkey dtype: object >>> s.rename_axis("animal") animal 0 dog 1 cat 2 monkey dtype: object **DataFrame** >>> df = pd.DataFrame({"num_legs": [4, 4, 2], ... "num_arms": [0, 0, 2]}, ... ["dog", "cat", "monkey"]) >>> df num_legs num_arms dog 4 0 cat 4 0 monkey 2 2 >>> df = df.rename_axis("animal") >>> df num_legs num_arms animal dog 4 0 cat 4 0 monkey 2 2 >>> df = df.rename_axis("limbs", axis="columns") >>> df limbs num_legs num_arms animal dog 4 0 cat 4 0 monkey 2 2 **MultiIndex** >>> df.index = pd.MultiIndex.from_product([['mammal'], ... ['dog', 'cat', 'monkey']], ... names=['type', 'name']) >>> df limbs num_legs num_arms type name mammal dog 4 0 cat 4 0 monkey 2 2 >>> df.rename_axis(index={'type': 'class'}) limbs num_legs num_arms class name mammal dog 4 0 cat 4 0 monkey 2 2 >>> df.rename_axis(columns=str.upper) LIMBS num_legs num_arms type name mammal dog 4 0 cat 4 0 monkey 2 2
- round(**kwargs)
Round each value in a Series to the given number of decimals.
- Parameters:
decimals (int, default 0) – Number of decimal places to round to. If decimals is negative, it specifies the number of positions to the left of the decimal point.
*args – Additional arguments and keywords have no effect but might be accepted for compatibility with NumPy.
**kwargs – Additional arguments and keywords have no effect but might be accepted for compatibility with NumPy.
- Returns:
Rounded values of the DeferredSeries.
- Return type:
Differences from pandas
This operation has no known divergences from the pandas API.
See also
numpy.around
Round values of an np.array.
DeferredDataFrame.round
Round values of a DeferredDataFrame.
Examples
NOTE: These examples are pulled directly from the pandas documentation for convenience. Usage of the Beam DataFrame API will look different because it is a deferred API.
>>> s = pd.Series([0.1, 1.3, 2.7]) >>> s.round() 0 0.0 1 1.0 2 3.0 dtype: float64
- take(**kwargs)
pandas.Series.take()
is not yet supported in the Beam DataFrame API because it is deprecated in pandas.
- to_dict(**kwargs)
pandas.Series.to_dict()
is not yet supported in the Beam DataFrame API because it produces an output type that is not deferred.For more information see https://s.apache.org/dataframe-non-deferred-result.
- to_frame(**kwargs)
Convert Series to DataFrame.
- Parameters:
name (object, optional) – The passed name should substitute for the series name (if it has one).
- Returns:
DeferredDataFrame representation of DeferredSeries.
- Return type:
Differences from pandas
This operation has no known divergences from the pandas API.
Examples
NOTE: These examples are pulled directly from the pandas documentation for convenience. Usage of the Beam DataFrame API will look different because it is a deferred API.
>>> s = pd.Series(["a", "b", "c"], ... name="vals") >>> s.to_frame() vals 0 a 1 b 2 c
- unique(as_series=False)[source]
Return unique values of Series object.
Uniques are returned in order of appearance. Hash table-based unique, therefore does NOT sort.
- Returns:
The unique values returned as a NumPy array. See Notes.
- Return type:
ndarray or ExtensionArray
Differences from pandas
unique is not supported by default because it produces a non-deferred result: an
ndarray
. You can use the Beam-specific argumentunique(as_series=True)
to get the result as aDeferredSeries
See also
DeferredSeries.drop_duplicates
Return DeferredSeries with duplicate values removed.
unique
Top-level unique method for any 1-d array-like object.
Index.unique
Return Index with unique values from an Index object.
Notes
Returns the unique values as a NumPy array. In case of an extension-array backed DeferredSeries, a new
ExtensionArray
of that type with just the unique values is returned. This includesCategorical
Period
Datetime with Timezone
Datetime without Timezone
Timedelta
Interval
Sparse
IntegerNA
See Examples section.
Examples
NOTE: These examples are pulled directly from the pandas documentation for convenience. Usage of the Beam DataFrame API will look different because it is a deferred API. In addition, some arguments shown here may not be supported, see ‘Differences from pandas’ for details.
>>> pd.Series([2, 1, 3, 3], name='A').unique() array([2, 1, 3]) >>> pd.Series([pd.Timestamp('2016-01-01') for _ in range(3)]).unique() <DatetimeArray> ['2016-01-01 00:00:00'] Length: 1, dtype: datetime64[ns] >>> pd.Series([pd.Timestamp('2016-01-01', tz='US/Eastern') ... for _ in range(3)]).unique() <DatetimeArray> ['2016-01-01 00:00:00-05:00'] Length: 1, dtype: datetime64[ns, US/Eastern] An Categorical will return categories in the order of appearance and with the same dtype. >>> pd.Series(pd.Categorical(list('baabc'))).unique() ['b', 'a', 'c'] Categories (3, object): ['a', 'b', 'c'] >>> pd.Series(pd.Categorical(list('baabc'), categories=list('abc'), ... ordered=True)).unique() ['b', 'a', 'c'] Categories (3, object): ['a' < 'b' < 'c']
- update(other)[source]
Modify Series in place using values from passed Series.
Uses non-NA values from passed Series to make updates. Aligns on index.
- Parameters:
other (DeferredSeries, or object coercible into DeferredSeries)
Differences from pandas
This operation has no known divergences from the pandas API.
Examples
NOTE: These examples are pulled directly from the pandas documentation for convenience. Usage of the Beam DataFrame API will look different because it is a deferred API.
>>> s = pd.Series([1, 2, 3]) >>> s.update(pd.Series([4, 5, 6])) >>> s 0 4 1 5 2 6 dtype: int64 >>> s = pd.Series(['a', 'b', 'c']) >>> s.update(pd.Series(['d', 'e'], index=[0, 2])) >>> s 0 d 1 b 2 e dtype: object >>> s = pd.Series([1, 2, 3]) >>> s.update(pd.Series([4, 5, 6, 7, 8])) >>> s 0 4 1 5 2 6 dtype: int64 If ``other`` contains NaNs the corresponding values are not updated in the original Series. >>> s = pd.Series([1, 2, 3]) >>> s.update(pd.Series([4, np.nan, 6])) >>> s 0 4 1 2 2 6 dtype: int64 ``other`` can also be a non-Series object type that is coercible into a Series >>> s = pd.Series([1, 2, 3]) >>> s.update([4, np.nan, 6]) >>> s 0 4 1 2 2 6 dtype: int64 >>> s = pd.Series([1, 2, 3]) >>> s.update({1: 9}) >>> s 0 1 1 9 2 3 dtype: int64
- value_counts(sort=False, normalize=False, ascending=False, bins=None, dropna=True)[source]
Return a Series containing counts of unique values.
The resulting object will be in descending order so that the first element is the most frequently-occurring element. Excludes NA values by default.
- Parameters:
normalize (bool, default False) – If True then the object returned will contain the relative frequencies of the unique values.
sort (bool, default True) – Sort by frequencies when True. Preserve the order of the data when False.
ascending (bool, default False) – Sort in ascending order.
bins (int, optional) – Rather than count values, group them into half-open bins, a convenience for
pd.cut
, only works with numeric data.dropna (bool, default True) – Don’t include counts of NaN.
- Return type:
Differences from pandas
sort
isFalse
by default, andsort=True
is not supported because it imposes an ordering on the dataset which likely will not be preserved.When
bin
is specified this operation is not parallelizable. See [Issue 20903](https://github.com/apache/beam/issues/20903) tracking the possible addition of a distributed implementation.See also
DeferredSeries.count
Number of non-NA elements in a DeferredSeries.
DeferredDataFrame.count
Number of non-NA elements in a DeferredDataFrame.
DeferredDataFrame.value_counts
Equivalent method on DeferredDataFrames.
Examples
NOTE: These examples are pulled directly from the pandas documentation for convenience. Usage of the Beam DataFrame API will look different because it is a deferred API. In addition, some arguments shown here may not be supported, see ‘Differences from pandas’ for details.
>>> index = pd.Index([3, 1, 2, 3, 4, np.nan]) >>> index.value_counts() 3.0 2 1.0 1 2.0 1 4.0 1 Name: count, dtype: int64 With `normalize` set to `True`, returns the relative frequency by dividing all values by the sum of values. >>> s = pd.Series([3, 1, 2, 3, 4, np.nan]) >>> s.value_counts(normalize=True) 3.0 0.4 1.0 0.2 2.0 0.2 4.0 0.2 Name: proportion, dtype: float64 **bins** Bins can be useful for going from a continuous variable to a categorical variable; instead of counting unique apparitions of values, divide the index in the specified number of half-open bins. >>> s.value_counts(bins=3) (0.996, 2.0] 2 (2.0, 3.0] 2 (3.0, 4.0] 1 Name: count, dtype: int64 **dropna** With `dropna` set to `False` we can also see NaN index values. >>> s.value_counts(dropna=False) 3.0 2 1.0 1 2.0 1 4.0 1 NaN 1 Name: count, dtype: int64
- property values
pandas.Series.values()
is not yet supported in the Beam DataFrame API because it produces an output type that is not deferred.For more information see https://s.apache.org/dataframe-non-deferred-result.
- view(**kwargs)
pandas.Series.view()
is not yet supported in the Beam DataFrame API because it relies on memory-sharing semantics that are not compatible with the Beam model.
- property str
Vectorized string functions for Series and Index.
NAs stay NA unless handled otherwise by a particular method. Patterned after Python’s string methods, with some inspiration from R’s stringr package.
Differences from pandas
This operation has no known divergences from the pandas API.
Examples
NOTE: These examples are pulled directly from the pandas documentation for convenience. Usage of the Beam DataFrame API will look different because it is a deferred API.
>>> s = pd.Series(["A_Str_Series"]) >>> s 0 A_Str_Series dtype: object >>> s.str.split("_") 0 [A, Str, Series] dtype: object >>> s.str.replace("_", "") 0 AStrSeries dtype: object
- property cat
Accessor object for categorical properties of the Series values.
- Parameters:
data (DeferredSeries or CategoricalIndex)
Differences from pandas
This operation has no known divergences from the pandas API.
Examples
NOTE: These examples are pulled directly from the pandas documentation for convenience. Usage of the Beam DataFrame API will look different because it is a deferred API.
>>> s = pd.Series(list("abbccc")).astype("category") >>> s 0 a 1 b 2 b 3 c 4 c 5 c dtype: category Categories (3, object): ['a', 'b', 'c'] >>> s.cat.categories Index(['a', 'b', 'c'], dtype='object') >>> s.cat.rename_categories(list("cba")) 0 c 1 b 2 b 3 a 4 a 5 a dtype: category Categories (3, object): ['c', 'b', 'a'] >>> s.cat.reorder_categories(list("cba")) 0 a 1 b 2 b 3 c 4 c 5 c dtype: category Categories (3, object): ['c', 'b', 'a'] >>> s.cat.add_categories(["d", "e"]) 0 a 1 b 2 b 3 c 4 c 5 c dtype: category Categories (5, object): ['a', 'b', 'c', 'd', 'e'] >>> s.cat.remove_categories(["a", "c"]) 0 NaN 1 b 2 b 3 NaN 4 NaN 5 NaN dtype: category Categories (1, object): ['b'] >>> s1 = s.cat.add_categories(["d", "e"]) >>> s1.cat.remove_unused_categories() 0 a 1 b 2 b 3 c 4 c 5 c dtype: category Categories (3, object): ['a', 'b', 'c'] >>> s.cat.set_categories(list("abcde")) 0 a 1 b 2 b 3 c 4 c 5 c dtype: category Categories (5, object): ['a', 'b', 'c', 'd', 'e'] >>> s.cat.as_ordered() 0 a 1 b 2 b 3 c 4 c 5 c dtype: category Categories (3, object): ['a' < 'b' < 'c'] >>> s.cat.as_unordered() 0 a 1 b 2 b 3 c 4 c 5 c dtype: category Categories (3, object): ['a', 'b', 'c']
- property dt
- mode(*args, **kwargs)[source]
Return the mode(s) of the Series.
The mode is the value that appears most often. There can be multiple modes.
Always returns Series even if only one value is returned.
- Parameters:
dropna (bool, default True) – Don’t consider counts of NaN/NaT.
- Returns:
Modes of the DeferredSeries in sorted order.
- Return type:
Differences from pandas
mode is not currently parallelizable. An approximate, parallelizable implementation of mode may be added in the future (Issue 20946).
Examples
NOTE: These examples are pulled directly from the pandas documentation for convenience. Usage of the Beam DataFrame API will look different because it is a deferred API. In addition, some arguments shown here may not be supported, see ‘Differences from pandas’ for details.
>>> s = pd.Series([2, 4, 2, 2, 4, None]) >>> s.mode() 0 2.0 dtype: float64 More than one mode: >>> s = pd.Series([2, 4, 8, 2, 4, None]) >>> s.mode() 0 2.0 1 4.0 dtype: float64 With and without considering null value: >>> s = pd.Series([2, 4, None, None, 4, None]) >>> s.mode(dropna=False) 0 NaN dtype: float64 >>> s = pd.Series([2, 4, None, None, 4, None]) >>> s.mode() 0 4.0 dtype: float64
- apply(**kwargs)
Invoke function on values of Series.
Can be ufunc (a NumPy function that applies to the entire Series) or a Python function that only works on single values.
- Parameters:
func (function) – Python function or NumPy ufunc to apply.
convert_dtype (bool, default True) –
Try to find better dtype for elementwise function results. If False, leave as dtype=object. Note that the dtype is always preserved for some extension array dtypes, such as Categorical.
Deprecated since version 2.1.0:
convert_dtype
has been deprecated. Doser.astype(object).apply()
instead if you wantconvert_dtype=False
.args (tuple) – Positional arguments passed to func after the series value.
by_row (False or "compat", default "compat") –
If
"compat"
and func is a callable, func will be passed each element of the DeferredSeries, likeDeferredSeries.map
. If func is a list or dict of callables, will first try to translate each func into pandas methods. If that doesn’t work, will try call to apply again withby_row="compat"
and if that fails, will call apply again withby_row=False
(backward compatible). If False, the func will be passed the whole DeferredSeries at once.by_row
has no effect whenfunc
is a string.Added in version 2.1.0.
**kwargs – Additional keyword arguments passed to func.
- Returns:
If func returns a DeferredSeries object the result will be a DeferredDataFrame.
- Return type:
Differences from pandas
This operation has no known divergences from the pandas API.
See also
DeferredSeries.map
For element-wise operations.
DeferredSeries.agg
Only perform aggregating type operations.
DeferredSeries.transform
Only perform transforming type operations.
Notes
Functions that mutate the passed object can produce unexpected behavior or errors and are not supported. See Mutating with User Defined Function (UDF) methods for more details.
Examples
NOTE: These examples are pulled directly from the pandas documentation for convenience. Usage of the Beam DataFrame API will look different because it is a deferred API.
Create a series with typical summer temperatures for each city. >>> s = pd.Series([20, 21, 12], ... index=['London', 'New York', 'Helsinki']) >>> s London 20 New York 21 Helsinki 12 dtype: int64 Square the values by defining a function and passing it as an argument to ``apply()``. >>> def square(x): ... return x ** 2 >>> s.apply(square) London 400 New York 441 Helsinki 144 dtype: int64 Square the values by passing an anonymous function as an argument to ``apply()``. >>> s.apply(lambda x: x ** 2) London 400 New York 441 Helsinki 144 dtype: int64 Define a custom function that needs additional positional arguments and pass these additional arguments using the ``args`` keyword. >>> def subtract_custom_value(x, custom_value): ... return x - custom_value >>> s.apply(subtract_custom_value, args=(5,)) London 15 New York 16 Helsinki 7 dtype: int64 Define a custom function that takes keyword arguments and pass these arguments to ``apply``. >>> def add_custom_values(x, **kwargs): ... for month in kwargs: ... x += kwargs[month] ... return x >>> s.apply(add_custom_values, june=30, july=20, august=25) London 95 New York 96 Helsinki 87 dtype: int64 Use a function from the Numpy library. >>> s.apply(np.log) London 2.995732 New York 3.044522 Helsinki 2.484907 dtype: float64
- map(**kwargs)
Map values of Series according to an input mapping or function.
Used for substituting each value in a Series with another value, that may be derived from a function, a
dict
or aSeries
.- Parameters:
arg (function, collections.abc.Mapping subclass or DeferredSeries) – Mapping correspondence.
na_action ({None, 'ignore'}, default None) – If ‘ignore’, propagate NaN values, without passing them to the mapping correspondence.
- Returns:
Same index as caller.
- Return type:
Differences from pandas
This operation has no known divergences from the pandas API.
See also
DeferredSeries.apply
For applying more complex functions on a DeferredSeries.
DeferredSeries.replace
Replace values given in to_replace with value.
DeferredDataFrame.apply
Apply a function row-/column-wise.
DeferredDataFrame.map
Apply a function elementwise on a whole DeferredDataFrame.
Notes
When
arg
is a dictionary, values in DeferredSeries that are not in the dictionary (as keys) are converted toNaN
. However, if the dictionary is adict
subclass that defines__missing__
(i.e. provides a method for default values), then this default is used rather thanNaN
.Examples
NOTE: These examples are pulled directly from the pandas documentation for convenience. Usage of the Beam DataFrame API will look different because it is a deferred API.
>>> s = pd.Series(['cat', 'dog', np.nan, 'rabbit']) >>> s 0 cat 1 dog 2 NaN 3 rabbit dtype: object ``map`` accepts a ``dict`` or a ``Series``. Values that are not found in the ``dict`` are converted to ``NaN``, unless the dict has a default value (e.g. ``defaultdict``): >>> s.map({'cat': 'kitten', 'dog': 'puppy'}) 0 kitten 1 puppy 2 NaN 3 NaN dtype: object It also accepts a function: >>> s.map('I am a {}'.format) 0 I am a cat 1 I am a dog 2 I am a nan 3 I am a rabbit dtype: object To avoid applying the function to missing values (and keep them as ``NaN``) ``na_action='ignore'`` can be used: >>> s.map('I am a {}'.format, na_action='ignore') 0 I am a cat 1 I am a dog 2 NaN 3 I am a rabbit dtype: object
- repeat(repeats, axis)[source]
Repeat elements of a Series.
Returns a new Series where each element of the current Series is repeated consecutively a given number of times.
- Parameters:
repeats (int or array of ints) – The number of repetitions for each element. This should be a non-negative integer. Repeating 0 times will return an empty DeferredSeries.
axis (None) – Unused. Parameter needed for compatibility with DeferredDataFrame.
- Returns:
Newly created DeferredSeries with repeated elements.
- Return type:
Differences from pandas
repeats
must be anint
or aDeferredSeries
. Lists are not supported because they make this operation order-sensitive.See also
Index.repeat
Equivalent function for Index.
numpy.repeat
Similar method for
numpy.ndarray
.
Examples
NOTE: These examples are pulled directly from the pandas documentation for convenience. Usage of the Beam DataFrame API will look different because it is a deferred API. In addition, some arguments shown here may not be supported, see ‘Differences from pandas’ for details.
>>> s = pd.Series(['a', 'b', 'c']) >>> s 0 a 1 b 2 c dtype: object >>> s.repeat(2) 0 a 0 a 1 b 1 b 2 c 2 c dtype: object >>> s.repeat([1, 2, 3]) 0 a 1 b 1 b 2 c 2 c 2 c dtype: object
- compare(other, align_axis, **kwargs)[source]
Compare to another Series and show the differences.
- Parameters:
other (DeferredSeries) – Object to compare with.
align_axis ({0 or 'index', 1 or 'columns'}, default 1) –
Determine which axis to align the comparison on.
- 0, or ‘index’Resulting differences are stacked vertically
with rows drawn alternately from self and other.
- 1, or ‘columns’Resulting differences are aligned horizontally
with columns drawn alternately from self and other.
keep_shape (bool, default False) – If true, all rows and columns are kept. Otherwise, only the ones with different values are kept.
keep_equal (bool, default False) – If true, the result keeps values that are equal. Otherwise, equal values are shown as NaNs.
result_names (tuple, default ('self', 'other')) –
Set the dataframes names in the comparison.
Added in version 1.5.0.
- Returns:
If axis is 0 or ‘index’ the result will be a DeferredSeries. The resulting index will be a MultiIndex with ‘self’ and ‘other’ stacked alternately at the inner level.
If axis is 1 or ‘columns’ the result will be a DeferredDataFrame. It will have two columns namely ‘self’ and ‘other’.
- Return type:
Differences from pandas
This operation has no known divergences from the pandas API.
See also
DeferredDataFrame.compare
Compare with another DeferredDataFrame and show differences.
Notes
Matching NaNs will not appear as a difference.
Examples
NOTE: These examples are pulled directly from the pandas documentation for convenience. Usage of the Beam DataFrame API will look different because it is a deferred API.
>>> s1 = pd.Series(["a", "b", "c", "d", "e"]) >>> s2 = pd.Series(["a", "a", "c", "b", "e"]) Align the differences on columns >>> s1.compare(s2) self other 1 b a 3 d b Stack the differences on indices >>> s1.compare(s2, align_axis=0) 1 self b other a 3 self d other b dtype: object Keep all original rows >>> s1.compare(s2, keep_shape=True) self other 0 NaN NaN 1 b a 2 NaN NaN 3 d b 4 NaN NaN Keep all original rows and also all original values >>> s1.compare(s2, keep_shape=True, keep_equal=True) self other 0 a a 1 b a 2 c c 3 d b 4 e e
- add(**kwargs)
Return Addition of series and other, element-wise (binary operator add).
Equivalent to
series + other
, but with support to substitute a fill_value for missing data in either one of the inputs.- Parameters:
other (DeferredSeries or scalar value)
level (int or name) – Broadcast across a level, matching Index values on the passed MultiIndex level.
fill_value (None or float value, default None (NaN)) – Fill existing missing (NaN) values, and any new element needed for successful DeferredSeries alignment, with this value before computation. If data in both corresponding DeferredSeries locations is missing the result of filling (at that location) will be missing.
axis ({0 or 'index'}) – Unused. Parameter needed for compatibility with DeferredDataFrame.
- Returns:
The result of the operation.
- Return type:
Differences from pandas
Only level=None is supported
See also
DeferredSeries.radd
Reverse of the Addition operator, see Python documentation for more details.
Examples
NOTE: These examples are pulled directly from the pandas documentation for convenience. Usage of the Beam DataFrame API will look different because it is a deferred API. In addition, some arguments shown here may not be supported, see ‘Differences from pandas’ for details.
>>> a = pd.Series([1, 1, 1, np.nan], index=['a', 'b', 'c', 'd']) >>> a a 1.0 b 1.0 c 1.0 d NaN dtype: float64 >>> b = pd.Series([1, np.nan, 1, np.nan], index=['a', 'b', 'd', 'e']) >>> b a 1.0 b NaN d 1.0 e NaN dtype: float64 >>> a.add(b, fill_value=0) a 2.0 b 1.0 c 1.0 d 1.0 e NaN dtype: float64
- asfreq(**kwargs)
pandas.Series.asfreq()
is not implemented yet in the Beam DataFrame API.If support for ‘asfreq’ is important to you, please let the Beam community know by writing to user@beam.apache.org or commenting on 20318.
- property at
pandas.Series.at()
is not implemented yet in the Beam DataFrame API.If support for ‘at’ is important to you, please let the Beam community know by writing to user@beam.apache.org or commenting on 20318.
- convert_dtypes(**kwargs)
pandas.Series.convert_dtypes()
is not implemented yet in the Beam DataFrame API.If support for ‘convert_dtypes’ is important to you, please let the Beam community know by writing to user@beam.apache.org or commenting on 20318.
- div(**kwargs)
Return Floating division of series and other, element-wise (binary operator truediv).
Equivalent to
series / other
, but with support to substitute a fill_value for missing data in either one of the inputs.- Parameters:
other (DeferredSeries or scalar value)
level (int or name) – Broadcast across a level, matching Index values on the passed MultiIndex level.
fill_value (None or float value, default None (NaN)) – Fill existing missing (NaN) values, and any new element needed for successful DeferredSeries alignment, with this value before computation. If data in both corresponding DeferredSeries locations is missing the result of filling (at that location) will be missing.
axis ({0 or 'index'}) – Unused. Parameter needed for compatibility with DeferredDataFrame.
- Returns:
The result of the operation.
- Return type:
Differences from pandas
Only level=None is supported
See also
DeferredSeries.rtruediv
Reverse of the Floating division operator, see Python documentation for more details.
Examples
NOTE: These examples are pulled directly from the pandas documentation for convenience. Usage of the Beam DataFrame API will look different because it is a deferred API. In addition, some arguments shown here may not be supported, see ‘Differences from pandas’ for details.
>>> a = pd.Series([1, 1, 1, np.nan], index=['a', 'b', 'c', 'd']) >>> a a 1.0 b 1.0 c 1.0 d NaN dtype: float64 >>> b = pd.Series([1, np.nan, 1, np.nan], index=['a', 'b', 'd', 'e']) >>> b a 1.0 b NaN d 1.0 e NaN dtype: float64 >>> a.divide(b, fill_value=0) a 1.0 b inf c inf d 0.0 e NaN dtype: float64
- divide(**kwargs)
Return Floating division of series and other, element-wise (binary operator truediv).
Equivalent to
series / other
, but with support to substitute a fill_value for missing data in either one of the inputs.- Parameters:
other (DeferredSeries or scalar value)
level (int or name) – Broadcast across a level, matching Index values on the passed MultiIndex level.
fill_value (None or float value, default None (NaN)) – Fill existing missing (NaN) values, and any new element needed for successful DeferredSeries alignment, with this value before computation. If data in both corresponding DeferredSeries locations is missing the result of filling (at that location) will be missing.
axis ({0 or 'index'}) – Unused. Parameter needed for compatibility with DeferredDataFrame.
- Returns:
The result of the operation.
- Return type:
Differences from pandas
Only level=None is supported
See also
DeferredSeries.rtruediv
Reverse of the Floating division operator, see Python documentation for more details.
Examples
NOTE: These examples are pulled directly from the pandas documentation for convenience. Usage of the Beam DataFrame API will look different because it is a deferred API. In addition, some arguments shown here may not be supported, see ‘Differences from pandas’ for details.
>>> a = pd.Series([1, 1, 1, np.nan], index=['a', 'b', 'c', 'd']) >>> a a 1.0 b 1.0 c 1.0 d NaN dtype: float64 >>> b = pd.Series([1, np.nan, 1, np.nan], index=['a', 'b', 'd', 'e']) >>> b a 1.0 b NaN d 1.0 e NaN dtype: float64 >>> a.divide(b, fill_value=0) a 1.0 b inf c inf d 0.0 e NaN dtype: float64
- divmod(**kwargs)
Return Integer division and modulo of series and other, element-wise (binary operator divmod).
Equivalent to
divmod(series, other)
, but with support to substitute a fill_value for missing data in either one of the inputs.- Parameters:
other (DeferredSeries or scalar value)
level (int or name) – Broadcast across a level, matching Index values on the passed MultiIndex level.
fill_value (None or float value, default None (NaN)) – Fill existing missing (NaN) values, and any new element needed for successful DeferredSeries alignment, with this value before computation. If data in both corresponding DeferredSeries locations is missing the result of filling (at that location) will be missing.
axis ({0 or 'index'}) – Unused. Parameter needed for compatibility with DeferredDataFrame.
- Returns:
The result of the operation.
- Return type:
2-Tuple of DeferredSeries
Differences from pandas
Only level=None is supported
See also
DeferredSeries.rdivmod
Reverse of the Integer division and modulo operator, see Python documentation for more details.
Examples
NOTE: These examples are pulled directly from the pandas documentation for convenience. Usage of the Beam DataFrame API will look different because it is a deferred API. In addition, some arguments shown here may not be supported, see ‘Differences from pandas’ for details.
>>> a = pd.Series([1, 1, 1, np.nan], index=['a', 'b', 'c', 'd']) >>> a a 1.0 b 1.0 c 1.0 d NaN dtype: float64 >>> b = pd.Series([1, np.nan, 1, np.nan], index=['a', 'b', 'd', 'e']) >>> b a 1.0 b NaN d 1.0 e NaN dtype: float64 >>> a.divmod(b, fill_value=0) (a 1.0 b inf c inf d 0.0 e NaN dtype: float64, a 0.0 b NaN c NaN d 0.0 e NaN dtype: float64)
- eq(**kwargs)
Return Equal to of series and other, element-wise (binary operator eq).
Equivalent to
series == other
, but with support to substitute a fill_value for missing data in either one of the inputs.- Parameters:
other (DeferredSeries or scalar value)
level (int or name) – Broadcast across a level, matching Index values on the passed MultiIndex level.
fill_value (None or float value, default None (NaN)) – Fill existing missing (NaN) values, and any new element needed for successful DeferredSeries alignment, with this value before computation. If data in both corresponding DeferredSeries locations is missing the result of filling (at that location) will be missing.
axis ({0 or 'index'}) – Unused. Parameter needed for compatibility with DeferredDataFrame.
- Returns:
The result of the operation.
- Return type:
Differences from pandas
This operation has no known divergences from the pandas API.
Examples
NOTE: These examples are pulled directly from the pandas documentation for convenience. Usage of the Beam DataFrame API will look different because it is a deferred API.
>>> a = pd.Series([1, 1, 1, np.nan], index=['a', 'b', 'c', 'd']) >>> a a 1.0 b 1.0 c 1.0 d NaN dtype: float64 >>> b = pd.Series([1, np.nan, 1, np.nan], index=['a', 'b', 'd', 'e']) >>> b a 1.0 b NaN d 1.0 e NaN dtype: float64 >>> a.eq(b, fill_value=0) a True b False c False d False e False dtype: bool
- property flags
pandas.Series.flags()
is not implemented yet in the Beam DataFrame API.If support for ‘flags’ is important to you, please let the Beam community know by writing to user@beam.apache.org or commenting on 20318.
- floordiv(**kwargs)
Return Integer division of series and other, element-wise (binary operator floordiv).
Equivalent to
series // other
, but with support to substitute a fill_value for missing data in either one of the inputs.- Parameters:
other (DeferredSeries or scalar value)
level (int or name) – Broadcast across a level, matching Index values on the passed MultiIndex level.
fill_value (None or float value, default None (NaN)) – Fill existing missing (NaN) values, and any new element needed for successful DeferredSeries alignment, with this value before computation. If data in both corresponding DeferredSeries locations is missing the result of filling (at that location) will be missing.
axis ({0 or 'index'}) – Unused. Parameter needed for compatibility with DeferredDataFrame.
- Returns:
The result of the operation.
- Return type:
Differences from pandas
Only level=None is supported
See also
DeferredSeries.rfloordiv
Reverse of the Integer division operator, see Python documentation for more details.
Examples
NOTE: These examples are pulled directly from the pandas documentation for convenience. Usage of the Beam DataFrame API will look different because it is a deferred API. In addition, some arguments shown here may not be supported, see ‘Differences from pandas’ for details.
>>> a = pd.Series([1, 1, 1, np.nan], index=['a', 'b', 'c', 'd']) >>> a a 1.0 b 1.0 c 1.0 d NaN dtype: float64 >>> b = pd.Series([1, np.nan, 1, np.nan], index=['a', 'b', 'd', 'e']) >>> b a 1.0 b NaN d 1.0 e NaN dtype: float64 >>> a.floordiv(b, fill_value=0) a 1.0 b inf c inf d 0.0 e NaN dtype: float64
- ge(**kwargs)
Return Greater than or equal to of series and other, element-wise (binary operator ge).
Equivalent to
series >= other
, but with support to substitute a fill_value for missing data in either one of the inputs.- Parameters:
other (DeferredSeries or scalar value)
level (int or name) – Broadcast across a level, matching Index values on the passed MultiIndex level.
fill_value (None or float value, default None (NaN)) – Fill existing missing (NaN) values, and any new element needed for successful DeferredSeries alignment, with this value before computation. If data in both corresponding DeferredSeries locations is missing the result of filling (at that location) will be missing.
axis ({0 or 'index'}) – Unused. Parameter needed for compatibility with DeferredDataFrame.
- Returns:
The result of the operation.
- Return type:
Differences from pandas
This operation has no known divergences from the pandas API.
Examples
NOTE: These examples are pulled directly from the pandas documentation for convenience. Usage of the Beam DataFrame API will look different because it is a deferred API.
>>> a = pd.Series([1, 1, 1, np.nan, 1], index=['a', 'b', 'c', 'd', 'e']) >>> a a 1.0 b 1.0 c 1.0 d NaN e 1.0 dtype: float64 >>> b = pd.Series([0, 1, 2, np.nan, 1], index=['a', 'b', 'c', 'd', 'f']) >>> b a 0.0 b 1.0 c 2.0 d NaN f 1.0 dtype: float64 >>> a.ge(b, fill_value=0) a True b True c False d False e True f False dtype: bool
- gt(**kwargs)
Return Greater than of series and other, element-wise (binary operator gt).
Equivalent to
series > other
, but with support to substitute a fill_value for missing data in either one of the inputs.- Parameters:
other (DeferredSeries or scalar value)
level (int or name) – Broadcast across a level, matching Index values on the passed MultiIndex level.
fill_value (None or float value, default None (NaN)) – Fill existing missing (NaN) values, and any new element needed for successful DeferredSeries alignment, with this value before computation. If data in both corresponding DeferredSeries locations is missing the result of filling (at that location) will be missing.
axis ({0 or 'index'}) – Unused. Parameter needed for compatibility with DeferredDataFrame.
- Returns:
The result of the operation.
- Return type:
Differences from pandas
This operation has no known divergences from the pandas API.
Examples
NOTE: These examples are pulled directly from the pandas documentation for convenience. Usage of the Beam DataFrame API will look different because it is a deferred API.
>>> a = pd.Series([1, 1, 1, np.nan, 1], index=['a', 'b', 'c', 'd', 'e']) >>> a a 1.0 b 1.0 c 1.0 d NaN e 1.0 dtype: float64 >>> b = pd.Series([0, 1, 2, np.nan, 1], index=['a', 'b', 'c', 'd', 'f']) >>> b a 0.0 b 1.0 c 2.0 d NaN f 1.0 dtype: float64 >>> a.gt(b, fill_value=0) a True b False c False d False e True f False dtype: bool
- infer_objects(**kwargs)
pandas.Series.infer_objects()
is not implemented yet in the Beam DataFrame API.If support for ‘infer_objects’ is important to you, please let the Beam community know by writing to user@beam.apache.org or commenting on 20318.
- item(**kwargs)
pandas.Series.item()
is not implemented yet in the Beam DataFrame API.If support for ‘item’ is important to you, please let the Beam community know by writing to user@beam.apache.org or commenting on 20318.
- le(**kwargs)
Return Less than or equal to of series and other, element-wise (binary operator le).
Equivalent to
series <= other
, but with support to substitute a fill_value for missing data in either one of the inputs.- Parameters:
other (DeferredSeries or scalar value)
level (int or name) – Broadcast across a level, matching Index values on the passed MultiIndex level.
fill_value (None or float value, default None (NaN)) – Fill existing missing (NaN) values, and any new element needed for successful DeferredSeries alignment, with this value before computation. If data in both corresponding DeferredSeries locations is missing the result of filling (at that location) will be missing.
axis ({0 or 'index'}) – Unused. Parameter needed for compatibility with DeferredDataFrame.
- Returns:
The result of the operation.
- Return type:
Differences from pandas
This operation has no known divergences from the pandas API.
Examples
NOTE: These examples are pulled directly from the pandas documentation for convenience. Usage of the Beam DataFrame API will look different because it is a deferred API.
>>> a = pd.Series([1, 1, 1, np.nan, 1], index=['a', 'b', 'c', 'd', 'e']) >>> a a 1.0 b 1.0 c 1.0 d NaN e 1.0 dtype: float64 >>> b = pd.Series([0, 1, 2, np.nan, 1], index=['a', 'b', 'c', 'd', 'f']) >>> b a 0.0 b 1.0 c 2.0 d NaN f 1.0 dtype: float64 >>> a.le(b, fill_value=0) a False b True c True d False e False f True dtype: bool
- lt(**kwargs)
Return Less than of series and other, element-wise (binary operator lt).
Equivalent to
series < other
, but with support to substitute a fill_value for missing data in either one of the inputs.- Parameters:
other (DeferredSeries or scalar value)
level (int or name) – Broadcast across a level, matching Index values on the passed MultiIndex level.
fill_value (None or float value, default None (NaN)) – Fill existing missing (NaN) values, and any new element needed for successful DeferredSeries alignment, with this value before computation. If data in both corresponding DeferredSeries locations is missing the result of filling (at that location) will be missing.
axis ({0 or 'index'}) – Unused. Parameter needed for compatibility with DeferredDataFrame.
- Returns:
The result of the operation.
- Return type:
Differences from pandas
This operation has no known divergences from the pandas API.
Examples
NOTE: These examples are pulled directly from the pandas documentation for convenience. Usage of the Beam DataFrame API will look different because it is a deferred API.
>>> a = pd.Series([1, 1, 1, np.nan, 1], index=['a', 'b', 'c', 'd', 'e']) >>> a a 1.0 b 1.0 c 1.0 d NaN e 1.0 dtype: float64 >>> b = pd.Series([0, 1, 2, np.nan, 1], index=['a', 'b', 'c', 'd', 'f']) >>> b a 0.0 b 1.0 c 2.0 d NaN f 1.0 dtype: float64 >>> a.lt(b, fill_value=0) a False b False c True d False e False f True dtype: bool
- mod(**kwargs)
Return Modulo of series and other, element-wise (binary operator mod).
Equivalent to
series % other
, but with support to substitute a fill_value for missing data in either one of the inputs.- Parameters:
other (DeferredSeries or scalar value)
level (int or name) – Broadcast across a level, matching Index values on the passed MultiIndex level.
fill_value (None or float value, default None (NaN)) – Fill existing missing (NaN) values, and any new element needed for successful DeferredSeries alignment, with this value before computation. If data in both corresponding DeferredSeries locations is missing the result of filling (at that location) will be missing.
axis ({0 or 'index'}) – Unused. Parameter needed for compatibility with DeferredDataFrame.
- Returns:
The result of the operation.
- Return type:
Differences from pandas
Only level=None is supported
See also
DeferredSeries.rmod
Reverse of the Modulo operator, see Python documentation for more details.
Examples
NOTE: These examples are pulled directly from the pandas documentation for convenience. Usage of the Beam DataFrame API will look different because it is a deferred API. In addition, some arguments shown here may not be supported, see ‘Differences from pandas’ for details.
>>> a = pd.Series([1, 1, 1, np.nan], index=['a', 'b', 'c', 'd']) >>> a a 1.0 b 1.0 c 1.0 d NaN dtype: float64 >>> b = pd.Series([1, np.nan, 1, np.nan], index=['a', 'b', 'd', 'e']) >>> b a 1.0 b NaN d 1.0 e NaN dtype: float64 >>> a.mod(b, fill_value=0) a 0.0 b NaN c NaN d 0.0 e NaN dtype: float64
- mul(**kwargs)
Return Multiplication of series and other, element-wise (binary operator mul).
Equivalent to
series * other
, but with support to substitute a fill_value for missing data in either one of the inputs.- Parameters:
other (DeferredSeries or scalar value)
level (int or name) – Broadcast across a level, matching Index values on the passed MultiIndex level.
fill_value (None or float value, default None (NaN)) – Fill existing missing (NaN) values, and any new element needed for successful DeferredSeries alignment, with this value before computation. If data in both corresponding DeferredSeries locations is missing the result of filling (at that location) will be missing.
axis ({0 or 'index'}) – Unused. Parameter needed for compatibility with DeferredDataFrame.
- Returns:
The result of the operation.
- Return type:
Differences from pandas
Only level=None is supported
See also
DeferredSeries.rmul
Reverse of the Multiplication operator, see Python documentation for more details.
Examples
NOTE: These examples are pulled directly from the pandas documentation for convenience. Usage of the Beam DataFrame API will look different because it is a deferred API. In addition, some arguments shown here may not be supported, see ‘Differences from pandas’ for details.
>>> a = pd.Series([1, 1, 1, np.nan], index=['a', 'b', 'c', 'd']) >>> a a 1.0 b 1.0 c 1.0 d NaN dtype: float64 >>> b = pd.Series([1, np.nan, 1, np.nan], index=['a', 'b', 'd', 'e']) >>> b a 1.0 b NaN d 1.0 e NaN dtype: float64 >>> a.multiply(b, fill_value=0) a 1.0 b 0.0 c 0.0 d 0.0 e NaN dtype: float64
- multiply(**kwargs)
Return Multiplication of series and other, element-wise (binary operator mul).
Equivalent to
series * other
, but with support to substitute a fill_value for missing data in either one of the inputs.- Parameters:
other (DeferredSeries or scalar value)
level (int or name) – Broadcast across a level, matching Index values on the passed MultiIndex level.
fill_value (None or float value, default None (NaN)) – Fill existing missing (NaN) values, and any new element needed for successful DeferredSeries alignment, with this value before computation. If data in both corresponding DeferredSeries locations is missing the result of filling (at that location) will be missing.
axis ({0 or 'index'}) – Unused. Parameter needed for compatibility with DeferredDataFrame.
- Returns:
The result of the operation.
- Return type:
Differences from pandas
Only level=None is supported
See also
DeferredSeries.rmul
Reverse of the Multiplication operator, see Python documentation for more details.
Examples
NOTE: These examples are pulled directly from the pandas documentation for convenience. Usage of the Beam DataFrame API will look different because it is a deferred API. In addition, some arguments shown here may not be supported, see ‘Differences from pandas’ for details.
>>> a = pd.Series([1, 1, 1, np.nan], index=['a', 'b', 'c', 'd']) >>> a a 1.0 b 1.0 c 1.0 d NaN dtype: float64 >>> b = pd.Series([1, np.nan, 1, np.nan], index=['a', 'b', 'd', 'e']) >>> b a 1.0 b NaN d 1.0 e NaN dtype: float64 >>> a.multiply(b, fill_value=0) a 1.0 b 0.0 c 0.0 d 0.0 e NaN dtype: float64
- ne(**kwargs)
Return Not equal to of series and other, element-wise (binary operator ne).
Equivalent to
series != other
, but with support to substitute a fill_value for missing data in either one of the inputs.- Parameters:
other (DeferredSeries or scalar value)
level (int or name) – Broadcast across a level, matching Index values on the passed MultiIndex level.
fill_value (None or float value, default None (NaN)) – Fill existing missing (NaN) values, and any new element needed for successful DeferredSeries alignment, with this value before computation. If data in both corresponding DeferredSeries locations is missing the result of filling (at that location) will be missing.
axis ({0 or 'index'}) – Unused. Parameter needed for compatibility with DeferredDataFrame.
- Returns:
The result of the operation.
- Return type:
Differences from pandas
This operation has no known divergences from the pandas API.
Examples
NOTE: These examples are pulled directly from the pandas documentation for convenience. Usage of the Beam DataFrame API will look different because it is a deferred API.
>>> a = pd.Series([1, 1, 1, np.nan], index=['a', 'b', 'c', 'd']) >>> a a 1.0 b 1.0 c 1.0 d NaN dtype: float64 >>> b = pd.Series([1, np.nan, 1, np.nan], index=['a', 'b', 'd', 'e']) >>> b a 1.0 b NaN d 1.0 e NaN dtype: float64 >>> a.ne(b, fill_value=0) a False b True c True d True e True dtype: bool
- pow(**kwargs)
Return Exponential power of series and other, element-wise (binary operator pow).
Equivalent to
series ** other
, but with support to substitute a fill_value for missing data in either one of the inputs.- Parameters:
other (DeferredSeries or scalar value)
level (int or name) – Broadcast across a level, matching Index values on the passed MultiIndex level.
fill_value (None or float value, default None (NaN)) – Fill existing missing (NaN) values, and any new element needed for successful DeferredSeries alignment, with this value before computation. If data in both corresponding DeferredSeries locations is missing the result of filling (at that location) will be missing.
axis ({0 or 'index'}) – Unused. Parameter needed for compatibility with DeferredDataFrame.
- Returns:
The result of the operation.
- Return type:
Differences from pandas
Only level=None is supported
See also
DeferredSeries.rpow
Reverse of the Exponential power operator, see Python documentation for more details.
Examples
NOTE: These examples are pulled directly from the pandas documentation for convenience. Usage of the Beam DataFrame API will look different because it is a deferred API. In addition, some arguments shown here may not be supported, see ‘Differences from pandas’ for details.
>>> a = pd.Series([1, 1, 1, np.nan], index=['a', 'b', 'c', 'd']) >>> a a 1.0 b 1.0 c 1.0 d NaN dtype: float64 >>> b = pd.Series([1, np.nan, 1, np.nan], index=['a', 'b', 'd', 'e']) >>> b a 1.0 b NaN d 1.0 e NaN dtype: float64 >>> a.pow(b, fill_value=0) a 1.0 b 1.0 c 1.0 d 0.0 e NaN dtype: float64
- radd(**kwargs)
Return Addition of series and other, element-wise (binary operator radd).
Equivalent to
other + series
, but with support to substitute a fill_value for missing data in either one of the inputs.- Parameters:
other (DeferredSeries or scalar value)
level (int or name) – Broadcast across a level, matching Index values on the passed MultiIndex level.
fill_value (None or float value, default None (NaN)) – Fill existing missing (NaN) values, and any new element needed for successful DeferredSeries alignment, with this value before computation. If data in both corresponding DeferredSeries locations is missing the result of filling (at that location) will be missing.
axis ({0 or 'index'}) – Unused. Parameter needed for compatibility with DeferredDataFrame.
- Returns:
The result of the operation.
- Return type:
Differences from pandas
Only level=None is supported
See also
DeferredSeries.add
Element-wise Addition, see Python documentation for more details.
Examples
NOTE: These examples are pulled directly from the pandas documentation for convenience. Usage of the Beam DataFrame API will look different because it is a deferred API. In addition, some arguments shown here may not be supported, see ‘Differences from pandas’ for details.
>>> a = pd.Series([1, 1, 1, np.nan], index=['a', 'b', 'c', 'd']) >>> a a 1.0 b 1.0 c 1.0 d NaN dtype: float64 >>> b = pd.Series([1, np.nan, 1, np.nan], index=['a', 'b', 'd', 'e']) >>> b a 1.0 b NaN d 1.0 e NaN dtype: float64 >>> a.add(b, fill_value=0) a 2.0 b 1.0 c 1.0 d 1.0 e NaN dtype: float64
- rank(**kwargs)
pandas.Series.rank()
is not implemented yet in the Beam DataFrame API.If support for ‘rank’ is important to you, please let the Beam community know by writing to user@beam.apache.org or commenting on 20318.
- rdiv(**kwargs)
Return Floating division of series and other, element-wise (binary operator rtruediv).
Equivalent to
other / series
, but with support to substitute a fill_value for missing data in either one of the inputs.- Parameters:
other (DeferredSeries or scalar value)
level (int or name) – Broadcast across a level, matching Index values on the passed MultiIndex level.
fill_value (None or float value, default None (NaN)) – Fill existing missing (NaN) values, and any new element needed for successful DeferredSeries alignment, with this value before computation. If data in both corresponding DeferredSeries locations is missing the result of filling (at that location) will be missing.
axis ({0 or 'index'}) – Unused. Parameter needed for compatibility with DeferredDataFrame.
- Returns:
The result of the operation.
- Return type:
Differences from pandas
Only level=None is supported
See also
DeferredSeries.truediv
Element-wise Floating division, see Python documentation for more details.
Examples
NOTE: These examples are pulled directly from the pandas documentation for convenience. Usage of the Beam DataFrame API will look different because it is a deferred API. In addition, some arguments shown here may not be supported, see ‘Differences from pandas’ for details.
>>> a = pd.Series([1, 1, 1, np.nan], index=['a', 'b', 'c', 'd']) >>> a a 1.0 b 1.0 c 1.0 d NaN dtype: float64 >>> b = pd.Series([1, np.nan, 1, np.nan], index=['a', 'b', 'd', 'e']) >>> b a 1.0 b NaN d 1.0 e NaN dtype: float64 >>> a.divide(b, fill_value=0) a 1.0 b inf c inf d 0.0 e NaN dtype: float64
- rdivmod(**kwargs)
Return Integer division and modulo of series and other, element-wise (binary operator rdivmod).
Equivalent to
other divmod series
, but with support to substitute a fill_value for missing data in either one of the inputs.- Parameters:
other (DeferredSeries or scalar value)
level (int or name) – Broadcast across a level, matching Index values on the passed MultiIndex level.
fill_value (None or float value, default None (NaN)) – Fill existing missing (NaN) values, and any new element needed for successful DeferredSeries alignment, with this value before computation. If data in both corresponding DeferredSeries locations is missing the result of filling (at that location) will be missing.
axis ({0 or 'index'}) – Unused. Parameter needed for compatibility with DeferredDataFrame.
- Returns:
The result of the operation.
- Return type:
2-Tuple of DeferredSeries
Differences from pandas
Only level=None is supported
See also
DeferredSeries.divmod
Element-wise Integer division and modulo, see Python documentation for more details.
Examples
NOTE: These examples are pulled directly from the pandas documentation for convenience. Usage of the Beam DataFrame API will look different because it is a deferred API. In addition, some arguments shown here may not be supported, see ‘Differences from pandas’ for details.
>>> a = pd.Series([1, 1, 1, np.nan], index=['a', 'b', 'c', 'd']) >>> a a 1.0 b 1.0 c 1.0 d NaN dtype: float64 >>> b = pd.Series([1, np.nan, 1, np.nan], index=['a', 'b', 'd', 'e']) >>> b a 1.0 b NaN d 1.0 e NaN dtype: float64 >>> a.divmod(b, fill_value=0) (a 1.0 b inf c inf d 0.0 e NaN dtype: float64, a 0.0 b NaN c NaN d 0.0 e NaN dtype: float64)
- reindex_like(**kwargs)
pandas.Series.reindex_like()
is not implemented yet in the Beam DataFrame API.If support for ‘reindex_like’ is important to you, please let the Beam community know by writing to user@beam.apache.org or commenting on 20318.
- rfloordiv(**kwargs)
Return Integer division of series and other, element-wise (binary operator rfloordiv).
Equivalent to
other // series
, but with support to substitute a fill_value for missing data in either one of the inputs.- Parameters:
other (DeferredSeries or scalar value)
level (int or name) – Broadcast across a level, matching Index values on the passed MultiIndex level.
fill_value (None or float value, default None (NaN)) – Fill existing missing (NaN) values, and any new element needed for successful DeferredSeries alignment, with this value before computation. If data in both corresponding DeferredSeries locations is missing the result of filling (at that location) will be missing.
axis ({0 or 'index'}) – Unused. Parameter needed for compatibility with DeferredDataFrame.
- Returns:
The result of the operation.
- Return type:
Differences from pandas
Only level=None is supported
See also
DeferredSeries.floordiv
Element-wise Integer division, see Python documentation for more details.
Examples
NOTE: These examples are pulled directly from the pandas documentation for convenience. Usage of the Beam DataFrame API will look different because it is a deferred API. In addition, some arguments shown here may not be supported, see ‘Differences from pandas’ for details.
>>> a = pd.Series([1, 1, 1, np.nan], index=['a', 'b', 'c', 'd']) >>> a a 1.0 b 1.0 c 1.0 d NaN dtype: float64 >>> b = pd.Series([1, np.nan, 1, np.nan], index=['a', 'b', 'd', 'e']) >>> b a 1.0 b NaN d 1.0 e NaN dtype: float64 >>> a.floordiv(b, fill_value=0) a 1.0 b inf c inf d 0.0 e NaN dtype: float64
- rmod(**kwargs)
Return Modulo of series and other, element-wise (binary operator rmod).
Equivalent to
other % series
, but with support to substitute a fill_value for missing data in either one of the inputs.- Parameters:
other (DeferredSeries or scalar value)
level (int or name) – Broadcast across a level, matching Index values on the passed MultiIndex level.
fill_value (None or float value, default None (NaN)) – Fill existing missing (NaN) values, and any new element needed for successful DeferredSeries alignment, with this value before computation. If data in both corresponding DeferredSeries locations is missing the result of filling (at that location) will be missing.
axis ({0 or 'index'}) – Unused. Parameter needed for compatibility with DeferredDataFrame.
- Returns:
The result of the operation.
- Return type:
Differences from pandas
Only level=None is supported
See also
DeferredSeries.mod
Element-wise Modulo, see Python documentation for more details.
Examples
NOTE: These examples are pulled directly from the pandas documentation for convenience. Usage of the Beam DataFrame API will look different because it is a deferred API. In addition, some arguments shown here may not be supported, see ‘Differences from pandas’ for details.
>>> a = pd.Series([1, 1, 1, np.nan], index=['a', 'b', 'c', 'd']) >>> a a 1.0 b 1.0 c 1.0 d NaN dtype: float64 >>> b = pd.Series([1, np.nan, 1, np.nan], index=['a', 'b', 'd', 'e']) >>> b a 1.0 b NaN d 1.0 e NaN dtype: float64 >>> a.mod(b, fill_value=0) a 0.0 b NaN c NaN d 0.0 e NaN dtype: float64
- rmul(**kwargs)
Return Multiplication of series and other, element-wise (binary operator rmul).
Equivalent to
other * series
, but with support to substitute a fill_value for missing data in either one of the inputs.- Parameters:
other (DeferredSeries or scalar value)
level (int or name) – Broadcast across a level, matching Index values on the passed MultiIndex level.
fill_value (None or float value, default None (NaN)) – Fill existing missing (NaN) values, and any new element needed for successful DeferredSeries alignment, with this value before computation. If data in both corresponding DeferredSeries locations is missing the result of filling (at that location) will be missing.
axis ({0 or 'index'}) – Unused. Parameter needed for compatibility with DeferredDataFrame.
- Returns:
The result of the operation.
- Return type:
Differences from pandas
Only level=None is supported
See also
DeferredSeries.mul
Element-wise Multiplication, see Python documentation for more details.
Examples
NOTE: These examples are pulled directly from the pandas documentation for convenience. Usage of the Beam DataFrame API will look different because it is a deferred API. In addition, some arguments shown here may not be supported, see ‘Differences from pandas’ for details.
>>> a = pd.Series([1, 1, 1, np.nan], index=['a', 'b', 'c', 'd']) >>> a a 1.0 b 1.0 c 1.0 d NaN dtype: float64 >>> b = pd.Series([1, np.nan, 1, np.nan], index=['a', 'b', 'd', 'e']) >>> b a 1.0 b NaN d 1.0 e NaN dtype: float64 >>> a.multiply(b, fill_value=0) a 1.0 b 0.0 c 0.0 d 0.0 e NaN dtype: float64
- rpow(**kwargs)
Return Exponential power of series and other, element-wise (binary operator rpow).
Equivalent to
other ** series
, but with support to substitute a fill_value for missing data in either one of the inputs.- Parameters:
other (DeferredSeries or scalar value)
level (int or name) – Broadcast across a level, matching Index values on the passed MultiIndex level.
fill_value (None or float value, default None (NaN)) – Fill existing missing (NaN) values, and any new element needed for successful DeferredSeries alignment, with this value before computation. If data in both corresponding DeferredSeries locations is missing the result of filling (at that location) will be missing.
axis ({0 or 'index'}) – Unused. Parameter needed for compatibility with DeferredDataFrame.
- Returns:
The result of the operation.
- Return type:
Differences from pandas
Only level=None is supported
See also
DeferredSeries.pow
Element-wise Exponential power, see Python documentation for more details.
Examples
NOTE: These examples are pulled directly from the pandas documentation for convenience. Usage of the Beam DataFrame API will look different because it is a deferred API. In addition, some arguments shown here may not be supported, see ‘Differences from pandas’ for details.
>>> a = pd.Series([1, 1, 1, np.nan], index=['a', 'b', 'c', 'd']) >>> a a 1.0 b 1.0 c 1.0 d NaN dtype: float64 >>> b = pd.Series([1, np.nan, 1, np.nan], index=['a', 'b', 'd', 'e']) >>> b a 1.0 b NaN d 1.0 e NaN dtype: float64 >>> a.pow(b, fill_value=0) a 1.0 b 1.0 c 1.0 d 0.0 e NaN dtype: float64
- rsub(**kwargs)
Return Subtraction of series and other, element-wise (binary operator rsub).
Equivalent to
other - series
, but with support to substitute a fill_value for missing data in either one of the inputs.- Parameters:
other (DeferredSeries or scalar value)
level (int or name) – Broadcast across a level, matching Index values on the passed MultiIndex level.
fill_value (None or float value, default None (NaN)) – Fill existing missing (NaN) values, and any new element needed for successful DeferredSeries alignment, with this value before computation. If data in both corresponding DeferredSeries locations is missing the result of filling (at that location) will be missing.
axis ({0 or 'index'}) – Unused. Parameter needed for compatibility with DeferredDataFrame.
- Returns:
The result of the operation.
- Return type:
Differences from pandas
Only level=None is supported
See also
DeferredSeries.sub
Element-wise Subtraction, see Python documentation for more details.
Examples
NOTE: These examples are pulled directly from the pandas documentation for convenience. Usage of the Beam DataFrame API will look different because it is a deferred API. In addition, some arguments shown here may not be supported, see ‘Differences from pandas’ for details.
>>> a = pd.Series([1, 1, 1, np.nan], index=['a', 'b', 'c', 'd']) >>> a a 1.0 b 1.0 c 1.0 d NaN dtype: float64 >>> b = pd.Series([1, np.nan, 1, np.nan], index=['a', 'b', 'd', 'e']) >>> b a 1.0 b NaN d 1.0 e NaN dtype: float64 >>> a.subtract(b, fill_value=0) a 0.0 b 1.0 c 1.0 d -1.0 e NaN dtype: float64
- rtruediv(**kwargs)
Return Floating division of series and other, element-wise (binary operator rtruediv).
Equivalent to
other / series
, but with support to substitute a fill_value for missing data in either one of the inputs.- Parameters:
other (DeferredSeries or scalar value)
level (int or name) – Broadcast across a level, matching Index values on the passed MultiIndex level.
fill_value (None or float value, default None (NaN)) – Fill existing missing (NaN) values, and any new element needed for successful DeferredSeries alignment, with this value before computation. If data in both corresponding DeferredSeries locations is missing the result of filling (at that location) will be missing.
axis ({0 or 'index'}) – Unused. Parameter needed for compatibility with DeferredDataFrame.
- Returns:
The result of the operation.
- Return type:
Differences from pandas
Only level=None is supported
See also
DeferredSeries.truediv
Element-wise Floating division, see Python documentation for more details.
Examples
NOTE: These examples are pulled directly from the pandas documentation for convenience. Usage of the Beam DataFrame API will look different because it is a deferred API. In addition, some arguments shown here may not be supported, see ‘Differences from pandas’ for details.
>>> a = pd.Series([1, 1, 1, np.nan], index=['a', 'b', 'c', 'd']) >>> a a 1.0 b 1.0 c 1.0 d NaN dtype: float64 >>> b = pd.Series([1, np.nan, 1, np.nan], index=['a', 'b', 'd', 'e']) >>> b a 1.0 b NaN d 1.0 e NaN dtype: float64 >>> a.divide(b, fill_value=0) a 1.0 b inf c inf d 0.0 e NaN dtype: float64
- set_flags(**kwargs)
pandas.Series.set_flags()
is not implemented yet in the Beam DataFrame API.If support for ‘set_flags’ is important to you, please let the Beam community know by writing to user@beam.apache.org or commenting on 20318.
- squeeze(**kwargs)
pandas.Series.squeeze()
is not implemented yet in the Beam DataFrame API.If support for ‘squeeze’ is important to you, please let the Beam community know by writing to user@beam.apache.org or commenting on 20318.
- sub(**kwargs)
Return Subtraction of series and other, element-wise (binary operator sub).
Equivalent to
series - other
, but with support to substitute a fill_value for missing data in either one of the inputs.- Parameters:
other (DeferredSeries or scalar value)
level (int or name) – Broadcast across a level, matching Index values on the passed MultiIndex level.
fill_value (None or float value, default None (NaN)) – Fill existing missing (NaN) values, and any new element needed for successful DeferredSeries alignment, with this value before computation. If data in both corresponding DeferredSeries locations is missing the result of filling (at that location) will be missing.
axis ({0 or 'index'}) – Unused. Parameter needed for compatibility with DeferredDataFrame.
- Returns:
The result of the operation.
- Return type:
Differences from pandas
Only level=None is supported
See also
DeferredSeries.rsub
Reverse of the Subtraction operator, see Python documentation for more details.
Examples
NOTE: These examples are pulled directly from the pandas documentation for convenience. Usage of the Beam DataFrame API will look different because it is a deferred API. In addition, some arguments shown here may not be supported, see ‘Differences from pandas’ for details.
>>> a = pd.Series([1, 1, 1, np.nan], index=['a', 'b', 'c', 'd']) >>> a a 1.0 b 1.0 c 1.0 d NaN dtype: float64 >>> b = pd.Series([1, np.nan, 1, np.nan], index=['a', 'b', 'd', 'e']) >>> b a 1.0 b NaN d 1.0 e NaN dtype: float64 >>> a.subtract(b, fill_value=0) a 0.0 b 1.0 c 1.0 d -1.0 e NaN dtype: float64
- subtract(**kwargs)
Return Subtraction of series and other, element-wise (binary operator sub).
Equivalent to
series - other
, but with support to substitute a fill_value for missing data in either one of the inputs.- Parameters:
other (DeferredSeries or scalar value)
level (int or name) – Broadcast across a level, matching Index values on the passed MultiIndex level.
fill_value (None or float value, default None (NaN)) – Fill existing missing (NaN) values, and any new element needed for successful DeferredSeries alignment, with this value before computation. If data in both corresponding DeferredSeries locations is missing the result of filling (at that location) will be missing.
axis ({0 or 'index'}) – Unused. Parameter needed for compatibility with DeferredDataFrame.
- Returns:
The result of the operation.
- Return type:
Differences from pandas
Only level=None is supported
See also
DeferredSeries.rsub
Reverse of the Subtraction operator, see Python documentation for more details.
Examples
NOTE: These examples are pulled directly from the pandas documentation for convenience. Usage of the Beam DataFrame API will look different because it is a deferred API. In addition, some arguments shown here may not be supported, see ‘Differences from pandas’ for details.
>>> a = pd.Series([1, 1, 1, np.nan], index=['a', 'b', 'c', 'd']) >>> a a 1.0 b 1.0 c 1.0 d NaN dtype: float64 >>> b = pd.Series([1, np.nan, 1, np.nan], index=['a', 'b', 'd', 'e']) >>> b a 1.0 b NaN d 1.0 e NaN dtype: float64 >>> a.subtract(b, fill_value=0) a 0.0 b 1.0 c 1.0 d -1.0 e NaN dtype: float64
- to_clipboard(**kwargs)
pandas.DataFrame.to_clipboard()
is not implemented yet in the Beam DataFrame API.If support for ‘to_clipboard’ is important to you, please let the Beam community know by writing to user@beam.apache.org or commenting on 20318.
- to_csv(path, transform_label=None, *args, **kwargs)
Write object to a comma-separated values (csv) file.
- Parameters:
path_or_buf (str, path object, file-like object, or None, default None) –
String, path object (implementing os.PathLike[str]), or file-like object implementing a write() function. If None, the result is returned as a string. If a non-binary file object is passed, it should be opened with newline=’’, disabling universal newlines. If a binary file object is passed, mode might need to contain a ‘b’.
Changed in version 1.2.0: Support for binary file objects was introduced.
sep (str, default ',') – String of length 1. Field delimiter for the output file.
na_rep (str, default '') – Missing data representation.
float_format (str, Callable, default None) – Format string for floating point numbers. If a Callable is given, it takes precedence over other numeric formatting parameters, like decimal.
columns (sequence, optional) – Columns to write.
header (bool or list of str, default True) – Write out the column names. If a list of strings is given it is assumed to be aliases for the column names.
index (bool, default True) – Write row names (index).
index_label (str or sequence, or False, default None) – Column label for index column(s) if desired. If None is given, and header and index are True, then the index names are used. A sequence should be given if the object uses MultiIndex. If False do not print fields for index names. Use index_label=False for easier importing in R.
mode ({'w', 'x', 'a'}, default 'w') –
Forwarded to either open(mode=) or fsspec.open(mode=) to control the file opening. Typical values include:
’w’, truncate the file first.
’x’, exclusive creation, failing if the file already exists.
’a’, append to the end of file if it exists.
encoding (str, optional) – A string representing the encoding to use in the output file, defaults to ‘utf-8’. encoding is not supported if path_or_buf is a non-binary file object.
compression (str or dict, default 'infer') –
For on-the-fly compression of the output data. If ‘infer’ and ‘path_or_buf’ is path-like, then detect compression from the following extensions: ‘.gz’, ‘.bz2’, ‘.zip’, ‘.xz’, ‘.zst’, ‘.tar’, ‘.tar.gz’, ‘.tar.xz’ or ‘.tar.bz2’ (otherwise no compression). Set to
None
for no compression. Can also be a dict with key'method'
set to one of {'zip'
,'gzip'
,'bz2'
,'zstd'
,'xz'
,'tar'
} and other key-value pairs are forwarded tozipfile.ZipFile
,gzip.GzipFile
,bz2.BZ2File
,zstandard.ZstdCompressor
,lzma.LZMAFile
ortarfile.TarFile
, respectively. As an example, the following could be passed for faster compression and to create a reproducible gzip archive:compression={'method': 'gzip', 'compresslevel': 1, 'mtime': 1}
.Added in version 1.5.0: Added support for .tar files.
May be a dict with key ‘method’ as compression mode and other entries as additional compression options if compression mode is ‘zip’.
Passing compression options as keys in dict is supported for compression modes ‘gzip’, ‘bz2’, ‘zstd’, and ‘zip’.
Changed in version 1.2.0: Compression is supported for binary file objects.
Changed in version 1.2.0: Previous versions forwarded dict entries for ‘gzip’ to gzip.open instead of gzip.GzipFile which prevented setting mtime.
quoting (optional constant from csv module) – Defaults to csv.QUOTE_MINIMAL. If you have set a float_format then floats are converted to strings and thus csv.QUOTE_NONNUMERIC will treat them as non-numeric.
quotechar (str, default '"') – String of length 1. Character used to quote fields.
lineterminator (str, optional) –
The newline character or character sequence to use in the output file. Defaults to os.linesep, which depends on the OS in which this method is called (’\n’ for linux, ‘\r\n’ for Windows, i.e.).
Changed in version 1.5.0: Previously was line_terminator, changed for consistency with read_csv and the standard library ‘csv’ module.
chunksize (int or None) – Rows to write at a time.
date_format (str, default None) – Format string for datetime objects.
doublequote (bool, default True) – Control quoting of quotechar inside a field.
escapechar (str, default None) – String of length 1. Character used to escape sep and quotechar when appropriate.
decimal (str, default '.') – Character recognized as decimal separator. E.g. use ‘,’ for European data.
errors (str, default 'strict') – Specifies how encoding and decoding errors are to be handled. See the errors argument for
open()
for a full list of options.storage_options (dict, optional) –
Extra options that make sense for a particular storage connection, e.g. host, port, username, password, etc. For HTTP(S) URLs the key-value pairs are forwarded to
urllib.request.Request
as header options. For other URLs (e.g. starting with “s3://”, and “gcs://”) the key-value pairs are forwarded tofsspec.open
. Please seefsspec
andurllib
for more details, and for more examples on storage options refer here.Added in version 1.2.0.
- Returns:
If path_or_buf is None, returns the resulting csv format as a string. Otherwise returns None.
- Return type:
None or str
Differences from pandas
This operation has no known divergences from the pandas API.
See also
read_csv
Load a CSV file into a DeferredDataFrame.
to_excel
Write DeferredDataFrame to an Excel file.
Examples
NOTE: These examples are pulled directly from the pandas documentation for convenience. Usage of the Beam DataFrame API will look different because it is a deferred API.
>>> df = pd.DataFrame({'name': ['Raphael', 'Donatello'], ... 'mask': ['red', 'purple'], ... 'weapon': ['sai', 'bo staff']}) >>> df.to_csv(index=False) 'name,mask,weapon\nRaphael,red,sai\nDonatello,purple,bo staff\n' Create 'out.zip' containing 'out.csv' >>> compression_opts = dict(method='zip', ... archive_name='out.csv') >>> df.to_csv('out.zip', index=False, ... compression=compression_opts) To write a csv file to a new folder or nested folder you will first need to create it using either Pathlib or os: >>> from pathlib import Path >>> filepath = Path('folder/subfolder/out.csv') >>> filepath.parent.mkdir(parents=True, exist_ok=True) >>> df.to_csv(filepath) >>> import os >>> os.makedirs('folder/subfolder', exist_ok=True) >>> df.to_csv('folder/subfolder/out.csv')
- to_excel(path, *args, **kwargs)
Write object to an Excel sheet.
To write a single object to an Excel .xlsx file it is only necessary to specify a target file name. To write to multiple sheets it is necessary to create an ExcelWriter object with a target file name, and specify a sheet in the file to write to.
Multiple sheets may be written to by specifying unique sheet_name. With all data written to the file it is necessary to save the changes. Note that creating an ExcelWriter object with a file name that already exists will result in the contents of the existing file being erased.
- Parameters:
excel_writer (path-like, file-like, or ExcelWriter object) – File path or existing ExcelWriter.
sheet_name (str, default 'Sheet1') – Name of sheet which will contain DeferredDataFrame.
na_rep (str, default '') – Missing data representation.
float_format (str, optional) – Format string for floating point numbers. For example
float_format="%.2f"
will format 0.1234 to 0.12.columns (sequence or list of str, optional) – Columns to write.
header (bool or list of str, default True) – Write out the column names. If a list of string is given it is assumed to be aliases for the column names.
index (bool, default True) – Write row names (index).
index_label (str or sequence, optional) – Column label for index column(s) if desired. If not specified, and header and index are True, then the index names are used. A sequence should be given if the DeferredDataFrame uses MultiIndex.
startrow (int, default 0) – Upper left cell row to dump data frame.
startcol (int, default 0) – Upper left cell column to dump data frame.
engine (str, optional) – Write engine to use, ‘openpyxl’ or ‘xlsxwriter’. You can also set this via the options
io.excel.xlsx.writer
orio.excel.xlsm.writer
.merge_cells (bool, default True) – Write MultiIndex and Hierarchical Rows as merged cells.
inf_rep (str, default 'inf') – Representation for infinity (there is no native representation for infinity in Excel).
freeze_panes (tuple of int (length 2), optional) – Specifies the one-based bottommost row and rightmost column that is to be frozen.
storage_options (dict, optional) –
Extra options that make sense for a particular storage connection, e.g. host, port, username, password, etc. For HTTP(S) URLs the key-value pairs are forwarded to
urllib.request.Request
as header options. For other URLs (e.g. starting with “s3://”, and “gcs://”) the key-value pairs are forwarded tofsspec.open
. Please seefsspec
andurllib
for more details, and for more examples on storage options refer here.Added in version 1.2.0.
engine_kwargs (dict, optional) – Arbitrary keyword arguments passed to excel engine.
Differences from pandas
This operation has no known divergences from the pandas API.
See also
to_csv
Write DeferredDataFrame to a comma-separated values (csv) file.
ExcelWriter
Class for writing DeferredDataFrame objects into excel sheets.
read_excel
Read an Excel file into a pandas DeferredDataFrame.
read_csv
Read a comma-separated values (csv) file into DeferredDataFrame.
io.formats.style.Styler.to_excel
Add styles to Excel sheet.
Notes
For compatibility with
to_csv()
, to_excel serializes lists and dicts to strings before writing.Once a workbook has been saved it is not possible to write further data without rewriting the whole workbook.
Examples
NOTE: These examples are pulled directly from the pandas documentation for convenience. Usage of the Beam DataFrame API will look different because it is a deferred API.
Create, write to and save a workbook: >>> df1 = pd.DataFrame([['a', 'b'], ['c', 'd']], ... index=['row 1', 'row 2'], ... columns=['col 1', 'col 2']) >>> df1.to_excel("output.xlsx") To specify the sheet name: >>> df1.to_excel("output.xlsx", ... sheet_name='Sheet_name_1') If you wish to write to more than one sheet in the workbook, it is necessary to specify an ExcelWriter object: >>> df2 = df1.copy() >>> with pd.ExcelWriter('output.xlsx') as writer: ... df1.to_excel(writer, sheet_name='Sheet_name_1') ... df2.to_excel(writer, sheet_name='Sheet_name_2') ExcelWriter can also be used to append to an existing Excel file: >>> with pd.ExcelWriter('output.xlsx', ... mode='a') as writer: ... df1.to_excel(writer, sheet_name='Sheet_name_3') To set the library that is used to write the Excel file, you can pass the `engine` keyword (the default engine is automatically chosen depending on the file extension): >>> df1.to_excel('output1.xlsx', engine='xlsxwriter')
- to_feather(path, *args, **kwargs)
Write a DataFrame to the binary Feather format.
- Parameters:
path (str, path object, file-like object) – String, path object (implementing
os.PathLike[str]
), or file-like object implementing a binarywrite()
function. If a string or a path, it will be used as Root Directory path when writing a partitioned dataset.**kwargs – Additional keywords passed to
pyarrow.feather.write_feather()
. This includes the compression, compression_level, chunksize and version keywords.
Differences from pandas
This operation has no known divergences from the pandas API.
Notes
This function writes the dataframe as a feather file. Requires a default index. For saving the DeferredDataFrame with your custom index use a method that supports custom indices e.g. to_parquet.
Examples
NOTE: These examples are pulled directly from the pandas documentation for convenience. Usage of the Beam DataFrame API will look different because it is a deferred API.
>>> df = pd.DataFrame([[1, 2, 3], [4, 5, 6]]) >>> df.to_feather("file.feather")
- to_hdf(**kwargs)
pandas.DataFrame.to_hdf()
is not yet supported in the Beam DataFrame API because HDF5 is a random access file format
- to_html(path, *args, **kwargs)
Render a DataFrame as an HTML table.
- Parameters:
buf (str, Path or StringIO-like, optional, default None) – Buffer to write to. If None, the output is returned as a string.
columns (array-like, optional, default None) – The subset of columns to write. Writes all columns by default.
col_space (str or int, list or dict of int or str, optional) – The minimum width of each column in CSS length units. An int is assumed to be px units..
header (bool, optional) – Whether to print column labels, default True.
index (bool, optional, default True) – Whether to print index (row) labels.
na_rep (str, optional, default 'NaN') – String representation of
NaN
to use.formatters (list, tuple or dict of one-param. functions, optional) – Formatter functions to apply to columns’ elements by position or name. The result of each function must be a unicode string. List/tuple must be of length equal to the number of columns.
float_format (one-parameter function, optional, default None) –
Formatter function to apply to columns’ elements if they are floats. This function must return a unicode string and will be applied only to the non-
NaN
elements, withNaN
being handled byna_rep
.Changed in version 1.2.0.
sparsify (bool, optional, default True) – Set to False for a DeferredDataFrame with a hierarchical index to print every multiindex key at each row.
index_names (bool, optional, default True) – Prints the names of the indexes.
justify (str, default None) –
How to justify the column labels. If None uses the option from the print configuration (controlled by set_option), ‘right’ out of the box. Valid values are
left
right
center
justify
justify-all
start
end
inherit
match-parent
initial
unset.
max_rows (int, optional) – Maximum number of rows to display in the console.
max_cols (int, optional) – Maximum number of columns to display in the console.
show_dimensions (bool, default False) – Display DeferredDataFrame dimensions (number of rows by number of columns).
decimal (str, default '.') – Character recognized as decimal separator, e.g. ‘,’ in Europe.
bold_rows (bool, default True) – Make the row labels bold in the output.
classes (str or list or tuple, default None) – CSS class(es) to apply to the resulting html table.
escape (bool, default True) – Convert the characters <, >, and & to HTML-safe sequences.
notebook ({True, False}, default False) – Whether the generated HTML is for IPython Notebook.
border (int) – A
border=border
attribute is included in the opening <table> tag. Defaultpd.options.display.html.border
.table_id (str, optional) – A css id is included in the opening <table> tag if specified.
render_links (bool, default False) – Convert URLs to HTML links.
encoding (str, default "utf-8") – Set character encoding.
- Returns:
If buf is None, returns the result as a string. Otherwise returns None.
- Return type:
str or None
Differences from pandas
This operation has no known divergences from the pandas API.
See also
to_string
Convert DeferredDataFrame to a string.
Examples
NOTE: These examples are pulled directly from the pandas documentation for convenience. Usage of the Beam DataFrame API will look different because it is a deferred API.
>>> df = pd.DataFrame(data={'col1': [1, 2], 'col2': [4, 3]}) >>> html_string = '''<table border="1" class="dataframe"> ... <thead> ... <tr style="text-align: right;"> ... <th></th> ... <th>col1</th> ... <th>col2</th> ... </tr> ... </thead> ... <tbody> ... <tr> ... <th>0</th> ... <td>1</td> ... <td>4</td> ... </tr> ... <tr> ... <th>1</th> ... <td>2</td> ... <td>3</td> ... </tr> ... </tbody> ... </table>''' >>> assert html_string == df.to_html()
- to_json(path, orient=None, *args, **kwargs)
Convert the object to a JSON string.
Note NaN’s and None will be converted to null and datetime objects will be converted to UNIX timestamps.
- Parameters:
path_or_buf (str, path object, file-like object, or None, default None) – String, path object (implementing os.PathLike[str]), or file-like object implementing a write() function. If None, the result is returned as a string.
orient (str) –
Indication of expected JSON string format.
DeferredSeries:
default is ‘index’
allowed values are: {‘split’, ‘records’, ‘index’, ‘table’}.
DeferredDataFrame:
default is ‘columns’
allowed values are: {‘split’, ‘records’, ‘index’, ‘columns’, ‘values’, ‘table’}.
The format of the JSON string:
’split’ : dict like {‘index’ -> [index], ‘columns’ -> [columns], ‘data’ -> [values]}
’records’ : list like [{column -> value}, … , {column -> value}]
’index’ : dict like {index -> {column -> value}}
’columns’ : dict like {column -> {index -> value}}
’values’ : just the values array
’table’ : dict like {‘schema’: {schema}, ‘data’: {data}}
Describing the data, where data component is like
orient='records'
.
date_format ({None, 'epoch', 'iso'}) – Type of date conversion. ‘epoch’ = epoch milliseconds, ‘iso’ = ISO8601. The default depends on the orient. For
orient='table'
, the default is ‘iso’. For all other orients, the default is ‘epoch’.double_precision (int, default 10) – The number of decimal places to use when encoding floating point values. The possible maximal value is 15. Passing double_precision greater than 15 will raise a ValueError.
force_ascii (bool, default True) – Force encoded string to be ASCII.
date_unit (str, default 'ms' (milliseconds)) – The time unit to encode to, governs timestamp and ISO8601 precision. One of ‘s’, ‘ms’, ‘us’, ‘ns’ for second, millisecond, microsecond, and nanosecond respectively.
default_handler (callable, default None) – Handler to call if object cannot otherwise be converted to a suitable format for JSON. Should receive a single argument which is the object to convert and return a serialisable object.
lines (bool, default False) – If ‘orient’ is ‘records’ write out line-delimited json format. Will throw ValueError if incorrect ‘orient’ since others are not list-like.
compression (str or dict, default 'infer') –
For on-the-fly compression of the output data. If ‘infer’ and ‘path_or_buf’ is path-like, then detect compression from the following extensions: ‘.gz’, ‘.bz2’, ‘.zip’, ‘.xz’, ‘.zst’, ‘.tar’, ‘.tar.gz’, ‘.tar.xz’ or ‘.tar.bz2’ (otherwise no compression). Set to
None
for no compression. Can also be a dict with key'method'
set to one of {'zip'
,'gzip'
,'bz2'
,'zstd'
,'xz'
,'tar'
} and other key-value pairs are forwarded tozipfile.ZipFile
,gzip.GzipFile
,bz2.BZ2File
,zstandard.ZstdCompressor
,lzma.LZMAFile
ortarfile.TarFile
, respectively. As an example, the following could be passed for faster compression and to create a reproducible gzip archive:compression={'method': 'gzip', 'compresslevel': 1, 'mtime': 1}
.Added in version 1.5.0: Added support for .tar files.
Changed in version 1.4.0: Zstandard support.
index (bool or None, default None) – The index is only used when ‘orient’ is ‘split’, ‘index’, ‘column’, or ‘table’. Of these, ‘index’ and ‘column’ do not support index=False.
indent (int, optional) – Length of whitespace used to indent each record.
storage_options (dict, optional) –
Extra options that make sense for a particular storage connection, e.g. host, port, username, password, etc. For HTTP(S) URLs the key-value pairs are forwarded to
urllib.request.Request
as header options. For other URLs (e.g. starting with “s3://”, and “gcs://”) the key-value pairs are forwarded tofsspec.open
. Please seefsspec
andurllib
for more details, and for more examples on storage options refer here.Added in version 1.2.0.
mode (str, default 'w' (writing)) – Specify the IO mode for output when supplying a path_or_buf. Accepted args are ‘w’ (writing) and ‘a’ (append) only. mode=’a’ is only supported when lines is True and orient is ‘records’.
- Returns:
If path_or_buf is None, returns the resulting json format as a string. Otherwise returns None.
- Return type:
None or str
Differences from pandas
This operation has no known divergences from the pandas API.
See also
read_json
Convert a JSON string to pandas object.
Notes
The behavior of
indent=0
varies from the stdlib, which does not indent the output but does insert newlines. Currently,indent=0
and the defaultindent=None
are equivalent in pandas, though this may change in a future release.orient='table'
contains a ‘pandas_version’ field under ‘schema’. This stores the version of pandas used in the latest revision of the schema.Examples
NOTE: These examples are pulled directly from the pandas documentation for convenience. Usage of the Beam DataFrame API will look different because it is a deferred API.
>>> from json import loads, dumps >>> df = pd.DataFrame( ... [["a", "b"], ["c", "d"]], ... index=["row 1", "row 2"], ... columns=["col 1", "col 2"], ... ) >>> result = df.to_json(orient="split") >>> parsed = loads(result) >>> dumps(parsed, indent=4) { "columns": [ "col 1", "col 2" ], "index": [ "row 1", "row 2" ], "data": [ [ "a", "b" ], [ "c", "d" ] ] } Encoding/decoding a Dataframe using ``'records'`` formatted JSON. Note that index labels are not preserved with this encoding. >>> result = df.to_json(orient="records") >>> parsed = loads(result) >>> dumps(parsed, indent=4) [ { "col 1": "a", "col 2": "b" }, { "col 1": "c", "col 2": "d" } ] Encoding/decoding a Dataframe using ``'index'`` formatted JSON: >>> result = df.to_json(orient="index") >>> parsed = loads(result) >>> dumps(parsed, indent=4) { "row 1": { "col 1": "a", "col 2": "b" }, "row 2": { "col 1": "c", "col 2": "d" } } Encoding/decoding a Dataframe using ``'columns'`` formatted JSON: >>> result = df.to_json(orient="columns") >>> parsed = loads(result) >>> dumps(parsed, indent=4) { "col 1": { "row 1": "a", "row 2": "c" }, "col 2": { "row 1": "b", "row 2": "d" } } Encoding/decoding a Dataframe using ``'values'`` formatted JSON: >>> result = df.to_json(orient="values") >>> parsed = loads(result) >>> dumps(parsed, indent=4) [ [ "a", "b" ], [ "c", "d" ] ] Encoding with Table Schema: >>> result = df.to_json(orient="table") >>> parsed = loads(result) >>> dumps(parsed, indent=4) { "schema": { "fields": [ { "name": "index", "type": "string" }, { "name": "col 1", "type": "string" }, { "name": "col 2", "type": "string" } ], "primaryKey": [ "index" ], "pandas_version": "1.4.0" }, "data": [ { "index": "row 1", "col 1": "a", "col 2": "b" }, { "index": "row 2", "col 1": "c", "col 2": "d" } ] }
- to_latex(**kwargs)
pandas.Series.to_latex()
is not implemented yet in the Beam DataFrame API.If support for ‘to_latex’ is important to you, please let the Beam community know by writing to user@beam.apache.org or commenting on 20318.
- to_markdown(**kwargs)
pandas.Series.to_markdown()
is not implemented yet in the Beam DataFrame API.If support for ‘to_markdown’ is important to you, please let the Beam community know by writing to user@beam.apache.org or commenting on 20318.
- to_msgpack(**kwargs)
pandas.DataFrame.to_msgpack()
is not yet supported in the Beam DataFrame API because it is deprecated in pandas.
- to_parquet(path, *args, **kwargs)
Write a DataFrame to the binary parquet format.
This function writes the dataframe as a parquet file. You can choose different parquet backends, and have the option of compression. See the user guide for more details.
- Parameters:
path (str, path object, file-like object, or None, default None) –
String, path object (implementing
os.PathLike[str]
), or file-like object implementing a binarywrite()
function. If None, the result is returned as bytes. If a string or path, it will be used as Root Directory path when writing a partitioned dataset.Changed in version 1.2.0.
Previously this was “fname”
engine ({'auto', 'pyarrow', 'fastparquet'}, default 'auto') – Parquet library to use. If ‘auto’, then the option
io.parquet.engine
is used. The defaultio.parquet.engine
behavior is to try ‘pyarrow’, falling back to ‘fastparquet’ if ‘pyarrow’ is unavailable.compression (str or None, default 'snappy') – Name of the compression to use. Use
None
for no compression. Supported options: ‘snappy’, ‘gzip’, ‘brotli’, ‘lz4’, ‘zstd’.index (bool, default None) – If
True
, include the dataframe’s index(es) in the file output. IfFalse
, they will not be written to the file. IfNone
, similar toTrue
the dataframe’s index(es) will be saved. However, instead of being saved as values, the RangeIndex will be stored as a range in the metadata so it doesn’t require much space and is faster. Other indexes will be included as columns in the file output.partition_cols (list, optional, default None) – Column names by which to partition the dataset. Columns are partitioned in the order they are given. Must be None if path is not a string.
storage_options (dict, optional) –
Extra options that make sense for a particular storage connection, e.g. host, port, username, password, etc. For HTTP(S) URLs the key-value pairs are forwarded to
urllib.request.Request
as header options. For other URLs (e.g. starting with “s3://”, and “gcs://”) the key-value pairs are forwarded tofsspec.open
. Please seefsspec
andurllib
for more details, and for more examples on storage options refer here.Added in version 1.2.0.
**kwargs – Additional arguments passed to the parquet library. See pandas io for more details.
- Return type:
bytes if no path argument is provided else None
Differences from pandas
This operation has no known divergences from the pandas API.
See also
read_parquet
Read a parquet file.
DeferredDataFrame.to_orc
Write an orc file.
DeferredDataFrame.to_csv
Write a csv file.
DeferredDataFrame.to_sql
Write to a sql table.
DeferredDataFrame.to_hdf
Write to hdf.
Notes
This function requires either the fastparquet or pyarrow library.
Examples
NOTE: These examples are pulled directly from the pandas documentation for convenience. Usage of the Beam DataFrame API will look different because it is a deferred API.
>>> df = pd.DataFrame(data={'col1': [1, 2], 'col2': [3, 4]}) >>> df.to_parquet('df.parquet.gzip', ... compression='gzip') >>> pd.read_parquet('df.parquet.gzip') col1 col2 0 1 3 1 2 4 If you want to get a buffer to the parquet content you can use a io.BytesIO object, as long as you don't use partition_cols, which creates multiple files. >>> import io >>> f = io.BytesIO() >>> df.to_parquet(f) >>> f.seek(0) 0 >>> content = f.read()
- to_period(**kwargs)
pandas.Series.to_period()
is not implemented yet in the Beam DataFrame API.If support for ‘to_period’ is important to you, please let the Beam community know by writing to user@beam.apache.org or commenting on 20318.
- to_pickle(**kwargs)
pandas.Series.to_pickle()
is not implemented yet in the Beam DataFrame API.If support for ‘to_pickle’ is important to you, please let the Beam community know by writing to user@beam.apache.org or commenting on 20318.
- to_sql(**kwargs)
pandas.Series.to_sql()
is not implemented yet in the Beam DataFrame API.If support for ‘to_sql’ is important to you, please let the Beam community know by writing to user@beam.apache.org or commenting on 20318.
- to_stata(path, *args, **kwargs)
Export DataFrame object to Stata dta format.
Writes the DataFrame to a Stata dataset file. “dta” files contain a Stata dataset.
- Parameters:
path (str, path object, or buffer) – String, path object (implementing
os.PathLike[str]
), or file-like object implementing a binarywrite()
function.convert_dates (dict) – Dictionary mapping columns containing datetime types to stata internal format to use when writing the dates. Options are ‘tc’, ‘td’, ‘tm’, ‘tw’, ‘th’, ‘tq’, ‘ty’. Column can be either an integer or a name. Datetime columns that do not have a conversion type specified will be converted to ‘tc’. Raises NotImplementedError if a datetime column has timezone information.
write_index (bool) – Write the index to Stata dataset.
byteorder (str) – Can be “>”, “<”, “little”, or “big”. default is sys.byteorder.
time_stamp (datetime) – A datetime to use as file creation date. Default is the current time.
data_label (str, optional) – A label for the data set. Must be 80 characters or smaller.
variable_labels (dict) – Dictionary containing columns as keys and variable labels as values. Each label must be 80 characters or smaller.
version ({114, 117, 118, 119, None}, default 114) –
Version to use in the output dta file. Set to None to let pandas decide between 118 or 119 formats depending on the number of columns in the frame. pandas Version 114 can be read by Stata 10 and later. pandas Version 117 can be read by Stata 13 or later. pandas Version 118 is supported in Stata 14 and later. pandas Version 119 is supported in Stata 15 and later. pandas Version 114 limits string variables to 244 characters or fewer while versions 117 and later allow strings with lengths up to 2,000,000 characters. Versions 118 and 119 support Unicode characters, and pandas version 119 supports more than 32,767 variables.
pandas Version 119 should usually only be used when the number of variables exceeds the capacity of dta format 118. Exporting smaller datasets in format 119 may have unintended consequences, and, as of November 2020, Stata SE cannot read pandas version 119 files.
convert_strl (list, optional) – List of column names to convert to string columns to Stata StrL format. Only available if version is 117. Storing strings in the StrL format can produce smaller dta files if strings have more than 8 characters and values are repeated.
compression (str or dict, default 'infer') –
For on-the-fly compression of the output data. If ‘infer’ and ‘path’ is path-like, then detect compression from the following extensions: ‘.gz’, ‘.bz2’, ‘.zip’, ‘.xz’, ‘.zst’, ‘.tar’, ‘.tar.gz’, ‘.tar.xz’ or ‘.tar.bz2’ (otherwise no compression). Set to
None
for no compression. Can also be a dict with key'method'
set to one of {'zip'
,'gzip'
,'bz2'
,'zstd'
,'xz'
,'tar'
} and other key-value pairs are forwarded tozipfile.ZipFile
,gzip.GzipFile
,bz2.BZ2File
,zstandard.ZstdCompressor
,lzma.LZMAFile
ortarfile.TarFile
, respectively. As an example, the following could be passed for faster compression and to create a reproducible gzip archive:compression={'method': 'gzip', 'compresslevel': 1, 'mtime': 1}
.Added in version 1.5.0: Added support for .tar files.
Changed in version 1.4.0: Zstandard support.
storage_options (dict, optional) –
Extra options that make sense for a particular storage connection, e.g. host, port, username, password, etc. For HTTP(S) URLs the key-value pairs are forwarded to
urllib.request.Request
as header options. For other URLs (e.g. starting with “s3://”, and “gcs://”) the key-value pairs are forwarded tofsspec.open
. Please seefsspec
andurllib
for more details, and for more examples on storage options refer here.Added in version 1.2.0.
value_labels (dict of dicts) –
Dictionary containing columns as keys and dictionaries of column value to labels as values. Labels for a single variable must be 32,000 characters or smaller.
Added in version 1.4.0.
- Raises:
If datetimes contain timezone information * Column dtype is not representable in Stata
Columns listed in convert_dates are neither datetime64[ns] or datetime.datetime * Column listed in convert_dates is not in DeferredDataFrame * Categorical label contains more than 32,000 characters
Differences from pandas
This operation has no known divergences from the pandas API.
See also
read_stata
Import Stata data files.
io.stata.StataWriter
Low-level writer for Stata data files.
io.stata.StataWriter117
Low-level writer for pandas version 117 files.
Examples
NOTE: These examples are pulled directly from the pandas documentation for convenience. Usage of the Beam DataFrame API will look different because it is a deferred API.
>>> df = pd.DataFrame({'animal': ['falcon', 'parrot', 'falcon', ... 'parrot'], ... 'speed': [350, 18, 361, 15]}) >>> df.to_stata('animals.dta')
- to_timestamp(**kwargs)
pandas.Series.to_timestamp()
is not implemented yet in the Beam DataFrame API.If support for ‘to_timestamp’ is important to you, please let the Beam community know by writing to user@beam.apache.org or commenting on 20318.
- truediv(**kwargs)
Return Floating division of series and other, element-wise (binary operator truediv).
Equivalent to
series / other
, but with support to substitute a fill_value for missing data in either one of the inputs.- Parameters:
other (DeferredSeries or scalar value)
level (int or name) – Broadcast across a level, matching Index values on the passed MultiIndex level.
fill_value (None or float value, default None (NaN)) – Fill existing missing (NaN) values, and any new element needed for successful DeferredSeries alignment, with this value before computation. If data in both corresponding DeferredSeries locations is missing the result of filling (at that location) will be missing.
axis ({0 or 'index'}) – Unused. Parameter needed for compatibility with DeferredDataFrame.
- Returns:
The result of the operation.
- Return type:
Differences from pandas
Only level=None is supported
See also
DeferredSeries.rtruediv
Reverse of the Floating division operator, see Python documentation for more details.
Examples
NOTE: These examples are pulled directly from the pandas documentation for convenience. Usage of the Beam DataFrame API will look different because it is a deferred API. In addition, some arguments shown here may not be supported, see ‘Differences from pandas’ for details.
>>> a = pd.Series([1, 1, 1, np.nan], index=['a', 'b', 'c', 'd']) >>> a a 1.0 b 1.0 c 1.0 d NaN dtype: float64 >>> b = pd.Series([1, np.nan, 1, np.nan], index=['a', 'b', 'd', 'e']) >>> b a 1.0 b NaN d 1.0 e NaN dtype: float64 >>> a.divide(b, fill_value=0) a 1.0 b inf c inf d 0.0 e NaN dtype: float64
- class apache_beam.dataframe.frames.DeferredDataFrame(expr)[source]
Bases:
DeferredDataFrameOrSeries
- property columns
The column labels of the DataFrame.
Differences from pandas
This operation has no known divergences from the pandas API.
Examples
NOTE: These examples are pulled directly from the pandas documentation for convenience. Usage of the Beam DataFrame API will look different because it is a deferred API.
>>> df = pd.DataFrame({'A': [1, 2], 'B': [3, 4]}) >>> df A B 0 1 3 1 2 4 >>> df.columns Index(['A', 'B'], dtype='object')
- keys()[source]
Get the ‘info axis’ (see Indexing for more).
This is index for Series, columns for DataFrame.
- Returns:
Info axis.
- Return type:
Differences from pandas
This operation has no known divergences from the pandas API.
Examples
NOTE: These examples are pulled directly from the pandas documentation for convenience. Usage of the Beam DataFrame API will look different because it is a deferred API.
>>> d = pd.DataFrame(data={'A': [1, 2, 3], 'B': [0, 4, 8]}, ... index=['a', 'b', 'c']) >>> d A B a 1 0 b 2 4 c 3 8 >>> d.keys() Index(['A', 'B'], dtype='object')
- align(other, join, axis, copy, level, method, **kwargs)[source]
Align two objects on their axes with the specified join method.
Join method is specified for each axis Index.
- Parameters:
other (DeferredDataFrame or DeferredSeries)
join ({'outer', 'inner', 'left', 'right'}, default 'outer') –
Type of alignment to be performed.
left: use only keys from left frame, preserve key order.
right: use only keys from right frame, preserve key order.
outer: use union of keys from both frames, sort keys lexicographically.
inner: use intersection of keys from both frames, preserve the order of the left keys.
axis (allowed axis of the other object, default None) – Align on index (0), columns (1), or both (None).
level (int or level name, default None) – Broadcast across a level, matching Index values on the passed MultiIndex level.
copy (bool, default True) – Always returns new objects. If copy=False and no reindexing is required then original objects are returned.
fill_value (scalar, default np.nan) – Value to use for missing values. Defaults to NaN, but can be any “compatible” value.
method ({'backfill', 'bfill', 'pad', 'ffill', None}, default None) –
Method to use for filling holes in reindexed DeferredSeries:
pad / ffill: propagate last valid observation forward to next valid.
backfill / bfill: use NEXT valid observation to fill gap.
Deprecated since version 2.1.
limit (int, default None) –
If method is specified, this is the maximum number of consecutive NaN values to forward/backward fill. In other words, if there is a gap with more than this number of consecutive NaNs, it will only be partially filled. If method is not specified, this is the maximum number of entries along the entire axis where NaNs will be filled. Must be greater than 0 if not None.
Deprecated since version 2.1.
fill_axis ({0 or 'index'} for DeferredSeries, {0 or 'index', 1 or 'columns'} for DeferredDataFrame, default 0) –
Filling axis, method and limit.
Deprecated since version 2.1.
broadcast_axis ({0 or 'index'} for DeferredSeries, {0 or 'index', 1 or 'columns'} for DeferredDataFrame, default None) –
Broadcast values along this axis, if aligning two objects of different dimensions.
Deprecated since version 2.1.
- Returns:
Aligned objects.
- Return type:
Differences from pandas
Aligning per level is not yet supported. Only the default,
level=None
, is allowed.Filling NaN values via
method
is not supported, because it is order-sensitive. Only the default,method=None
, is allowed.copy=False
is not supported because its behavior (whether or not it is an inplace operation) depends on the data.Examples
NOTE: These examples are pulled directly from the pandas documentation for convenience. Usage of the Beam DataFrame API will look different because it is a deferred API. In addition, some arguments shown here may not be supported, see ‘Differences from pandas’ for details.
>>> df = pd.DataFrame( ... [[1, 2, 3, 4], [6, 7, 8, 9]], columns=["D", "B", "E", "A"], index=[1, 2] ... ) >>> other = pd.DataFrame( ... [[10, 20, 30, 40], [60, 70, 80, 90], [600, 700, 800, 900]], ... columns=["A", "B", "C", "D"], ... index=[2, 3, 4], ... ) >>> df D B E A 1 1 2 3 4 2 6 7 8 9 >>> other A B C D 2 10 20 30 40 3 60 70 80 90 4 600 700 800 900 Align on columns: >>> left, right = df.align(other, join="outer", axis=1) >>> left A B C D E 1 4 2 NaN 1 3 2 9 7 NaN 6 8 >>> right A B C D E 2 10 20 30 40 NaN 3 60 70 80 90 NaN 4 600 700 800 900 NaN We can also align on the index: >>> left, right = df.align(other, join="outer", axis=0) >>> left D B E A 1 1.0 2.0 3.0 4.0 2 6.0 7.0 8.0 9.0 3 NaN NaN NaN NaN 4 NaN NaN NaN NaN >>> right A B C D 1 NaN NaN NaN NaN 2 10.0 20.0 30.0 40.0 3 60.0 70.0 80.0 90.0 4 600.0 700.0 800.0 900.0 Finally, the default `axis=None` will align on both index and columns: >>> left, right = df.align(other, join="outer", axis=None) >>> left A B C D E 1 4.0 2.0 NaN 1.0 3.0 2 9.0 7.0 NaN 6.0 8.0 3 NaN NaN NaN NaN NaN 4 NaN NaN NaN NaN NaN >>> right A B C D E 1 NaN NaN NaN NaN NaN 2 10.0 20.0 30.0 40.0 NaN 3 60.0 70.0 80.0 90.0 NaN 4 600.0 700.0 800.0 900.0 NaN
- append(other, ignore_index, verify_integrity, sort, **kwargs)[source]
This method has been removed in the current version of Pandas.
- get(key, default_value=None)[source]
Get item from object for given key (ex: DataFrame column).
Returns default value if not found.
- Parameters:
key (object)
- Return type:
same type as items contained in object
Differences from pandas
This operation has no known divergences from the pandas API.
Examples
NOTE: These examples are pulled directly from the pandas documentation for convenience. Usage of the Beam DataFrame API will look different because it is a deferred API.
>>> df = pd.DataFrame( ... [ ... [24.3, 75.7, "high"], ... [31, 87.8, "high"], ... [22, 71.6, "medium"], ... [35, 95, "medium"], ... ], ... columns=["temp_celsius", "temp_fahrenheit", "windspeed"], ... index=pd.date_range(start="2014-02-12", end="2014-02-15", freq="D"), ... ) >>> df temp_celsius temp_fahrenheit windspeed 2014-02-12 24.3 75.7 high 2014-02-13 31.0 87.8 high 2014-02-14 22.0 71.6 medium 2014-02-15 35.0 95.0 medium >>> df.get(["temp_celsius", "windspeed"]) temp_celsius windspeed 2014-02-12 24.3 high 2014-02-13 31.0 high 2014-02-14 22.0 medium 2014-02-15 35.0 medium >>> ser = df['windspeed'] >>> ser.get('2014-02-13') 'high' If the key isn't found, the default value will be used. >>> df.get(["temp_celsius", "temp_kelvin"], default="default_value") 'default_value' >>> ser.get('2014-02-10', '[unknown]') '[unknown]'
- set_index(keys, **kwargs)[source]
Set the DataFrame index using existing columns.
Set the DataFrame index (row labels) using one or more existing columns or arrays (of the correct length). The index can replace the existing index or expand on it.
- Parameters:
keys (label or array-like or list of labels/arrays) – This parameter can be either a single column key, a single array of the same length as the calling DeferredDataFrame, or a list containing an arbitrary combination of column keys and arrays. Here, “array” encompasses
DeferredSeries
,Index
,np.ndarray
, and instances ofIterator
.drop (bool, default True) – Delete columns to be used as the new index.
append (bool, default False) – Whether to append columns to existing index.
inplace (bool, default False) – Whether to modify the DeferredDataFrame rather than creating a new one.
verify_integrity (bool, default False) – Check the new index for duplicates. Otherwise defer the check until necessary. Setting to False will improve the performance of this method.
- Returns:
Changed row labels or None if
inplace=True
.- Return type:
DeferredDataFrame or None
Differences from pandas
keys
must be astr
orlist[str]
. Passing an Index or Series is not yet supported (Issue 20759).See also
DeferredDataFrame.reset_index
Opposite of set_index.
DeferredDataFrame.reindex
Change to new indices or expand indices.
DeferredDataFrame.reindex_like
Change to same indices as other DeferredDataFrame.
Examples
NOTE: These examples are pulled directly from the pandas documentation for convenience. Usage of the Beam DataFrame API will look different because it is a deferred API. In addition, some arguments shown here may not be supported, see ‘Differences from pandas’ for details.
>>> df = pd.DataFrame({'month': [1, 4, 7, 10], ... 'year': [2012, 2014, 2013, 2014], ... 'sale': [55, 40, 84, 31]}) >>> df month year sale 0 1 2012 55 1 4 2014 40 2 7 2013 84 3 10 2014 31 Set the index to become the 'month' column: >>> df.set_index('month') year sale month 1 2012 55 4 2014 40 7 2013 84 10 2014 31 Create a MultiIndex using columns 'year' and 'month': >>> df.set_index(['year', 'month']) sale year month 2012 1 55 2014 4 40 2013 7 84 2014 10 31 Create a MultiIndex using an Index and a column: >>> df.set_index([pd.Index([1, 2, 3, 4]), 'year']) month sale year 1 2012 1 55 2 2014 4 40 3 2013 7 84 4 2014 10 31 Create a MultiIndex using two Series: >>> s = pd.Series([1, 2, 3, 4]) >>> df.set_index([s, s**2]) month year sale 1 1 1 2012 55 2 4 4 2014 40 3 9 7 2013 84 4 16 10 2014 31
- set_axis(labels, axis, **kwargs)[source]
Assign desired index to given axis.
Indexes for column or row labels can be changed by assigning a list-like or Index.
- Parameters:
labels (list-like, Index) – The values for the new index.
axis ({0 or 'index', 1 or 'columns'}, default 0) – The axis to update. The value 0 identifies the rows. For DeferredSeries this parameter is unused and defaults to 0.
copy (bool, default True) –
Whether to make a copy of the underlying data.
Added in version 1.5.0.
- Returns:
An object of type DeferredDataFrame.
- Return type:
Differences from pandas
This operation has no known divergences from the pandas API.
See also
DataFrame.rename_axis
Alter the name of the index or columns.
Examples
DataFrame.rename_axis : Alter the name of the index or columns. Examples -------- >>> df = pd.DataFrame({"A": [1, 2, 3], "B": [4, 5, 6]}) Change the row labels. >>> df.set_axis(['a', 'b', 'c'], axis='index') A B a 1 4 b 2 5 c 3 6 Change the column labels. >>> df.set_axis(['I', 'II'], axis='columns') I II 0 1 4 1 2 5 2 3 6 -------- >>> df = pd.DataFrame({"A": [1, 2, 3], "B": [4, 5, 6]}) Change the row labels. >>> df.set_axis(['a', 'b', 'c'], axis='index') A B a 1 4 b 2 5 c 3 6 Change the column labels. >>> df.set_axis(['I', 'II'], axis='columns') I II 0 1 4 1 2 5 2 3 6
- property axes
Return a list representing the axes of the DataFrame.
It has the row axis labels and column axis labels as the only members. They are returned in that order.
Differences from pandas
This operation has no known divergences from the pandas API.
Examples
NOTE: These examples are pulled directly from the pandas documentation for convenience. Usage of the Beam DataFrame API will look different because it is a deferred API.
>>> df = pd.DataFrame({'col1': [1, 2], 'col2': [3, 4]}) >>> df.axes [RangeIndex(start=0, stop=2, step=1), Index(['col1', 'col2'], dtype='object')]
- property dtypes
Return the dtypes in the DataFrame.
This returns a Series with the data type of each column. The result’s index is the original DataFrame’s columns. Columns with mixed types are stored with the
object
dtype. See the User Guide for more.- Returns:
The data type of each column.
- Return type:
pandas.DeferredSeries
Differences from pandas
This operation has no known divergences from the pandas API.
Examples
NOTE: These examples are pulled directly from the pandas documentation for convenience. Usage of the Beam DataFrame API will look different because it is a deferred API.
>>> df = pd.DataFrame({'float': [1.0], ... 'int': [1], ... 'datetime': [pd.Timestamp('20180310')], ... 'string': ['foo']}) >>> df.dtypes float float64 int int64 datetime datetime64[ns] string object dtype: object
- assign(**kwargs)[source]
Assign new columns to a DataFrame.
Returns a new object with all original columns in addition to new ones. Existing columns that are re-assigned will be overwritten.
- Parameters:
**kwargs (dict of {str: callable or DeferredSeries}) – The column names are keywords. If the values are callable, they are computed on the DeferredDataFrame and assigned to the new columns. The callable must not change input DeferredDataFrame (though pandas doesn’t check it). If the values are not callable, (e.g. a DeferredSeries, scalar, or array), they are simply assigned.
- Returns:
A new DeferredDataFrame with the new columns in addition to all the existing columns.
- Return type:
Differences from pandas
value
must be acallable
orDeferredSeries
. Other types make this operation order-sensitive.Notes
Assigning multiple columns within the same
assign
is possible. Later items in ‘**kwargs’ may refer to newly created or modified columns in ‘df’; items are computed and assigned into ‘df’ in order.Examples
NOTE: These examples are pulled directly from the pandas documentation for convenience. Usage of the Beam DataFrame API will look different because it is a deferred API. In addition, some arguments shown here may not be supported, see ‘Differences from pandas’ for details.
>>> df = pd.DataFrame({'temp_c': [17.0, 25.0]}, ... index=['Portland', 'Berkeley']) >>> df temp_c Portland 17.0 Berkeley 25.0 Where the value is a callable, evaluated on `df`: >>> df.assign(temp_f=lambda x: x.temp_c * 9 / 5 + 32) temp_c temp_f Portland 17.0 62.6 Berkeley 25.0 77.0 Alternatively, the same behavior can be achieved by directly referencing an existing Series or sequence: >>> df.assign(temp_f=df['temp_c'] * 9 / 5 + 32) temp_c temp_f Portland 17.0 62.6 Berkeley 25.0 77.0 You can create multiple columns within the same assign where one of the columns depends on another one defined within the same assign: >>> df.assign(temp_f=lambda x: x['temp_c'] * 9 / 5 + 32, ... temp_k=lambda x: (x['temp_f'] + 459.67) * 5 / 9) temp_c temp_f temp_k Portland 17.0 62.6 290.15 Berkeley 25.0 77.0 298.15
- explode(column, ignore_index)[source]
Transform each element of a list-like to a row, replicating index values.
- Parameters:
column (IndexLabel) –
Column(s) to explode. For multiple columns, specify a non-empty list with each element be str or tuple, and all specified columns their list-like data on same row of the frame must have matching length.
Added in version 1.3.0: Multi-column explode
ignore_index (bool, default False) – If True, the resulting index will be labeled 0, 1, …, n - 1.
- Returns:
Exploded lists to rows of the subset columns; index will be duplicated for these rows.
- Return type:
- Raises:
ValueError : –
If columns of the frame are not unique. * If specified columns to explode is empty list. * If specified columns to explode have not matching count of elements rowwise in the frame.
Differences from pandas
This operation has no known divergences from the pandas API.
See also
DeferredDataFrame.unstack
Pivot a level of the (necessarily hierarchical) index labels.
DeferredDataFrame.melt
Unpivot a DeferredDataFrame from wide format to long format.
DeferredSeries.explode
Explode a DeferredDataFrame from list-like columns to long format.
Notes
This routine will explode list-likes including lists, tuples, sets, DeferredSeries, and np.ndarray. The result dtype of the subset rows will be object. Scalars will be returned unchanged, and empty list-likes will result in a np.nan for that row. In addition, the ordering of rows in the output will be non-deterministic when exploding sets.
Reference the user guide for more examples.
Examples
NOTE: These examples are pulled directly from the pandas documentation for convenience. Usage of the Beam DataFrame API will look different because it is a deferred API.
>>> df = pd.DataFrame({'A': [[0, 1, 2], 'foo', [], [3, 4]], ... 'B': 1, ... 'C': [['a', 'b', 'c'], np.nan, [], ['d', 'e']]}) >>> df A B C 0 [0, 1, 2] 1 [a, b, c] 1 foo 1 NaN 2 [] 1 [] 3 [3, 4] 1 [d, e] Single-column explode. >>> df.explode('A') A B C 0 0 1 [a, b, c] 0 1 1 [a, b, c] 0 2 1 [a, b, c] 1 foo 1 NaN 2 NaN 1 [] 3 3 1 [d, e] 3 4 1 [d, e] Multi-column explode. >>> df.explode(list('AC')) A B C 0 0 1 a 0 1 1 b 0 2 1 c 1 foo 1 NaN 2 NaN 1 NaN 3 3 1 d 3 4 1 e
- insert(value, **kwargs)[source]
Insert column into DataFrame at specified location.
Raises a ValueError if column is already contained in the DataFrame, unless allow_duplicates is set to True.
- Parameters:
loc (int) – Insertion index. Must verify 0 <= loc <= len(columns).
column (str, number, or hashable object) – Label of the inserted column.
value (Scalar, DeferredSeries, or array-like)
allow_duplicates (bool, optional, default lib.no_default)
Differences from pandas
value
cannot be aList
because aligning it with this DeferredDataFrame is order-sensitive.See also
Index.insert
Insert new item by index.
Examples
NOTE: These examples are pulled directly from the pandas documentation for convenience. Usage of the Beam DataFrame API will look different because it is a deferred API. In addition, some arguments shown here may not be supported, see ‘Differences from pandas’ for details.
>>> df = pd.DataFrame({'col1': [1, 2], 'col2': [3, 4]}) >>> df col1 col2 0 1 3 1 2 4 >>> df.insert(1, "newcol", [99, 99]) >>> df col1 newcol col2 0 1 99 3 1 2 99 4 >>> df.insert(0, "col1", [100, 100], allow_duplicates=True) >>> df col1 col1 newcol col2 0 100 1 99 3 1 100 2 99 4 Notice that pandas uses index alignment in case of `value` from type `Series`: >>> df.insert(0, "col0", pd.Series([5, 6], index=[1, 2])) >>> df col0 col1 col1 newcol col2 0 NaN 100 1 99 3 1 5.0 100 2 99 4
- static from_dict(*args, **kwargs)[source]
Construct DataFrame from dict of array-like or dicts.
Creates DataFrame object from dictionary by columns or by index allowing dtype specification.
- Parameters:
data (dict) – Of the form {field : array-like} or {field : dict}.
orient ({'columns', 'index', 'tight'}, default 'columns') –
The “orientation” of the data. If the keys of the passed dict should be the columns of the resulting DeferredDataFrame, pass ‘columns’ (default). Otherwise if the keys should be rows, pass ‘index’. If ‘tight’, assume a dict with keys [‘index’, ‘columns’, ‘data’, ‘index_names’, ‘column_names’].
Added in version 1.4.0: ‘tight’ as an allowed value for the
orient
argumentdtype (dtype, default None) – Data type to force after DeferredDataFrame construction, otherwise infer.
columns (list, default None) – Column labels to use when
orient='index'
. Raises a ValueError if used withorient='columns'
ororient='tight'
.
- Return type:
Differences from pandas
This operation has no known divergences from the pandas API.
See also
DeferredDataFrame.from_records
DeferredDataFrame from structured ndarray, sequence of tuples or dicts, or DeferredDataFrame.
DeferredDataFrame
DeferredDataFrame object creation using constructor.
DeferredDataFrame.to_dict
Convert the DeferredDataFrame to a dictionary.
Examples
NOTE: These examples are pulled directly from the pandas documentation for convenience. Usage of the Beam DataFrame API will look different because it is a deferred API.
By default the keys of the dict become the DataFrame columns: >>> data = {'col_1': [3, 2, 1, 0], 'col_2': ['a', 'b', 'c', 'd']} >>> pd.DataFrame.from_dict(data) col_1 col_2 0 3 a 1 2 b 2 1 c 3 0 d Specify ``orient='index'`` to create the DataFrame using dictionary keys as rows: >>> data = {'row_1': [3, 2, 1, 0], 'row_2': ['a', 'b', 'c', 'd']} >>> pd.DataFrame.from_dict(data, orient='index') 0 1 2 3 row_1 3 2 1 0 row_2 a b c d When using the 'index' orientation, the column names can be specified manually: >>> pd.DataFrame.from_dict(data, orient='index', ... columns=['A', 'B', 'C', 'D']) A B C D row_1 3 2 1 0 row_2 a b c d Specify ``orient='tight'`` to create the DataFrame using a 'tight' format: >>> data = {'index': [('a', 'b'), ('a', 'c')], ... 'columns': [('x', 1), ('y', 2)], ... 'data': [[1, 3], [2, 4]], ... 'index_names': ['n1', 'n2'], ... 'column_names': ['z1', 'z2']} >>> pd.DataFrame.from_dict(data, orient='tight') z1 x y z2 1 2 n1 n2 a b 1 3 c 2 4
- static from_records(*args, **kwargs)[source]
Convert structured or record ndarray to DataFrame.
Creates a DataFrame object from a structured ndarray, sequence of tuples or dicts, or DataFrame.
- Parameters:
data (structured ndarray, sequence of tuples or dicts, or DeferredDataFrame) –
Structured input data.
Deprecated since version 2.1.0: Passing a DeferredDataFrame is deprecated.
index (str, list of fields, array-like) – Field of array to use as the index, alternately a specific set of input labels to use.
exclude (sequence, default None) – Columns or fields to exclude.
columns (sequence, default None) – Column names to use. If the passed data do not have names associated with them, this argument provides names for the columns. Otherwise this argument indicates the order of the columns in the result (any names not found in the data will become all-NA columns).
coerce_float (bool, default False) – Attempt to convert values of non-string, non-numeric objects (like decimal.Decimal) to floating point, useful for SQL result sets.
nrows (int, default None) – Number of rows to read if data is an iterator.
- Return type:
Differences from pandas
This operation has no known divergences from the pandas API.
See also
DeferredDataFrame.from_dict
DeferredDataFrame from dict of array-like or dicts.
DeferredDataFrame
DeferredDataFrame object creation using constructor.
Examples
NOTE: These examples are pulled directly from the pandas documentation for convenience. Usage of the Beam DataFrame API will look different because it is a deferred API.
Data can be provided as a structured ndarray: >>> data = np.array([(3, 'a'), (2, 'b'), (1, 'c'), (0, 'd')], ... dtype=[('col_1', 'i4'), ('col_2', 'U1')]) >>> pd.DataFrame.from_records(data) col_1 col_2 0 3 a 1 2 b 2 1 c 3 0 d Data can be provided as a list of dicts: >>> data = [{'col_1': 3, 'col_2': 'a'}, ... {'col_1': 2, 'col_2': 'b'}, ... {'col_1': 1, 'col_2': 'c'}, ... {'col_1': 0, 'col_2': 'd'}] >>> pd.DataFrame.from_records(data) col_1 col_2 0 3 a 1 2 b 2 1 c 3 0 d Data can be provided as a list of tuples with corresponding columns: >>> data = [(3, 'a'), (2, 'b'), (1, 'c'), (0, 'd')] >>> pd.DataFrame.from_records(data, columns=['col_1', 'col_2']) col_1 col_2 0 3 a 1 2 b 2 1 c 3 0 d
- duplicated(keep, subset)[source]
Return boolean Series denoting duplicate rows.
Considering certain columns is optional.
- Parameters:
subset (column label or sequence of labels, optional) – Only consider certain columns for identifying duplicates, by default use all of the columns.
keep ({'first', 'last', False}, default 'first') –
Determines which duplicates (if any) to mark.
first
: Mark duplicates asTrue
except for the first occurrence.last
: Mark duplicates asTrue
except for the last occurrence.False : Mark all duplicates as
True
.
- Returns:
Boolean series for each duplicated rows.
- Return type:
Differences from pandas
Only
keep=False
andkeep="any"
are supported. Other values ofkeep
make this an order-sensitive operation. Notekeep="any"
is a Beam-specific option that guarantees only one duplicate will be kept, but unlike"first"
and"last"
it makes no guarantees about _which_ duplicate element is kept.See also
Index.duplicated
Equivalent method on index.
DeferredSeries.duplicated
Equivalent method on DeferredSeries.
DeferredSeries.drop_duplicates
Remove duplicate values from DeferredSeries.
DeferredDataFrame.drop_duplicates
Remove duplicate values from DeferredDataFrame.
Examples
NOTE: These examples are pulled directly from the pandas documentation for convenience. Usage of the Beam DataFrame API will look different because it is a deferred API. In addition, some arguments shown here may not be supported, see ‘Differences from pandas’ for details.
Consider dataset containing ramen rating. >>> df = pd.DataFrame({ ... 'brand': ['Yum Yum', 'Yum Yum', 'Indomie', 'Indomie', 'Indomie'], ... 'style': ['cup', 'cup', 'cup', 'pack', 'pack'], ... 'rating': [4, 4, 3.5, 15, 5] ... }) >>> df brand style rating 0 Yum Yum cup 4.0 1 Yum Yum cup 4.0 2 Indomie cup 3.5 3 Indomie pack 15.0 4 Indomie pack 5.0 By default, for each set of duplicated values, the first occurrence is set on False and all others on True. >>> df.duplicated() 0 False 1 True 2 False 3 False 4 False dtype: bool By using 'last', the last occurrence of each set of duplicated values is set on False and all others on True. >>> df.duplicated(keep='last') 0 True 1 False 2 False 3 False 4 False dtype: bool By setting ``keep`` on False, all duplicates are True. >>> df.duplicated(keep=False) 0 True 1 True 2 False 3 False 4 False dtype: bool To find duplicates on specific column(s), use ``subset``. >>> df.duplicated(subset=['brand']) 0 False 1 True 2 False 3 True 4 True dtype: bool
- drop_duplicates(keep, subset, ignore_index)[source]
Return DataFrame with duplicate rows removed.
Considering certain columns is optional. Indexes, including time indexes are ignored.
- Parameters:
subset (column label or sequence of labels, optional) – Only consider certain columns for identifying duplicates, by default use all of the columns.
keep ({‘first’, ‘last’,
False
}, default ‘first’) –Determines which duplicates (if any) to keep.
’first’ : Drop duplicates except for the first occurrence.
’last’ : Drop duplicates except for the last occurrence.
False
: Drop all duplicates.
inplace (bool, default
False
) – Whether to modify the DeferredDataFrame rather than creating a new one.ignore_index (bool, default
False
) – IfTrue
, the resulting axis will be labeled 0, 1, …, n - 1.
- Returns:
DeferredDataFrame with duplicates removed or None if
inplace=True
.- Return type:
DeferredDataFrame or None
Differences from pandas
Only
keep=False
andkeep="any"
are supported. Other values ofkeep
make this an order-sensitive operation. Notekeep="any"
is a Beam-specific option that guarantees only one duplicate will be kept, but unlike"first"
and"last"
it makes no guarantees about _which_ duplicate element is kept.See also
DeferredDataFrame.value_counts
Count unique combinations of columns.
Examples
NOTE: These examples are pulled directly from the pandas documentation for convenience. Usage of the Beam DataFrame API will look different because it is a deferred API. In addition, some arguments shown here may not be supported, see ‘Differences from pandas’ for details.
Consider dataset containing ramen rating. >>> df = pd.DataFrame({ ... 'brand': ['Yum Yum', 'Yum Yum', 'Indomie', 'Indomie', 'Indomie'], ... 'style': ['cup', 'cup', 'cup', 'pack', 'pack'], ... 'rating': [4, 4, 3.5, 15, 5] ... }) >>> df brand style rating 0 Yum Yum cup 4.0 1 Yum Yum cup 4.0 2 Indomie cup 3.5 3 Indomie pack 15.0 4 Indomie pack 5.0 By default, it removes duplicate rows based on all columns. >>> df.drop_duplicates() brand style rating 0 Yum Yum cup 4.0 2 Indomie cup 3.5 3 Indomie pack 15.0 4 Indomie pack 5.0 To remove duplicates on specific column(s), use ``subset``. >>> df.drop_duplicates(subset=['brand']) brand style rating 0 Yum Yum cup 4.0 2 Indomie cup 3.5 To remove duplicates and keep last occurrences, use ``keep``. >>> df.drop_duplicates(subset=['brand', 'style'], keep='last') brand style rating 1 Yum Yum cup 4.0 2 Indomie cup 3.5 4 Indomie pack 5.0
- aggregate(func, axis, *args, **kwargs)[source]
Aggregate using one or more operations over the specified axis.
- Parameters:
func (function, str, list or dict) –
Function to use for aggregating the data. If a function, must either work when passed a DeferredDataFrame or when passed to DeferredDataFrame.apply.
Accepted combinations are:
function
string function name
list of functions and/or function names, e.g.
[np.sum, 'mean']
dict of axis labels -> functions, function names or list of such.
axis ({0 or 'index', 1 or 'columns'}, default 0) – If 0 or ‘index’: apply function to each column. If 1 or ‘columns’: apply function to each row.
*args – Positional arguments to pass to func.
**kwargs – Keyword arguments to pass to func.
- Returns:
The return can be:
scalar : when DeferredSeries.agg is called with single function
DeferredSeries : when DeferredDataFrame.agg is called with a single function
DeferredDataFrame : when DeferredDataFrame.agg is called with several functions
Return scalar, DeferredSeries or DeferredDataFrame.
- Return type:
scalar, DeferredSeries or DeferredDataFrame
Differences from pandas
This operation has no known divergences from the pandas API.
See also
DeferredDataFrame.apply
Perform any type of operations.
DeferredDataFrame.transform
Perform transformation type operations.
core.groupby.GroupBy
Perform operations over groups.
core.resample.Resampler
Perform operations over resampled bins.
core.window.Rolling
Perform operations over rolling window.
core.window.Expanding
Perform operations over expanding window.
core.window.ExponentialMovingWindow
Perform operation over exponential weighted window.
Notes
The aggregation operations are always performed over an axis, either the index (default) or the column axis. This behavior is different from numpy aggregation functions (mean, median, prod, sum, std, var), where the default is to compute the aggregation of the flattened array, e.g.,
numpy.mean(arr_2d)
as opposed tonumpy.mean(arr_2d, axis=0)
.agg is an alias for aggregate. Use the alias.
Functions that mutate the passed object can produce unexpected behavior or errors and are not supported. See Mutating with User Defined Function (UDF) methods for more details.
A passed user-defined-function will be passed a DeferredSeries for evaluation.
Examples
NOTE: These examples are pulled directly from the pandas documentation for convenience. Usage of the Beam DataFrame API will look different because it is a deferred API.
>>> df = pd.DataFrame([[1, 2, 3], ... [4, 5, 6], ... [7, 8, 9], ... [np.nan, np.nan, np.nan]], ... columns=['A', 'B', 'C']) Aggregate these functions over the rows. >>> df.agg(['sum', 'min']) A B C sum 12.0 15.0 18.0 min 1.0 2.0 3.0 Different aggregations per column. >>> df.agg({'A' : ['sum', 'min'], 'B' : ['min', 'max']}) A B sum 12.0 NaN min 1.0 2.0 max NaN 8.0 Aggregate different functions over the columns and rename the index of the resulting DataFrame. >>> df.agg(x=('A', 'max'), y=('B', 'min'), z=('C', 'mean')) A B C x 7.0 NaN NaN y NaN 2.0 NaN z NaN NaN 6.0 Aggregate over the columns. >>> df.agg("mean", axis="columns") 0 2.0 1 5.0 2 8.0 3 NaN dtype: float64
- agg(func, axis, *args, **kwargs)
Aggregate using one or more operations over the specified axis.
- Parameters:
func (function, str, list or dict) –
Function to use for aggregating the data. If a function, must either work when passed a DeferredDataFrame or when passed to DeferredDataFrame.apply.
Accepted combinations are:
function
string function name
list of functions and/or function names, e.g.
[np.sum, 'mean']
dict of axis labels -> functions, function names or list of such.
axis ({0 or 'index', 1 or 'columns'}, default 0) – If 0 or ‘index’: apply function to each column. If 1 or ‘columns’: apply function to each row.
*args – Positional arguments to pass to func.
**kwargs – Keyword arguments to pass to func.
- Returns:
The return can be:
scalar : when DeferredSeries.agg is called with single function
DeferredSeries : when DeferredDataFrame.agg is called with a single function
DeferredDataFrame : when DeferredDataFrame.agg is called with several functions
Return scalar, DeferredSeries or DeferredDataFrame.
- Return type:
scalar, DeferredSeries or DeferredDataFrame
Differences from pandas
This operation has no known divergences from the pandas API.
See also
DeferredDataFrame.apply
Perform any type of operations.
DeferredDataFrame.transform
Perform transformation type operations.
core.groupby.GroupBy
Perform operations over groups.
core.resample.Resampler
Perform operations over resampled bins.
core.window.Rolling
Perform operations over rolling window.
core.window.Expanding
Perform operations over expanding window.
core.window.ExponentialMovingWindow
Perform operation over exponential weighted window.
Notes
The aggregation operations are always performed over an axis, either the index (default) or the column axis. This behavior is different from numpy aggregation functions (mean, median, prod, sum, std, var), where the default is to compute the aggregation of the flattened array, e.g.,
numpy.mean(arr_2d)
as opposed tonumpy.mean(arr_2d, axis=0)
.agg is an alias for aggregate. Use the alias.
Functions that mutate the passed object can produce unexpected behavior or errors and are not supported. See Mutating with User Defined Function (UDF) methods for more details.
A passed user-defined-function will be passed a DeferredSeries for evaluation.
Examples
NOTE: These examples are pulled directly from the pandas documentation for convenience. Usage of the Beam DataFrame API will look different because it is a deferred API.
>>> df = pd.DataFrame([[1, 2, 3], ... [4, 5, 6], ... [7, 8, 9], ... [np.nan, np.nan, np.nan]], ... columns=['A', 'B', 'C']) Aggregate these functions over the rows. >>> df.agg(['sum', 'min']) A B C sum 12.0 15.0 18.0 min 1.0 2.0 3.0 Different aggregations per column. >>> df.agg({'A' : ['sum', 'min'], 'B' : ['min', 'max']}) A B sum 12.0 NaN min 1.0 2.0 max NaN 8.0 Aggregate different functions over the columns and rename the index of the resulting DataFrame. >>> df.agg(x=('A', 'max'), y=('B', 'min'), z=('C', 'mean')) A B C x 7.0 NaN NaN y NaN 2.0 NaN z NaN NaN 6.0 Aggregate over the columns. >>> df.agg("mean", axis="columns") 0 2.0 1 5.0 2 8.0 3 NaN dtype: float64
- applymap(**kwargs)
Apply a function to a Dataframe elementwise.
Deprecated since version 2.1.0: DataFrame.applymap has been deprecated. Use DataFrame.map instead.
This method applies a function that accepts and returns a scalar to every element of a DataFrame.
- Parameters:
func (callable) – Python function, returns a single value from a single value.
na_action ({None, 'ignore'}, default None) – If ‘ignore’, propagate NaN values, without passing them to func.
**kwargs – Additional keyword arguments to pass as keywords arguments to func.
- Returns:
Transformed DeferredDataFrame.
- Return type:
Differences from pandas
This operation has no known divergences from the pandas API.
See also
DeferredDataFrame.apply
Apply a function along input axis of DeferredDataFrame.
DeferredDataFrame.map
Apply a function along input axis of DeferredDataFrame.
DeferredDataFrame.replace
Replace values given in to_replace with value.
Examples
NOTE: These examples are pulled directly from the pandas documentation for convenience. Usage of the Beam DataFrame API will look different because it is a deferred API.
>>> df = pd.DataFrame([[1, 2.12], [3.356, 4.567]]) >>> df 0 1 0 1.000 2.120 1 3.356 4.567 >>> df.map(lambda x: len(str(x))) 0 1 0 3 4 1 5 5
- map(**kwargs)
Apply a function to a Dataframe elementwise.
Added in version 2.1.0: DataFrame.applymap was deprecated and renamed to DataFrame.map.
This method applies a function that accepts and returns a scalar to every element of a DataFrame.
- Parameters:
func (callable) – Python function, returns a single value from a single value.
na_action ({None, 'ignore'}, default None) – If ‘ignore’, propagate NaN values, without passing them to func.
**kwargs – Additional keyword arguments to pass as keywords arguments to func.
- Returns:
Transformed DeferredDataFrame.
- Return type:
Differences from pandas
This operation has no known divergences from the pandas API.
See also
DeferredDataFrame.apply
Apply a function along input axis of DeferredDataFrame.
DeferredDataFrame.replace
Replace values given in to_replace with value.
DeferredSeries.map
Apply a function elementwise on a DeferredSeries.
Examples
NOTE: These examples are pulled directly from the pandas documentation for convenience. Usage of the Beam DataFrame API will look different because it is a deferred API.
>>> df = pd.DataFrame([[1, 2.12], [3.356, 4.567]]) >>> df 0 1 0 1.000 2.120 1 3.356 4.567 >>> df.map(lambda x: len(str(x))) 0 1 0 3 4 1 5 5 Like Series.map, NA values can be ignored: >>> df_copy = df.copy() >>> df_copy.iloc[0, 0] = pd.NA >>> df_copy.map(lambda x: len(str(x)), na_action='ignore') 0 1 0 NaN 4 1 5.0 5 Note that a vectorized version of `func` often exists, which will be much faster. You could square each number elementwise. >>> df.map(lambda x: x**2) 0 1 0 1.000000 4.494400 1 11.262736 20.857489 But it's better to avoid map in that case. >>> df ** 2 0 1 0 1.000000 4.494400 1 11.262736 20.857489
- add_prefix(**kwargs)
Prefix labels with string prefix.
For Series, the row labels are prefixed. For DataFrame, the column labels are prefixed.
- Parameters:
prefix (str) – The string to add before each label.
axis ({0 or 'index', 1 or 'columns', None}, default None) –
Axis to add prefix on
Added in version 2.0.0.
- Returns:
New DeferredSeries or DeferredDataFrame with updated labels.
- Return type:
Differences from pandas
This operation has no known divergences from the pandas API.
See also
DeferredSeries.add_suffix
Suffix row labels with string suffix.
DeferredDataFrame.add_suffix
Suffix column labels with string suffix.
Examples
NOTE: These examples are pulled directly from the pandas documentation for convenience. Usage of the Beam DataFrame API will look different because it is a deferred API.
>>> s = pd.Series([1, 2, 3, 4]) >>> s 0 1 1 2 2 3 3 4 dtype: int64 >>> s.add_prefix('item_') item_0 1 item_1 2 item_2 3 item_3 4 dtype: int64 >>> df = pd.DataFrame({'A': [1, 2, 3, 4], 'B': [3, 4, 5, 6]}) >>> df A B 0 1 3 1 2 4 2 3 5 3 4 6 >>> df.add_prefix('col_') col_A col_B 0 1 3 1 2 4 2 3 5 3 4 6
- add_suffix(**kwargs)
Suffix labels with string suffix.
For Series, the row labels are suffixed. For DataFrame, the column labels are suffixed.
- Parameters:
suffix (str) – The string to add after each label.
axis ({0 or 'index', 1 or 'columns', None}, default None) –
Axis to add suffix on
Added in version 2.0.0.
- Returns:
New DeferredSeries or DeferredDataFrame with updated labels.
- Return type:
Differences from pandas
This operation has no known divergences from the pandas API.
See also
DeferredSeries.add_prefix
Prefix row labels with string prefix.
DeferredDataFrame.add_prefix
Prefix column labels with string prefix.
Examples
NOTE: These examples are pulled directly from the pandas documentation for convenience. Usage of the Beam DataFrame API will look different because it is a deferred API.
>>> s = pd.Series([1, 2, 3, 4]) >>> s 0 1 1 2 2 3 3 4 dtype: int64 >>> s.add_suffix('_item') 0_item 1 1_item 2 2_item 3 3_item 4 dtype: int64 >>> df = pd.DataFrame({'A': [1, 2, 3, 4], 'B': [3, 4, 5, 6]}) >>> df A B 0 1 3 1 2 4 2 3 5 3 4 6 >>> df.add_suffix('_col') A_col B_col 0 1 3 1 2 4 2 3 5 3 4 6
- memory_usage(**kwargs)
pandas.DataFrame.memory_usage()
is not yet supported in the Beam DataFrame API because it produces an output type that is not deferred.For more information see https://s.apache.org/dataframe-non-deferred-result.
- info(**kwargs)
pandas.DataFrame.info()
is not yet supported in the Beam DataFrame API because it produces an output type that is not deferred.For more information see https://s.apache.org/dataframe-non-deferred-result.
- clip(axis, **kwargs)[source]
Trim values at input threshold(s).
Assigns values outside boundary to boundary values. Thresholds can be singular values or array like, and in the latter case the clipping is performed element-wise in the specified axis.
- Parameters:
lower (float or array-like, default None) – Minimum threshold value. All values below this threshold will be set to it. A missing threshold (e.g NA) will not clip the value.
upper (float or array-like, default None) – Maximum threshold value. All values above this threshold will be set to it. A missing threshold (e.g NA) will not clip the value.
axis ({{0 or 'index', 1 or 'columns', None}}, default None) – Align object with lower and upper along the given axis. For DeferredSeries this parameter is unused and defaults to None.
inplace (bool, default False) – Whether to perform the operation in place on the data.
*args – Additional keywords have no effect but might be accepted for compatibility with numpy.
**kwargs – Additional keywords have no effect but might be accepted for compatibility with numpy.
- Returns:
Same type as calling object with the values outside the clip boundaries replaced or None if
inplace=True
.- Return type:
DeferredSeries or DeferredDataFrame or None
Differences from pandas
lower
andupper
must beDeferredSeries
instances, or constants. Array-like arguments are not supported because they are order-sensitive.See also
DeferredSeries.clip
Trim values at input threshold in series.
DeferredDataFrame.clip
Trim values at input threshold in dataframe.
numpy.clip
Clip (limit) the values in an array.
Examples
NOTE: These examples are pulled directly from the pandas documentation for convenience. Usage of the Beam DataFrame API will look different because it is a deferred API. In addition, some arguments shown here may not be supported, see ‘Differences from pandas’ for details.
>>> data = {'col_0': [9, -3, 0, -1, 5], 'col_1': [-2, -7, 6, 8, -5]} >>> df = pd.DataFrame(data) >>> df col_0 col_1 0 9 -2 1 -3 -7 2 0 6 3 -1 8 4 5 -5 Clips per column using lower and upper thresholds: >>> df.clip(-4, 6) col_0 col_1 0 6 -2 1 -3 -4 2 0 6 3 -1 6 4 5 -4 Clips using specific lower and upper thresholds per column element: >>> t = pd.Series([2, -4, -1, 6, 3]) >>> t 0 2 1 -4 2 -1 3 6 4 3 dtype: int64 >>> df.clip(t, t + 4, axis=0) col_0 col_1 0 6 2 1 -3 -4 2 0 3 3 6 8 4 5 3 Clips using specific lower threshold per column element, with missing values: >>> t = pd.Series([2, -4, np.nan, 6, 3]) >>> t 0 2.0 1 -4.0 2 NaN 3 6.0 4 3.0 dtype: float64 >>> df.clip(t, axis=0) col_0 col_1 0 9 2 1 -3 -4 2 0 6 3 6 8 4 5 3
- corr(method, min_periods)[source]
Compute pairwise correlation of columns, excluding NA/null values.
- Parameters:
method ({'pearson', 'kendall', 'spearman'} or callable) –
Method of correlation:
pearson : standard correlation coefficient
kendall : Kendall Tau correlation coefficient
spearman : Spearman rank correlation
- callable: callable with input two 1d ndarrays
and returning a float. Note that the returned matrix from corr will have 1 along the diagonals and will be symmetric regardless of the callable’s behavior.
min_periods (int, optional) – Minimum number of observations required per pair of columns to have a valid result. Currently only available for Pearson and Spearman correlation.
numeric_only (bool, default False) –
Include only float, int or boolean data.
Added in version 1.5.0.
Changed in version 2.0.0: The default value of
numeric_only
is nowFalse
.
- Returns:
Correlation matrix.
- Return type:
Differences from pandas
Only
method="pearson"
can be parallelized. Other methods require collecting all data on a single worker (see https://s.apache.org/dataframe-non-parallel-operations for details).See also
DeferredDataFrame.corrwith
Compute pairwise correlation with another DeferredDataFrame or DeferredSeries.
DeferredSeries.corr
Compute the correlation between two DeferredSeries.
Notes
Pearson, Kendall and Spearman correlation are currently computed using pairwise complete observations.
Examples
NOTE: These examples are pulled directly from the pandas documentation for convenience. Usage of the Beam DataFrame API will look different because it is a deferred API. In addition, some arguments shown here may not be supported, see ‘Differences from pandas’ for details.
>>> def histogram_intersection(a, b): ... v = np.minimum(a, b).sum().round(decimals=1) ... return v >>> df = pd.DataFrame([(.2, .3), (.0, .6), (.6, .0), (.2, .1)], ... columns=['dogs', 'cats']) >>> df.corr(method=histogram_intersection) dogs cats dogs 1.0 0.3 cats 0.3 1.0 >>> df = pd.DataFrame([(1, 1), (2, np.nan), (np.nan, 3), (4, 4)], ... columns=['dogs', 'cats']) >>> df.corr(min_periods=3) dogs cats dogs 1.0 NaN cats NaN 1.0
- cov(min_periods, ddof)[source]
Compute pairwise covariance of columns, excluding NA/null values.
Compute the pairwise covariance among the series of a DataFrame. The returned data frame is the covariance matrix of the columns of the DataFrame.
Both NA and null values are automatically excluded from the calculation. (See the note below about bias from missing values.) A threshold can be set for the minimum number of observations for each value created. Comparisons with observations below this threshold will be returned as
NaN
.This method is generally used for the analysis of time series data to understand the relationship between different measures across time.
- Parameters:
min_periods (int, optional) – Minimum number of observations required per pair of columns to have a valid result.
ddof (int, default 1) – Delta degrees of freedom. The divisor used in calculations is
N - ddof
, whereN
represents the number of elements. This argument is applicable only when nonan
is in the dataframe.numeric_only (bool, default False) –
Include only float, int or boolean data.
Added in version 1.5.0.
Changed in version 2.0.0: The default value of
numeric_only
is nowFalse
.
- Returns:
The covariance matrix of the series of the DeferredDataFrame.
- Return type:
Differences from pandas
This operation has no known divergences from the pandas API.
See also
DeferredSeries.cov
Compute covariance with another DeferredSeries.
core.window.ewm.ExponentialMovingWindow.cov
Exponential weighted sample covariance.
core.window.expanding.Expanding.cov
Expanding sample covariance.
core.window.rolling.Rolling.cov
Rolling sample covariance.
Notes
Returns the covariance matrix of the DeferredDataFrame’s time series. The covariance is normalized by N-ddof.
For DeferredDataFrames that have DeferredSeries that are missing data (assuming that data is missing at random) the returned covariance matrix will be an unbiased estimate of the variance and covariance between the member DeferredSeries.
However, for many applications this estimate may not be acceptable because the estimate covariance matrix is not guaranteed to be positive semi-definite. This could lead to estimate correlations having absolute values which are greater than one, and/or a non-invertible covariance matrix. See Estimation of covariance matrices for more details.
Examples
NOTE: These examples are pulled directly from the pandas documentation for convenience. Usage of the Beam DataFrame API will look different because it is a deferred API.
>>> df = pd.DataFrame([(1, 2), (0, 3), (2, 0), (1, 1)], ... columns=['dogs', 'cats']) >>> df.cov() dogs cats dogs 0.666667 -1.000000 cats -1.000000 1.666667 >>> np.random.seed(42) >>> df = pd.DataFrame(np.random.randn(1000, 5), ... columns=['a', 'b', 'c', 'd', 'e']) >>> df.cov() a b c d e a 0.998438 -0.020161 0.059277 -0.008943 0.014144 b -0.020161 1.059352 -0.008543 -0.024738 0.009826 c 0.059277 -0.008543 1.010670 -0.001486 -0.000271 d -0.008943 -0.024738 -0.001486 0.921297 -0.013692 e 0.014144 0.009826 -0.000271 -0.013692 0.977795 **Minimum number of periods** This method also supports an optional ``min_periods`` keyword that specifies the required minimum number of non-NA observations for each column pair in order to have a valid result: >>> np.random.seed(42) >>> df = pd.DataFrame(np.random.randn(20, 3), ... columns=['a', 'b', 'c']) >>> df.loc[df.index[:5], 'a'] = np.nan >>> df.loc[df.index[5:10], 'b'] = np.nan >>> df.cov(min_periods=12) a b c a 0.316741 NaN -0.150812 b NaN 1.248003 0.191417 c -0.150812 0.191417 0.895202
- corrwith(other, axis, drop, method)[source]
Compute pairwise correlation.
Pairwise correlation is computed between rows or columns of DataFrame with rows or columns of Series or DataFrame. DataFrames are first aligned along both axes before computing the correlations.
- Parameters:
other (DeferredDataFrame, DeferredSeries) – Object with which to compute correlations.
axis ({0 or 'index', 1 or 'columns'}, default 0) – The axis to use. 0 or ‘index’ to compute row-wise, 1 or ‘columns’ for column-wise.
drop (bool, default False) – Drop missing indices from result.
method ({'pearson', 'kendall', 'spearman'} or callable) –
Method of correlation:
pearson : standard correlation coefficient
kendall : Kendall Tau correlation coefficient
spearman : Spearman rank correlation
- callable: callable with input two 1d ndarrays
and returning a float.
numeric_only (bool, default False) –
Include only float, int or boolean data.
Added in version 1.5.0.
Changed in version 2.0.0: The default value of
numeric_only
is nowFalse
.
- Returns:
Pairwise correlations.
- Return type:
Differences from pandas
This operation has no known divergences from the pandas API.
See also
DeferredDataFrame.corr
Compute pairwise correlation of columns.
Examples
NOTE: These examples are pulled directly from the pandas documentation for convenience. Usage of the Beam DataFrame API will look different because it is a deferred API.
>>> index = ["a", "b", "c", "d", "e"] >>> columns = ["one", "two", "three", "four"] >>> df1 = pd.DataFrame(np.arange(20).reshape(5, 4), index=index, columns=columns) >>> df2 = pd.DataFrame(np.arange(16).reshape(4, 4), index=index[:4], columns=columns) >>> df1.corrwith(df2) one 1.0 two 1.0 three 1.0 four 1.0 dtype: float64 >>> df2.corrwith(df1, axis=1) a 1.0 b 1.0 c 1.0 d 1.0 e NaN dtype: float64
- cummax(**kwargs)
pandas.DataFrame.cummax()
is not yet supported in the Beam DataFrame API because it is sensitive to the order of the data.For more information see https://s.apache.org/dataframe-order-sensitive-operations.
- cummin(**kwargs)
pandas.DataFrame.cummin()
is not yet supported in the Beam DataFrame API because it is sensitive to the order of the data.For more information see https://s.apache.org/dataframe-order-sensitive-operations.
- cumprod(**kwargs)
pandas.DataFrame.cumprod()
is not yet supported in the Beam DataFrame API because it is sensitive to the order of the data.For more information see https://s.apache.org/dataframe-order-sensitive-operations.
- cumsum(**kwargs)
pandas.DataFrame.cumsum()
is not yet supported in the Beam DataFrame API because it is sensitive to the order of the data.For more information see https://s.apache.org/dataframe-order-sensitive-operations.
- diff(**kwargs)
pandas.DataFrame.diff()
is not yet supported in the Beam DataFrame API because it is sensitive to the order of the data.For more information see https://s.apache.org/dataframe-order-sensitive-operations.
- interpolate(**kwargs)
pandas.DataFrame.interpolate()
is not yet supported in the Beam DataFrame API because it is sensitive to the order of the data.For more information see https://s.apache.org/dataframe-order-sensitive-operations.
- pct_change(**kwargs)
pandas.DataFrame.pct_change()
is not yet supported in the Beam DataFrame API because it is sensitive to the order of the data.For more information see https://s.apache.org/dataframe-order-sensitive-operations.
- asof(**kwargs)
pandas.DataFrame.asof()
is not yet supported in the Beam DataFrame API because it is sensitive to the order of the data.For more information see https://s.apache.org/dataframe-order-sensitive-operations.
- first_valid_index(**kwargs)
pandas.DataFrame.first_valid_index()
is not yet supported in the Beam DataFrame API because it is sensitive to the order of the data.For more information see https://s.apache.org/dataframe-order-sensitive-operations.
- last_valid_index(**kwargs)
pandas.DataFrame.last_valid_index()
is not yet supported in the Beam DataFrame API because it is sensitive to the order of the data.For more information see https://s.apache.org/dataframe-order-sensitive-operations.
- property iat
pandas.DataFrame.iat()
is not yet supported in the Beam DataFrame API because it is sensitive to the order of the data.For more information see https://s.apache.org/dataframe-order-sensitive-operations.
- lookup(**kwargs)
pandas.DataFrame.lookup()
is not yet supported in the Beam DataFrame API because it is deprecated in pandas.
- head(**kwargs)
pandas.DataFrame.head()
is not yet supported in the Beam DataFrame API because it is order-sensitive.If you want to peek at a large dataset consider using interactive Beam’s
ib.collect
withn
specified, orsample()
. If you want to find the N largest elements, consider usingDeferredDataFrame.nlargest()
.
- tail(**kwargs)
pandas.DataFrame.tail()
is not yet supported in the Beam DataFrame API because it is order-sensitive.If you want to peek at a large dataset consider using interactive Beam’s
ib.collect
withn
specified, orsample()
. If you want to find the N largest elements, consider usingDeferredDataFrame.nlargest()
.
- sample(n, frac, replace, weights, random_state, axis)[source]
Return a random sample of items from an axis of object.
You can use random_state for reproducibility.
- Parameters:
n (int, optional) – Number of items from axis to return. Cannot be used with frac. Default = 1 if frac = None.
frac (float, optional) – Fraction of axis items to return. Cannot be used with n.
replace (bool, default False) – Allow or disallow sampling of the same row more than once.
weights (str or ndarray-like, optional) – Default ‘None’ results in equal probability weighting. If passed a DeferredSeries, will align with target object on index. Index values in weights not found in sampled object will be ignored and index values in sampled object not in weights will be assigned weights of zero. If called on a DeferredDataFrame, will accept the name of a column when axis = 0. Unless weights are a DeferredSeries, weights must be same length as axis being sampled. If weights do not sum to 1, they will be normalized to sum to 1. Missing values in the weights column will be treated as zero. Infinite values not allowed.
random_state (int, array-like, BitGenerator, np.random.RandomState, np.random.Generator, optional) –
If int, array-like, or BitGenerator, seed for random number generator. If np.random.RandomState or np.random.Generator, use as given.
Changed in version 1.4.0: np.random.Generator objects now accepted
axis ({0 or 'index', 1 or 'columns', None}, default None) – Axis to sample. Accepts axis number or name. Default is stat axis for given data type. For DeferredSeries this parameter is unused and defaults to None.
ignore_index (bool, default False) –
If True, the resulting index will be labeled 0, 1, …, n - 1.
Added in version 1.3.0.
- Returns:
A new object of same type as caller containing n items randomly sampled from the caller object.
- Return type:
Differences from pandas
When
axis='index'
, onlyn
and/orweights
may be specified.frac
,random_state
, andreplace=True
are not yet supported. See Issue 21010.Note that pandas will raise an error if
n
is larger than the length of the dataset, while the Beam DataFrame API will simply return the full dataset in that case.sample is fully supported for axis=’columns’.
See also
DeferredDataFrameGroupBy.sample
Generates random samples from each group of a DeferredDataFrame object.
DeferredSeriesGroupBy.sample
Generates random samples from each group of a DeferredSeries object.
numpy.random.choice
Generates a random sample from a given 1-D numpy array.
Notes
If frac > 1, replacement should be set to True.
Examples
NOTE: These examples are pulled directly from the pandas documentation for convenience. Usage of the Beam DataFrame API will look different because it is a deferred API. In addition, some arguments shown here may not be supported, see ‘Differences from pandas’ for details.
>>> df = pd.DataFrame({'num_legs': [2, 4, 8, 0], ... 'num_wings': [2, 0, 0, 0], ... 'num_specimen_seen': [10, 2, 1, 8]}, ... index=['falcon', 'dog', 'spider', 'fish']) >>> df num_legs num_wings num_specimen_seen falcon 2 2 10 dog 4 0 2 spider 8 0 1 fish 0 0 8 Extract 3 random elements from the ``Series`` ``df['num_legs']``: Note that we use `random_state` to ensure the reproducibility of the examples. >>> df['num_legs'].sample(n=3, random_state=1) fish 0 spider 8 falcon 2 Name: num_legs, dtype: int64 A random 50% sample of the ``DataFrame`` with replacement: >>> df.sample(frac=0.5, replace=True, random_state=1) num_legs num_wings num_specimen_seen dog 4 0 2 fish 0 0 8 An upsample sample of the ``DataFrame`` with replacement: Note that `replace` parameter has to be `True` for `frac` parameter > 1. >>> df.sample(frac=2, replace=True, random_state=1) num_legs num_wings num_specimen_seen dog 4 0 2 fish 0 0 8 falcon 2 2 10 falcon 2 2 10 fish 0 0 8 dog 4 0 2 fish 0 0 8 dog 4 0 2 Using a DataFrame column as weights. Rows with larger value in the `num_specimen_seen` column are more likely to be sampled. >>> df.sample(n=2, weights='num_specimen_seen', random_state=1) num_legs num_wings num_specimen_seen falcon 2 2 10 fish 0 0 8
- dot(other)[source]
Compute the matrix multiplication between the DataFrame and other.
This method computes the matrix product between the DataFrame and the values of an other Series, DataFrame or a numpy array.
It can also be called using
self @ other
.- Parameters:
other (DeferredSeries, DeferredDataFrame or array-like) – The other object to compute the matrix product with.
- Returns:
If other is a DeferredSeries, return the matrix product between self and other as a DeferredSeries. If other is a DeferredDataFrame or a numpy.array, return the matrix product of self and other in a DeferredDataFrame of a np.array.
- Return type:
Differences from pandas
This operation has no known divergences from the pandas API.
See also
DeferredSeries.dot
Similar method for DeferredSeries.
Notes
The dimensions of DeferredDataFrame and other must be compatible in order to compute the matrix multiplication. In addition, the column names of DeferredDataFrame and the index of other must contain the same values, as they will be aligned prior to the multiplication.
The dot method for DeferredSeries computes the inner product, instead of the matrix product here.
Examples
NOTE: These examples are pulled directly from the pandas documentation for convenience. Usage of the Beam DataFrame API will look different because it is a deferred API.
Here we multiply a DataFrame with a Series. >>> df = pd.DataFrame([[0, 1, -2, -1], [1, 1, 1, 1]]) >>> s = pd.Series([1, 1, 2, 1]) >>> df.dot(s) 0 -4 1 5 dtype: int64 Here we multiply a DataFrame with another DataFrame. >>> other = pd.DataFrame([[0, 1], [1, 2], [-1, -1], [2, 0]]) >>> df.dot(other) 0 1 0 1 4 1 2 2 Note that the dot method give the same result as @ >>> df @ other 0 1 0 1 4 1 2 2 The dot method works also if other is an np.array. >>> arr = np.array([[0, 1], [1, 2], [-1, -1], [2, 0]]) >>> df.dot(arr) 0 1 0 1 4 1 2 2 Note how shuffling of the objects does not change the result. >>> s2 = s.reindex([1, 0, 2, 3]) >>> df.dot(s2) 0 -4 1 5 dtype: int64
- mode(axis=0, *args, **kwargs)[source]
Get the mode(s) of each element along the selected axis.
The mode of a set of values is the value that appears most often. It can be multiple values.
- Parameters:
axis ({0 or 'index', 1 or 'columns'}, default 0) –
The axis to iterate over while searching for the mode:
0 or ‘index’ : get mode of each column
1 or ‘columns’ : get mode of each row.
numeric_only (bool, default False) – If True, only apply to numeric columns.
dropna (bool, default True) – Don’t consider counts of NaN/NaT.
- Returns:
The modes of each column or row.
- Return type:
Differences from pandas
mode with axis=”columns” is not implemented because it produces non-deferred columns.
mode with axis=”index” is not currently parallelizable. An approximate, parallelizable implementation of mode may be added in the future (Issue 20946).
See also
DeferredSeries.mode
Return the highest frequency value in a DeferredSeries.
DeferredSeries.value_counts
Return the counts of values in a DeferredSeries.
Examples
NOTE: These examples are pulled directly from the pandas documentation for convenience. Usage of the Beam DataFrame API will look different because it is a deferred API. In addition, some arguments shown here may not be supported, see ‘Differences from pandas’ for details.
>>> df = pd.DataFrame([('bird', 2, 2), ... ('mammal', 4, np.nan), ... ('arthropod', 8, 0), ... ('bird', 2, np.nan)], ... index=('falcon', 'horse', 'spider', 'ostrich'), ... columns=('species', 'legs', 'wings')) >>> df species legs wings falcon bird 2 2.0 horse mammal 4 NaN spider arthropod 8 0.0 ostrich bird 2 NaN By default, missing values are not considered, and the mode of wings are both 0 and 2. Because the resulting DataFrame has two rows, the second row of ``species`` and ``legs`` contains ``NaN``. >>> df.mode() species legs wings 0 bird 2.0 0.0 1 NaN NaN 2.0 Setting ``dropna=False`` ``NaN`` values are considered and they can be the mode (like for wings). >>> df.mode(dropna=False) species legs wings 0 bird 2 NaN Setting ``numeric_only=True``, only the mode of numeric columns is computed, and columns of other types are ignored. >>> df.mode(numeric_only=True) legs wings 0 2.0 0.0 1 NaN 2.0 To compute the mode over columns and not rows, use the axis parameter: >>> df.mode(axis='columns', numeric_only=True) 0 1 falcon 2.0 NaN horse 4.0 NaN spider 0.0 8.0 ostrich 2.0 NaN
- dropna(axis, **kwargs)[source]
Remove missing values.
See the User Guide for more on which values are considered missing, and how to work with missing data.
- Parameters:
axis ({0 or 'index', 1 or 'columns'}, default 0) –
Determine if rows or columns which contain missing values are removed.
0, or ‘index’ : Drop rows which contain missing values.
1, or ‘columns’ : Drop columns which contain missing value.
Only a single axis is allowed.
how ({'any', 'all'}, default 'any') –
Determine if row or column is removed from DeferredDataFrame, when we have at least one NA or all NA.
’any’ : If any NA values are present, drop that row or column.
’all’ : If all values are NA, drop that row or column.
thresh (int, optional) – Require that many non-NA values. Cannot be combined with how.
subset (column label or sequence of labels, optional) – Labels along other axis to consider, e.g. if you are dropping rows these would be a list of columns to include.
inplace (bool, default False) – Whether to modify the DeferredDataFrame rather than creating a new one.
ignore_index (bool, default
False
) –If
True
, the resulting axis will be labeled 0, 1, …, n - 1.Added in version 2.0.0.
- Returns:
DeferredDataFrame with NA entries dropped from it or None if
inplace=True
.- Return type:
DeferredDataFrame or None
Differences from pandas
dropna with axis=”columns” specified cannot be parallelized.
See also
DeferredDataFrame.isna
Indicate missing values.
DeferredDataFrame.notna
Indicate existing (non-missing) values.
DeferredDataFrame.fillna
Replace missing values.
DeferredSeries.dropna
Drop missing values.
Index.dropna
Drop missing indices.
Examples
NOTE: These examples are pulled directly from the pandas documentation for convenience. Usage of the Beam DataFrame API will look different because it is a deferred API. In addition, some arguments shown here may not be supported, see ‘Differences from pandas’ for details.
>>> df = pd.DataFrame({"name": ['Alfred', 'Batman', 'Catwoman'], ... "toy": [np.nan, 'Batmobile', 'Bullwhip'], ... "born": [pd.NaT, pd.Timestamp("1940-04-25"), ... pd.NaT]}) >>> df name toy born 0 Alfred NaN NaT 1 Batman Batmobile 1940-04-25 2 Catwoman Bullwhip NaT Drop the rows where at least one element is missing. >>> df.dropna() name toy born 1 Batman Batmobile 1940-04-25 Drop the columns where at least one element is missing. >>> df.dropna(axis='columns') name 0 Alfred 1 Batman 2 Catwoman Drop the rows where all elements are missing. >>> df.dropna(how='all') name toy born 0 Alfred NaN NaT 1 Batman Batmobile 1940-04-25 2 Catwoman Bullwhip NaT Keep only the rows with at least 2 non-NA values. >>> df.dropna(thresh=2) name toy born 1 Batman Batmobile 1940-04-25 2 Catwoman Bullwhip NaT Define in which columns to look for missing values. >>> df.dropna(subset=['name', 'toy']) name toy born 1 Batman Batmobile 1940-04-25 2 Catwoman Bullwhip NaT
- eval(expr, inplace, **kwargs)[source]
Evaluate a string describing operations on DataFrame columns.
Operates on columns only, not specific rows or elements. This allows eval to run arbitrary code, which can make you vulnerable to code injection if you pass user input to this function.
- Parameters:
expr (str) – The expression string to evaluate.
inplace (bool, default False) – If the expression contains an assignment, whether to perform the operation inplace and mutate the existing DeferredDataFrame. Otherwise, a new DeferredDataFrame is returned.
**kwargs – See the documentation for
eval()
for complete details on the keyword arguments accepted byquery()
.
- Returns:
The result of the evaluation or None if
inplace=True
.- Return type:
ndarray, scalar, pandas object, or None
Differences from pandas
Accessing local variables with
@<varname>
is not yet supported (Issue 20626).Arguments
local_dict
,global_dict
,level
,target
, andresolvers
are not yet supported.See also
DeferredDataFrame.query
Evaluates a boolean expression to query the columns of a frame.
DeferredDataFrame.assign
Can evaluate an expression or function to create new values for a column.
eval
Evaluate a Python expression as a string using various backends.
Notes
For more details see the API documentation for
eval()
. For detailed examples see enhancing performance with eval.Examples
NOTE: These examples are pulled directly from the pandas documentation for convenience. Usage of the Beam DataFrame API will look different because it is a deferred API. In addition, some arguments shown here may not be supported, see ‘Differences from pandas’ for details.
>>> df = pd.DataFrame({'A': range(1, 6), 'B': range(10, 0, -2)}) >>> df A B 0 1 10 1 2 8 2 3 6 3 4 4 4 5 2 >>> df.eval('A + B') 0 11 1 10 2 9 3 8 4 7 dtype: int64 Assignment is allowed though by default the original DataFrame is not modified. >>> df.eval('C = A + B') A B C 0 1 10 11 1 2 8 10 2 3 6 9 3 4 4 8 4 5 2 7 >>> df A B 0 1 10 1 2 8 2 3 6 3 4 4 4 5 2 Multiple columns can be assigned to using multi-line expressions: >>> df.eval( ... ''' ... C = A + B ... D = A - B ... ''' ... ) A B C D 0 1 10 11 -9 1 2 8 10 -6 2 3 6 9 -3 3 4 4 8 0 4 5 2 7 3
- query(expr, inplace, **kwargs)[source]
Query the columns of a DataFrame with a boolean expression.
- Parameters:
expr (str) –
The query string to evaluate.
You can refer to variables in the environment by prefixing them with an ‘@’ character like
@a + b
.You can refer to column names that are not valid Python variable names by surrounding them in backticks. Thus, column names containing spaces or punctuations (besides underscores) or starting with digits must be surrounded by backticks. (For example, a column named “Area (cm^2)” would be referenced as
`Area (cm^2)`
). Column names which are Python keywords (like “list”, “for”, “import”, etc) cannot be used.For example, if one of your columns is called
a a
and you want to sum it withb
, your query should be`a a` + b
.inplace (bool) – Whether to modify the DeferredDataFrame rather than creating a new one.
**kwargs – See the documentation for
eval()
for complete details on the keyword arguments accepted byDeferredDataFrame.query()
.
- Returns:
DeferredDataFrame resulting from the provided query expression or None if
inplace=True
.- Return type:
DeferredDataFrame or None
Differences from pandas
Accessing local variables with
@<varname>
is not yet supported (Issue 20626).Arguments
local_dict
,global_dict
,level
,target
, andresolvers
are not yet supported.See also
eval
Evaluate a string describing operations on DeferredDataFrame columns.
DeferredDataFrame.eval
Evaluate a string describing operations on DeferredDataFrame columns.
Notes
The result of the evaluation of this expression is first passed to
DeferredDataFrame.loc
and if that fails because of a multidimensional key (e.g., a DeferredDataFrame) then the result will be passed toDeferredDataFrame.__getitem__()
.This method uses the top-level
eval()
function to evaluate the passed query.The
query()
method uses a slightly modified Python syntax by default. For example, the&
and|
(bitwise) operators have the precedence of their boolean cousins,and
andor
. This is syntactically valid Python, however the semantics are different.You can change the semantics of the expression by passing the keyword argument
parser='python'
. This enforces the same semantics as evaluation in Python space. Likewise, you can passengine='python'
to evaluate an expression using Python itself as a backend. This is not recommended as it is inefficient compared to usingnumexpr
as the engine.The
DeferredDataFrame.index
andDeferredDataFrame.columns
attributes of theDeferredDataFrame
instance are placed in the query namespace by default, which allows you to treat both the index and columns of the frame as a column in the frame. The identifierindex
is used for the frame index; you can also use the name of the index to identify it in a query. Please note that Python keywords may not be used as identifiers.For further details and examples see the
query
documentation in indexing.Backtick quoted variables
Backtick quoted variables are parsed as literal Python code and are converted internally to a Python valid identifier. This can lead to the following problems.
During parsing a number of disallowed characters inside the backtick quoted string are replaced by strings that are allowed as a Python identifier. These characters include all operators in Python, the space character, the question mark, the exclamation mark, the dollar sign, and the euro sign. For other characters that fall outside the ASCII range (U+0001..U+007F) and those that are not further specified in PEP 3131, the query parser will raise an error. This excludes whitespace different than the space character, but also the hashtag (as it is used for comments) and the backtick itself (backtick can also not be escaped).
In a special case, quotes that make a pair around a backtick can confuse the parser. For example,
`it's` > `that's`
will raise an error, as it forms a quoted string ('s > `that'
) with a backtick inside.See also the Python documentation about lexical analysis (https://docs.python.org/3/reference/lexical_analysis.html) in combination with the source code in
pandas.core.computation.parsing
.Examples
NOTE: These examples are pulled directly from the pandas documentation for convenience. Usage of the Beam DataFrame API will look different because it is a deferred API. In addition, some arguments shown here may not be supported, see ‘Differences from pandas’ for details.
>>> df = pd.DataFrame({'A': range(1, 6), ... 'B': range(10, 0, -2), ... 'C C': range(10, 5, -1)}) >>> df A B C C 0 1 10 10 1 2 8 9 2 3 6 8 3 4 4 7 4 5 2 6 >>> df.query('A > B') A B C C 4 5 2 6 The previous expression is equivalent to >>> df[df.A > df.B] A B C C 4 5 2 6 For columns with spaces in their name, you can use backtick quoting. >>> df.query('B == `C C`') A B C C 0 1 10 10 The previous expression is equivalent to >>> df[df.B == df['C C']] A B C C 0 1 10 10
- isnull(**kwargs)
Detect missing values.
Return a boolean same-sized object indicating if the values are NA. NA values, such as None or
numpy.NaN
, gets mapped to True values. Everything else gets mapped to False values. Characters such as empty strings''
ornumpy.inf
are not considered NA values (unless you setpandas.options.mode.use_inf_as_na = True
).- Returns:
Mask of bool values for each element in DeferredDataFrame that indicates whether an element is an NA value.
- Return type:
Differences from pandas
This operation has no known divergences from the pandas API.
See also
DeferredDataFrame.isnull
Alias of isna.
DeferredDataFrame.notna
Boolean inverse of isna.
DeferredDataFrame.dropna
Omit axes labels with missing values.
isna
Top-level isna.
Examples
NOTE: These examples are pulled directly from the pandas documentation for convenience. Usage of the Beam DataFrame API will look different because it is a deferred API.
Show which entries in a DataFrame are NA. >>> df = pd.DataFrame(dict(age=[5, 6, np.nan], ... born=[pd.NaT, pd.Timestamp('1939-05-27'), ... pd.Timestamp('1940-04-25')], ... name=['Alfred', 'Batman', ''], ... toy=[None, 'Batmobile', 'Joker'])) >>> df age born name toy 0 5.0 NaT Alfred None 1 6.0 1939-05-27 Batman Batmobile 2 NaN 1940-04-25 Joker >>> df.isna() age born name toy 0 False True False True 1 False False False False 2 True False False False Show which entries in a Series are NA. >>> ser = pd.Series([5, 6, np.nan]) >>> ser 0 5.0 1 6.0 2 NaN dtype: float64 >>> ser.isna() 0 False 1 False 2 True dtype: bool
- isna(**kwargs)
Detect missing values.
Return a boolean same-sized object indicating if the values are NA. NA values, such as None or
numpy.NaN
, gets mapped to True values. Everything else gets mapped to False values. Characters such as empty strings''
ornumpy.inf
are not considered NA values (unless you setpandas.options.mode.use_inf_as_na = True
).- Returns:
Mask of bool values for each element in DeferredDataFrame that indicates whether an element is an NA value.
- Return type:
Differences from pandas
This operation has no known divergences from the pandas API.
See also
DeferredDataFrame.isnull
Alias of isna.
DeferredDataFrame.notna
Boolean inverse of isna.
DeferredDataFrame.dropna
Omit axes labels with missing values.
isna
Top-level isna.
Examples
NOTE: These examples are pulled directly from the pandas documentation for convenience. Usage of the Beam DataFrame API will look different because it is a deferred API.
Show which entries in a DataFrame are NA. >>> df = pd.DataFrame(dict(age=[5, 6, np.nan], ... born=[pd.NaT, pd.Timestamp('1939-05-27'), ... pd.Timestamp('1940-04-25')], ... name=['Alfred', 'Batman', ''], ... toy=[None, 'Batmobile', 'Joker'])) >>> df age born name toy 0 5.0 NaT Alfred None 1 6.0 1939-05-27 Batman Batmobile 2 NaN 1940-04-25 Joker >>> df.isna() age born name toy 0 False True False True 1 False False False False 2 True False False False Show which entries in a Series are NA. >>> ser = pd.Series([5, 6, np.nan]) >>> ser 0 5.0 1 6.0 2 NaN dtype: float64 >>> ser.isna() 0 False 1 False 2 True dtype: bool
- notnull(**kwargs)
Detect existing (non-missing) values.
Return a boolean same-sized object indicating if the values are not NA. Non-missing values get mapped to True. Characters such as empty strings
''
ornumpy.inf
are not considered NA values (unless you setpandas.options.mode.use_inf_as_na = True
). NA values, such as None ornumpy.NaN
, get mapped to False values.- Returns:
Mask of bool values for each element in DeferredDataFrame that indicates whether an element is not an NA value.
- Return type:
Differences from pandas
This operation has no known divergences from the pandas API.
See also
DeferredDataFrame.notnull
Alias of notna.
DeferredDataFrame.isna
Boolean inverse of notna.
DeferredDataFrame.dropna
Omit axes labels with missing values.
notna
Top-level notna.
Examples
NOTE: These examples are pulled directly from the pandas documentation for convenience. Usage of the Beam DataFrame API will look different because it is a deferred API.
Show which entries in a DataFrame are not NA. >>> df = pd.DataFrame(dict(age=[5, 6, np.nan], ... born=[pd.NaT, pd.Timestamp('1939-05-27'), ... pd.Timestamp('1940-04-25')], ... name=['Alfred', 'Batman', ''], ... toy=[None, 'Batmobile', 'Joker'])) >>> df age born name toy 0 5.0 NaT Alfred None 1 6.0 1939-05-27 Batman Batmobile 2 NaN 1940-04-25 Joker >>> df.notna() age born name toy 0 True False True False 1 True True True True 2 False True True True Show which entries in a Series are not NA. >>> ser = pd.Series([5, 6, np.nan]) >>> ser 0 5.0 1 6.0 2 NaN dtype: float64 >>> ser.notna() 0 True 1 True 2 False dtype: bool
- notna(**kwargs)
Detect existing (non-missing) values.
Return a boolean same-sized object indicating if the values are not NA. Non-missing values get mapped to True. Characters such as empty strings
''
ornumpy.inf
are not considered NA values (unless you setpandas.options.mode.use_inf_as_na = True
). NA values, such as None ornumpy.NaN
, get mapped to False values.- Returns:
Mask of bool values for each element in DeferredDataFrame that indicates whether an element is not an NA value.
- Return type:
Differences from pandas
This operation has no known divergences from the pandas API.
See also
DeferredDataFrame.notnull
Alias of notna.
DeferredDataFrame.isna
Boolean inverse of notna.
DeferredDataFrame.dropna
Omit axes labels with missing values.
notna
Top-level notna.
Examples
NOTE: These examples are pulled directly from the pandas documentation for convenience. Usage of the Beam DataFrame API will look different because it is a deferred API.
Show which entries in a DataFrame are not NA. >>> df = pd.DataFrame(dict(age=[5, 6, np.nan], ... born=[pd.NaT, pd.Timestamp('1939-05-27'), ... pd.Timestamp('1940-04-25')], ... name=['Alfred', 'Batman', ''], ... toy=[None, 'Batmobile', 'Joker'])) >>> df age born name toy 0 5.0 NaT Alfred None 1 6.0 1939-05-27 Batman Batmobile 2 NaN 1940-04-25 Joker >>> df.notna() age born name toy 0 True False True False 1 True True True True 2 False True True True Show which entries in a Series are not NA. >>> ser = pd.Series([5, 6, np.nan]) >>> ser 0 5.0 1 6.0 2 NaN dtype: float64 >>> ser.notna() 0 True 1 True 2 False dtype: bool
- items(**kwargs)
pandas.DataFrame.items()
is not yet supported in the Beam DataFrame API because it produces an output type that is not deferred.For more information see https://s.apache.org/dataframe-non-deferred-result.
- itertuples(**kwargs)
pandas.DataFrame.itertuples()
is not yet supported in the Beam DataFrame API because it produces an output type that is not deferred.For more information see https://s.apache.org/dataframe-non-deferred-result.
- iterrows(**kwargs)
pandas.DataFrame.iterrows()
is not yet supported in the Beam DataFrame API because it produces an output type that is not deferred.For more information see https://s.apache.org/dataframe-non-deferred-result.
- iteritems(**kwargs)
pandas.DataFrame.iteritems()
is not yet supported in the Beam DataFrame API because it produces an output type that is not deferred.For more information see https://s.apache.org/dataframe-non-deferred-result.
- join(other, on, **kwargs)[source]
Join columns of another DataFrame.
Join columns with other DataFrame either on index or on a key column. Efficiently join multiple DataFrame objects by index at once by passing a list.
- Parameters:
other (DeferredDataFrame, DeferredSeries, or a list containing any combination of them) – Index should be similar to one of the columns in this one. If a DeferredSeries is passed, its name attribute must be set, and that will be used as the column name in the resulting joined DeferredDataFrame.
on (str, list of str, or array-like, optional) – Column or index level name(s) in the caller to join on the index in other, otherwise joins index-on-index. If multiple values given, the other DeferredDataFrame must have a MultiIndex. Can pass an array as the join key if it is not already contained in the calling DeferredDataFrame. Like an Excel VLOOKUP operation.
how ({'left', 'right', 'outer', 'inner', 'cross'}, default 'left') –
How to handle the operation of the two objects.
left: use calling frame’s index (or column if on is specified)
right: use other’s index.
outer: form union of calling frame’s index (or column if on is specified) with other’s index, and sort it lexicographically.
inner: form intersection of calling frame’s index (or column if on is specified) with other’s index, preserving the order of the calling’s one.
cross: creates the cartesian product from both frames, preserves the order of the left keys.
Added in version 1.2.0.
lsuffix (str, default '') – Suffix to use from left frame’s overlapping columns.
rsuffix (str, default '') – Suffix to use from right frame’s overlapping columns.
sort (bool, default False) – Order result DeferredDataFrame lexicographically by the join key. If False, the order of the join key depends on the join type (how keyword).
validate (str, optional) –
If specified, checks if join is of specified type.
”one_to_one” or “1:1”: check if join keys are unique in both left and right datasets.
”one_to_many” or “1:m”: check if join keys are unique in left dataset.
”many_to_one” or “m:1”: check if join keys are unique in right dataset.
”many_to_many” or “m:m”: allowed, but does not result in checks.
Added in version 1.5.0.
- Returns:
A dataframe containing columns from both the caller and other.
- Return type:
Differences from pandas
This operation has no known divergences from the pandas API.
See also
DeferredDataFrame.merge
For column(s)-on-column(s) operations.
Notes
Parameters on, lsuffix, and rsuffix are not supported when passing a list of DeferredDataFrame objects.
Examples
NOTE: These examples are pulled directly from the pandas documentation for convenience. Usage of the Beam DataFrame API will look different because it is a deferred API.
>>> df = pd.DataFrame({'key': ['K0', 'K1', 'K2', 'K3', 'K4', 'K5'], ... 'A': ['A0', 'A1', 'A2', 'A3', 'A4', 'A5']}) >>> df key A 0 K0 A0 1 K1 A1 2 K2 A2 3 K3 A3 4 K4 A4 5 K5 A5 >>> other = pd.DataFrame({'key': ['K0', 'K1', 'K2'], ... 'B': ['B0', 'B1', 'B2']}) >>> other key B 0 K0 B0 1 K1 B1 2 K2 B2 Join DataFrames using their indexes. >>> df.join(other, lsuffix='_caller', rsuffix='_other') key_caller A key_other B 0 K0 A0 K0 B0 1 K1 A1 K1 B1 2 K2 A2 K2 B2 3 K3 A3 NaN NaN 4 K4 A4 NaN NaN 5 K5 A5 NaN NaN If we want to join using the key columns, we need to set key to be the index in both `df` and `other`. The joined DataFrame will have key as its index. >>> df.set_index('key').join(other.set_index('key')) A B key K0 A0 B0 K1 A1 B1 K2 A2 B2 K3 A3 NaN K4 A4 NaN K5 A5 NaN Another option to join using the key columns is to use the `on` parameter. DataFrame.join always uses `other`'s index but we can use any column in `df`. This method preserves the original DataFrame's index in the result. >>> df.join(other.set_index('key'), on='key') key A B 0 K0 A0 B0 1 K1 A1 B1 2 K2 A2 B2 3 K3 A3 NaN 4 K4 A4 NaN 5 K5 A5 NaN Using non-unique key values shows how they are matched. >>> df = pd.DataFrame({'key': ['K0', 'K1', 'K1', 'K3', 'K0', 'K1'], ... 'A': ['A0', 'A1', 'A2', 'A3', 'A4', 'A5']}) >>> df key A 0 K0 A0 1 K1 A1 2 K1 A2 3 K3 A3 4 K0 A4 5 K1 A5 >>> df.join(other.set_index('key'), on='key', validate='m:1') key A B 0 K0 A0 B0 1 K1 A1 B1 2 K1 A2 B1 3 K3 A3 NaN 4 K0 A4 B0 5 K1 A5 B1
- merge(right, on, left_on, right_on, left_index, right_index, suffixes, **kwargs)[source]
Merge DataFrame or named Series objects with a database-style join.
A named Series object is treated as a DataFrame with a single named column.
The join is done on columns or indexes. If joining columns on columns, the DataFrame indexes will be ignored. Otherwise if joining indexes on indexes or indexes on a column or columns, the index will be passed on. When performing a cross merge, no column specifications to merge on are allowed.
Warning
If both key columns contain rows where the key is a null value, those rows will be matched against each other. This is different from usual SQL join behaviour and can lead to unexpected results.
- Parameters:
right (DeferredDataFrame or named DeferredSeries) – Object to merge with.
how ({'left', 'right', 'outer', 'inner', 'cross'}, default 'inner') –
Type of merge to be performed.
left: use only keys from left frame, similar to a SQL left outer join; preserve key order.
right: use only keys from right frame, similar to a SQL right outer join; preserve key order.
outer: use union of keys from both frames, similar to a SQL full outer join; sort keys lexicographically.
inner: use intersection of keys from both frames, similar to a SQL inner join; preserve the order of the left keys.
cross: creates the cartesian product from both frames, preserves the order of the left keys.
Added in version 1.2.0.
on (label or list) – Column or index level names to join on. These must be found in both DeferredDataFrames. If on is None and not merging on indexes then this defaults to the intersection of the columns in both DeferredDataFrames.
left_on (label or list, or array-like) – Column or index level names to join on in the left DeferredDataFrame. Can also be an array or list of arrays of the length of the left DeferredDataFrame. These arrays are treated as if they are columns.
right_on (label or list, or array-like) – Column or index level names to join on in the right DeferredDataFrame. Can also be an array or list of arrays of the length of the right DeferredDataFrame. These arrays are treated as if they are columns.
left_index (bool, default False) – Use the index from the left DeferredDataFrame as the join key(s). If it is a MultiIndex, the number of keys in the other DeferredDataFrame (either the index or a number of columns) must match the number of levels.
right_index (bool, default False) – Use the index from the right DeferredDataFrame as the join key. Same caveats as left_index.
sort (bool, default False) – Sort the join keys lexicographically in the result DeferredDataFrame. If False, the order of the join keys depends on the join type (how keyword).
suffixes (list-like, default is ("_x", "_y")) – A length-2 sequence where each element is optionally a string indicating the suffix to add to overlapping column names in left and right respectively. Pass a value of None instead of a string to indicate that the column name from left or right should be left as-is, with no suffix. At least one of the values must not be None.
copy (bool, default True) – If False, avoid copy if possible.
indicator (bool or str, default False) – If True, adds a column to the output DeferredDataFrame called “_merge” with information on the source of each row. The column can be given a different name by providing a string argument. The column will have a Categorical type with the value of “left_only” for observations whose merge key only appears in the left DeferredDataFrame, “right_only” for observations whose merge key only appears in the right DeferredDataFrame, and “both” if the observation’s merge key is found in both DeferredDataFrames.
validate (str, optional) –
If specified, checks if merge is of specified type.
”one_to_one” or “1:1”: check if merge keys are unique in both left and right datasets.
”one_to_many” or “1:m”: check if merge keys are unique in left dataset.
”many_to_one” or “m:1”: check if merge keys are unique in right dataset.
”many_to_many” or “m:m”: allowed, but does not result in checks.
- Returns:
A DeferredDataFrame of the two merged objects.
- Return type:
Differences from pandas
merge is not parallelizable unless
left_index
orright_index
is ``True`, because it requires generating an entirely new unique index. See notes onDeferredDataFrame.reset_index()
. It is recommended to move the join key for one of your columns to the index to avoid this issue. For an example see the enrich pipeline inapache_beam.examples.dataframe.taxiride
.how="cross"
is not yet supported.See also
merge_ordered
Merge with optional filling/interpolation.
merge_asof
Merge on nearest keys.
DeferredDataFrame.join
Similar method using indices.
Examples
NOTE: These examples are pulled directly from the pandas documentation for convenience. Usage of the Beam DataFrame API will look different because it is a deferred API. In addition, some arguments shown here may not be supported, see ‘Differences from pandas’ for details.
>>> df1 = pd.DataFrame({'lkey': ['foo', 'bar', 'baz', 'foo'], ... 'value': [1, 2, 3, 5]}) >>> df2 = pd.DataFrame({'rkey': ['foo', 'bar', 'baz', 'foo'], ... 'value': [5, 6, 7, 8]}) >>> df1 lkey value 0 foo 1 1 bar 2 2 baz 3 3 foo 5 >>> df2 rkey value 0 foo 5 1 bar 6 2 baz 7 3 foo 8 Merge df1 and df2 on the lkey and rkey columns. The value columns have the default suffixes, _x and _y, appended. >>> df1.merge(df2, left_on='lkey', right_on='rkey') lkey value_x rkey value_y 0 foo 1 foo 5 1 foo 1 foo 8 2 foo 5 foo 5 3 foo 5 foo 8 4 bar 2 bar 6 5 baz 3 baz 7 Merge DataFrames df1 and df2 with specified left and right suffixes appended to any overlapping columns. >>> df1.merge(df2, left_on='lkey', right_on='rkey', ... suffixes=('_left', '_right')) lkey value_left rkey value_right 0 foo 1 foo 5 1 foo 1 foo 8 2 foo 5 foo 5 3 foo 5 foo 8 4 bar 2 bar 6 5 baz 3 baz 7 Merge DataFrames df1 and df2, but raise an exception if the DataFrames have any overlapping columns. >>> df1.merge(df2, left_on='lkey', right_on='rkey', suffixes=(False, False)) Traceback (most recent call last): ... ValueError: columns overlap but no suffix specified: Index(['value'], dtype='object') >>> df1 = pd.DataFrame({'a': ['foo', 'bar'], 'b': [1, 2]}) >>> df2 = pd.DataFrame({'a': ['foo', 'baz'], 'c': [3, 4]}) >>> df1 a b 0 foo 1 1 bar 2 >>> df2 a c 0 foo 3 1 baz 4 >>> df1.merge(df2, how='inner', on='a') a b c 0 foo 1 3 >>> df1.merge(df2, how='left', on='a') a b c 0 foo 1 3.0 1 bar 2 NaN >>> df1 = pd.DataFrame({'left': ['foo', 'bar']}) >>> df2 = pd.DataFrame({'right': [7, 8]}) >>> df1 left 0 foo 1 bar >>> df2 right 0 7 1 8 >>> df1.merge(df2, how='cross') left right 0 foo 7 1 foo 8 2 bar 7 3 bar 8
- nlargest(keep, **kwargs)[source]
Return the first n rows ordered by columns in descending order.
Return the first n rows with the largest values in columns, in descending order. The columns that are not specified are returned as well, but not used for ordering.
This method is equivalent to
df.sort_values(columns, ascending=False).head(n)
, but more performant.- Parameters:
n (int) – Number of rows to return.
columns (label or list of labels) – Column label(s) to order by.
keep ({'first', 'last', 'all'}, default 'first') –
Where there are duplicate values:
first
: prioritize the first occurrence(s)last
: prioritize the last occurrence(s)all
: do not drop any duplicates, even it means selecting more than n items.
- Returns:
The first n rows ordered by the given columns in descending order.
- Return type:
Differences from pandas
Only
keep=False
andkeep="any"
are supported. Other values ofkeep
make this an order-sensitive operation. Notekeep="any"
is a Beam-specific option that guarantees only one duplicate will be kept, but unlike"first"
and"last"
it makes no guarantees about _which_ duplicate element is kept.See also
DeferredDataFrame.nsmallest
Return the first n rows ordered by columns in ascending order.
DeferredDataFrame.sort_values
Sort DeferredDataFrame by the values.
DeferredDataFrame.head
Return the first n rows without re-ordering.
Notes
This function cannot be used with all column types. For example, when specifying columns with object or category dtypes,
TypeError
is raised.Examples
NOTE: These examples are pulled directly from the pandas documentation for convenience. Usage of the Beam DataFrame API will look different because it is a deferred API. In addition, some arguments shown here may not be supported, see ‘Differences from pandas’ for details.
>>> df = pd.DataFrame({'population': [59000000, 65000000, 434000, ... 434000, 434000, 337000, 11300, ... 11300, 11300], ... 'GDP': [1937894, 2583560 , 12011, 4520, 12128, ... 17036, 182, 38, 311], ... 'alpha-2': ["IT", "FR", "MT", "MV", "BN", ... "IS", "NR", "TV", "AI"]}, ... index=["Italy", "France", "Malta", ... "Maldives", "Brunei", "Iceland", ... "Nauru", "Tuvalu", "Anguilla"]) >>> df population GDP alpha-2 Italy 59000000 1937894 IT France 65000000 2583560 FR Malta 434000 12011 MT Maldives 434000 4520 MV Brunei 434000 12128 BN Iceland 337000 17036 IS Nauru 11300 182 NR Tuvalu 11300 38 TV Anguilla 11300 311 AI In the following example, we will use ``nlargest`` to select the three rows having the largest values in column "population". >>> df.nlargest(3, 'population') population GDP alpha-2 France 65000000 2583560 FR Italy 59000000 1937894 IT Malta 434000 12011 MT When using ``keep='last'``, ties are resolved in reverse order: >>> df.nlargest(3, 'population', keep='last') population GDP alpha-2 France 65000000 2583560 FR Italy 59000000 1937894 IT Brunei 434000 12128 BN When using ``keep='all'``, all duplicate items are maintained: >>> df.nlargest(3, 'population', keep='all') population GDP alpha-2 France 65000000 2583560 FR Italy 59000000 1937894 IT Malta 434000 12011 MT Maldives 434000 4520 MV Brunei 434000 12128 BN To order by the largest values in column "population" and then "GDP", we can specify multiple columns like in the next example. >>> df.nlargest(3, ['population', 'GDP']) population GDP alpha-2 France 65000000 2583560 FR Italy 59000000 1937894 IT Brunei 434000 12128 BN
- nsmallest(keep, **kwargs)[source]
Return the first n rows ordered by columns in ascending order.
Return the first n rows with the smallest values in columns, in ascending order. The columns that are not specified are returned as well, but not used for ordering.
This method is equivalent to
df.sort_values(columns, ascending=True).head(n)
, but more performant.- Parameters:
n (int) – Number of items to retrieve.
keep ({'first', 'last', 'all'}, default 'first') –
Where there are duplicate values:
first
: take the first occurrence.last
: take the last occurrence.all
: do not drop any duplicates, even it means selecting more than n items.
- Return type:
Differences from pandas
Only
keep=False
andkeep="any"
are supported. Other values ofkeep
make this an order-sensitive operation. Notekeep="any"
is a Beam-specific option that guarantees only one duplicate will be kept, but unlike"first"
and"last"
it makes no guarantees about _which_ duplicate element is kept.See also
DeferredDataFrame.nlargest
Return the first n rows ordered by columns in descending order.
DeferredDataFrame.sort_values
Sort DeferredDataFrame by the values.
DeferredDataFrame.head
Return the first n rows without re-ordering.
Examples
NOTE: These examples are pulled directly from the pandas documentation for convenience. Usage of the Beam DataFrame API will look different because it is a deferred API. In addition, some arguments shown here may not be supported, see ‘Differences from pandas’ for details.
>>> df = pd.DataFrame({'population': [59000000, 65000000, 434000, ... 434000, 434000, 337000, 337000, ... 11300, 11300], ... 'GDP': [1937894, 2583560 , 12011, 4520, 12128, ... 17036, 182, 38, 311], ... 'alpha-2': ["IT", "FR", "MT", "MV", "BN", ... "IS", "NR", "TV", "AI"]}, ... index=["Italy", "France", "Malta", ... "Maldives", "Brunei", "Iceland", ... "Nauru", "Tuvalu", "Anguilla"]) >>> df population GDP alpha-2 Italy 59000000 1937894 IT France 65000000 2583560 FR Malta 434000 12011 MT Maldives 434000 4520 MV Brunei 434000 12128 BN Iceland 337000 17036 IS Nauru 337000 182 NR Tuvalu 11300 38 TV Anguilla 11300 311 AI In the following example, we will use ``nsmallest`` to select the three rows having the smallest values in column "population". >>> df.nsmallest(3, 'population') population GDP alpha-2 Tuvalu 11300 38 TV Anguilla 11300 311 AI Iceland 337000 17036 IS When using ``keep='last'``, ties are resolved in reverse order: >>> df.nsmallest(3, 'population', keep='last') population GDP alpha-2 Anguilla 11300 311 AI Tuvalu 11300 38 TV Nauru 337000 182 NR When using ``keep='all'``, all duplicate items are maintained: >>> df.nsmallest(3, 'population', keep='all') population GDP alpha-2 Tuvalu 11300 38 TV Anguilla 11300 311 AI Iceland 337000 17036 IS Nauru 337000 182 NR To order by the smallest values in column "population" and then "GDP", we can specify multiple columns like in the next example. >>> df.nsmallest(3, ['population', 'GDP']) population GDP alpha-2 Tuvalu 11300 38 TV Anguilla 11300 311 AI Nauru 337000 182 NR
- plot(**kwargs)
pandas.DataFrame.plot()
is not yet supported in the Beam DataFrame API because it is a plotting tool.For more information see https://s.apache.org/dataframe-plotting-tools.
- pop(item)[source]
Return item and drop from frame. Raise KeyError if not found.
- Parameters:
item (label) – Label of column to be popped.
- Return type:
Differences from pandas
This operation has no known divergences from the pandas API.
Examples
NOTE: These examples are pulled directly from the pandas documentation for convenience. Usage of the Beam DataFrame API will look different because it is a deferred API.
>>> df = pd.DataFrame([('falcon', 'bird', 389.0), ... ('parrot', 'bird', 24.0), ... ('lion', 'mammal', 80.5), ... ('monkey', 'mammal', np.nan)], ... columns=('name', 'class', 'max_speed')) >>> df name class max_speed 0 falcon bird 389.0 1 parrot bird 24.0 2 lion mammal 80.5 3 monkey mammal NaN >>> df.pop('class') 0 bird 1 bird 2 mammal 3 mammal Name: class, dtype: object >>> df name max_speed 0 falcon 389.0 1 parrot 24.0 2 lion 80.5 3 monkey NaN
- quantile(q, axis, **kwargs)[source]
Return values at the given quantile over requested axis.
- Parameters:
q (float or array-like, default 0.5 (50% quantile)) – Value between 0 <= q <= 1, the quantile(s) to compute.
axis ({0 or 'index', 1 or 'columns'}, default 0) – Equals 0 or ‘index’ for row-wise, 1 or ‘columns’ for column-wise.
numeric_only (bool, default False) –
Include only float, int or boolean data.
Changed in version 2.0.0: The default value of
numeric_only
is nowFalse
.interpolation ({'linear', 'lower', 'higher', 'midpoint', 'nearest'}) –
This optional parameter specifies the interpolation method to use, when the desired quantile lies between two data points i and j:
linear: i + (j - i) * fraction, where fraction is the fractional part of the index surrounded by i and j.
lower: i.
higher: j.
nearest: i or j whichever is nearest.
midpoint: (i + j) / 2.
method ({'single', 'table'}, default 'single') – Whether to compute quantiles per-column (‘single’) or over all columns (‘table’). When ‘table’, the only allowed interpolation methods are ‘nearest’, ‘lower’, and ‘higher’.
- Returns:
- If
q
is an array, a DeferredDataFrame will be returned where the index is
q
, the columns are the columns of self, and the values are the quantiles.- If
q
is a float, a DeferredSeries will be returned where the index is the columns of self and the values are the quantiles.
- If
- Return type:
Differences from pandas
quantile(axis="index")
is not parallelizable. See Issue 20933 tracking the possible addition of an approximate, parallelizable implementation of quantile.When using quantile with
axis="columns"
only a singleq
value can be specified.See also
core.window.rolling.Rolling.quantile
Rolling quantile.
numpy.percentile
Numpy function to compute the percentile.
Examples
NOTE: These examples are pulled directly from the pandas documentation for convenience. Usage of the Beam DataFrame API will look different because it is a deferred API. In addition, some arguments shown here may not be supported, see ‘Differences from pandas’ for details.
>>> df = pd.DataFrame(np.array([[1, 1], [2, 10], [3, 100], [4, 100]]), ... columns=['a', 'b']) >>> df.quantile(.1) a 1.3 b 3.7 Name: 0.1, dtype: float64 >>> df.quantile([.1, .5]) a b 0.1 1.3 3.7 0.5 2.5 55.0 Specifying `method='table'` will compute the quantile over all columns. >>> df.quantile(.1, method="table", interpolation="nearest") a 1 b 1 Name: 0.1, dtype: int64 >>> df.quantile([.1, .5], method="table", interpolation="nearest") a b 0.1 1 1 0.5 3 100 Specifying `numeric_only=False` will also compute the quantile of datetime and timedelta data. >>> df = pd.DataFrame({'A': [1, 2], ... 'B': [pd.Timestamp('2010'), ... pd.Timestamp('2011')], ... 'C': [pd.Timedelta('1 days'), ... pd.Timedelta('2 days')]}) >>> df.quantile(0.5, numeric_only=False) A 1.5 B 2010-07-02 12:00:00 C 1 days 12:00:00 Name: 0.5, dtype: object
- rename(**kwargs)[source]
Rename columns or index labels.
Function / dict values must be unique (1-to-1). Labels not contained in a dict / Series will be left as-is. Extra labels listed don’t throw an error.
See the user guide for more.
- Parameters:
mapper (dict-like or function) – Dict-like or function transformations to apply to that axis’ values. Use either
mapper
andaxis
to specify the axis to target withmapper
, orindex
andcolumns
.index (dict-like or function) – Alternative to specifying axis (
mapper, axis=0
is equivalent toindex=mapper
).columns (dict-like or function) – Alternative to specifying axis (
mapper, axis=1
is equivalent tocolumns=mapper
).axis ({0 or 'index', 1 or 'columns'}, default 0) – Axis to target with
mapper
. Can be either the axis name (‘index’, ‘columns’) or number (0, 1). The default is ‘index’.copy (bool, default True) – Also copy underlying data.
inplace (bool, default False) – Whether to modify the DeferredDataFrame rather than creating a new one. If True then value of copy is ignored.
level (int or level name, default None) – In case of a MultiIndex, only rename labels in the specified level.
errors ({'ignore', 'raise'}, default 'ignore') – If ‘raise’, raise a KeyError when a dict-like mapper, index, or columns contains labels that are not present in the Index being transformed. If ‘ignore’, existing keys will be renamed and extra keys will be ignored.
- Returns:
DeferredDataFrame with the renamed axis labels or None if
inplace=True
.- Return type:
DeferredDataFrame or None
- Raises:
KeyError – If any of the labels is not found in the selected axis and “errors=’raise’”.
Differences from pandas
rename is not parallelizable when
axis="index"
anderrors="raise"
. It requires collecting all data on a single node in order to detect if one of the index values is missing.See also
DeferredDataFrame.rename_axis
Set the name of the axis.
Examples
NOTE: These examples are pulled directly from the pandas documentation for convenience. Usage of the Beam DataFrame API will look different because it is a deferred API. In addition, some arguments shown here may not be supported, see ‘Differences from pandas’ for details.
``DataFrame.rename`` supports two calling conventions * ``(index=index_mapper, columns=columns_mapper, ...)`` * ``(mapper, axis={'index', 'columns'}, ...)`` We *highly* recommend using keyword arguments to clarify your intent. Rename columns using a mapping: >>> df = pd.DataFrame({"A": [1, 2, 3], "B": [4, 5, 6]}) >>> df.rename(columns={"A": "a", "B": "c"}) a c 0 1 4 1 2 5 2 3 6 Rename index using a mapping: >>> df.rename(index={0: "x", 1: "y", 2: "z"}) A B x 1 4 y 2 5 z 3 6 Cast index labels to a different type: >>> df.index RangeIndex(start=0, stop=3, step=1) >>> df.rename(index=str).index Index(['0', '1', '2'], dtype='object') >>> df.rename(columns={"A": "a", "B": "b", "C": "c"}, errors="raise") Traceback (most recent call last): KeyError: ['C'] not found in axis Using axis-style parameters: >>> df.rename(str.lower, axis='columns') a b 0 1 4 1 2 5 2 3 6 >>> df.rename({1: 2, 2: 4}, axis='index') A B 0 1 4 2 2 5 4 3 6
- rename_axis(**kwargs)
Set the name of the axis for the index or columns.
- Parameters:
mapper (scalar, list-like, optional) – Value to set the axis name attribute.
index (scalar, list-like, dict-like or function, optional) –
A scalar, list-like, dict-like or functions transformations to apply to that axis’ values. Note that the
columns
parameter is not allowed if the object is a DeferredSeries. This parameter only apply for DeferredDataFrame type objects.Use either
mapper
andaxis
to specify the axis to target withmapper
, orindex
and/orcolumns
.columns (scalar, list-like, dict-like or function, optional) –
A scalar, list-like, dict-like or functions transformations to apply to that axis’ values. Note that the
columns
parameter is not allowed if the object is a DeferredSeries. This parameter only apply for DeferredDataFrame type objects.Use either
mapper
andaxis
to specify the axis to target withmapper
, orindex
and/orcolumns
.axis ({0 or 'index', 1 or 'columns'}, default 0) – The axis to rename. For DeferredSeries this parameter is unused and defaults to 0.
copy (bool, default None) – Also copy underlying data.
inplace (bool, default False) – Modifies the object directly, instead of creating a new DeferredSeries or DeferredDataFrame.
- Returns:
The same type as the caller or None if
inplace=True
.- Return type:
DeferredSeries, DeferredDataFrame, or None
Differences from pandas
This operation has no known divergences from the pandas API.
See also
DeferredSeries.rename
Alter DeferredSeries index labels or name.
DeferredDataFrame.rename
Alter DeferredDataFrame index labels or name.
Index.rename
Set new names on index.
Notes
DeferredDataFrame.rename_axis
supports two calling conventions(index=index_mapper, columns=columns_mapper, ...)
(mapper, axis={'index', 'columns'}, ...)
The first calling convention will only modify the names of the index and/or the names of the Index object that is the columns. In this case, the parameter
copy
is ignored.The second calling convention will modify the names of the corresponding index if mapper is a list or a scalar. However, if mapper is dict-like or a function, it will use the deprecated behavior of modifying the axis labels.
We highly recommend using keyword arguments to clarify your intent.
Examples
NOTE: These examples are pulled directly from the pandas documentation for convenience. Usage of the Beam DataFrame API will look different because it is a deferred API.
**Series** >>> s = pd.Series(["dog", "cat", "monkey"]) >>> s 0 dog 1 cat 2 monkey dtype: object >>> s.rename_axis("animal") animal 0 dog 1 cat 2 monkey dtype: object **DataFrame** >>> df = pd.DataFrame({"num_legs": [4, 4, 2], ... "num_arms": [0, 0, 2]}, ... ["dog", "cat", "monkey"]) >>> df num_legs num_arms dog 4 0 cat 4 0 monkey 2 2 >>> df = df.rename_axis("animal") >>> df num_legs num_arms animal dog 4 0 cat 4 0 monkey 2 2 >>> df = df.rename_axis("limbs", axis="columns") >>> df limbs num_legs num_arms animal dog 4 0 cat 4 0 monkey 2 2 **MultiIndex** >>> df.index = pd.MultiIndex.from_product([['mammal'], ... ['dog', 'cat', 'monkey']], ... names=['type', 'name']) >>> df limbs num_legs num_arms type name mammal dog 4 0 cat 4 0 monkey 2 2 >>> df.rename_axis(index={'type': 'class'}) limbs num_legs num_arms class name mammal dog 4 0 cat 4 0 monkey 2 2 >>> df.rename_axis(columns=str.upper) LIMBS num_legs num_arms type name mammal dog 4 0 cat 4 0 monkey 2 2
- round(decimals, *args, **kwargs)[source]
Round a DataFrame to a variable number of decimal places.
- Parameters:
decimals (int, dict, DeferredSeries) – Number of decimal places to round each column to. If an int is given, round each column to the same number of places. Otherwise dict and DeferredSeries round to variable numbers of places. Column names should be in the keys if decimals is a dict-like, or in the index if decimals is a DeferredSeries. Any columns not included in decimals will be left as is. Elements of decimals which are not columns of the input will be ignored.
*args – Additional keywords have no effect but might be accepted for compatibility with numpy.
**kwargs – Additional keywords have no effect but might be accepted for compatibility with numpy.
- Returns:
A DeferredDataFrame with the affected columns rounded to the specified number of decimal places.
- Return type:
Differences from pandas
This operation has no known divergences from the pandas API.
See also
numpy.around
Round a numpy array to the given number of decimals.
DeferredSeries.round
Round a DeferredSeries to the given number of decimals.
Examples
NOTE: These examples are pulled directly from the pandas documentation for convenience. Usage of the Beam DataFrame API will look different because it is a deferred API.
>>> df = pd.DataFrame([(.21, .32), (.01, .67), (.66, .03), (.21, .18)], ... columns=['dogs', 'cats']) >>> df dogs cats 0 0.21 0.32 1 0.01 0.67 2 0.66 0.03 3 0.21 0.18 By providing an integer each column is rounded to the same number of decimal places >>> df.round(1) dogs cats 0 0.2 0.3 1 0.0 0.7 2 0.7 0.0 3 0.2 0.2 With a dict, the number of places for specific columns can be specified with the column names as key and the number of decimal places as value >>> df.round({'dogs': 1, 'cats': 0}) dogs cats 0 0.2 0.0 1 0.0 1.0 2 0.7 0.0 3 0.2 0.0 Using a Series, the number of places for specific columns can be specified with the column names as index and the number of decimal places as value >>> decimals = pd.Series([0, 1], index=['cats', 'dogs']) >>> df.round(decimals) dogs cats 0 0.2 0.0 1 0.0 1.0 2 0.7 0.0 3 0.2 0.0
- select_dtypes(**kwargs)
Return a subset of the DataFrame’s columns based on the column dtypes.
- Parameters:
include (scalar or list-like) – A selection of dtypes or strings to be included/excluded. At least one of these parameters must be supplied.
exclude (scalar or list-like) – A selection of dtypes or strings to be included/excluded. At least one of these parameters must be supplied.
- Returns:
The subset of the frame including the dtypes in
include
and excluding the dtypes inexclude
.- Return type:
- Raises:
If both of
include
andexclude
are empty * Ifinclude
andexclude
have overlapping elements * If any kind of string dtype is passed in.
Differences from pandas
This operation has no known divergences from the pandas API.
See also
DeferredDataFrame.dtypes
Return DeferredSeries with the data type of each column.
Notes
To select all numeric types, use
np.number
or'number'
To select strings you must use the
object
dtype, but note that this will return all object dtype columnsSee the numpy dtype hierarchy
To select datetimes, use
np.datetime64
,'datetime'
or'datetime64'
To select timedeltas, use
np.timedelta64
,'timedelta'
or'timedelta64'
To select Pandas categorical dtypes, use
'category'
To select Pandas datetimetz dtypes, use
'datetimetz'
or'datetime64[ns, tz]'
Examples
NOTE: These examples are pulled directly from the pandas documentation for convenience. Usage of the Beam DataFrame API will look different because it is a deferred API.
>>> df = pd.DataFrame({'a': [1, 2] * 3, ... 'b': [True, False] * 3, ... 'c': [1.0, 2.0] * 3}) >>> df a b c 0 1 True 1.0 1 2 False 2.0 2 1 True 1.0 3 2 False 2.0 4 1 True 1.0 5 2 False 2.0 >>> df.select_dtypes(include='bool') b 0 True 1 False 2 True 3 False 4 True 5 False >>> df.select_dtypes(include=['float64']) c 0 1.0 1 2.0 2 1.0 3 2.0 4 1.0 5 2.0 >>> df.select_dtypes(exclude=['int64']) b c 0 True 1.0 1 False 2.0 2 True 1.0 3 False 2.0 4 True 1.0 5 False 2.0
- shift(axis, freq, **kwargs)[source]
Shift index by desired number of periods with an optional time freq.
When freq is not passed, shift the index without realigning the data. If freq is passed (in this case, the index must be date or datetime, or it will raise a NotImplementedError), the index will be increased using the periods and the freq. freq can be inferred when specified as “infer” as long as either freq or inferred_freq attribute is set in the index.
- Parameters:
periods (int or Sequence) – Number of periods to shift. Can be positive or negative. If an iterable of ints, the data will be shifted once by each int. This is equivalent to shifting by one value at a time and concatenating all resulting frames. The resulting columns will have the shift suffixed to their column names. For multiple periods, axis must not be 1.
freq (DateOffset, tseries.offsets, timedelta, or str, optional) – Offset to use from the tseries module or time rule (e.g. ‘EOM’). If freq is specified then the index values are shifted but the data is not realigned. That is, use freq if you would like to extend the index when shifting and preserve the original data. If freq is specified as “infer” then it will be inferred from the freq or inferred_freq attributes of the index. If neither of those attributes exist, a ValueError is thrown.
axis ({0 or 'index', 1 or 'columns', None}, default None) – Shift direction. For DeferredSeries this parameter is unused and defaults to 0.
fill_value (object, optional) – The scalar value to use for newly introduced missing values. the default depends on the dtype of self. For numeric data,
np.nan
is used. For datetime, timedelta, or period data, etc.NaT
is used. For extension dtypes,self.dtype.na_value
is used.suffix (str, optional) – If str and periods is an iterable, this is added after the column name and before the shift value for each shifted column name.
- Returns:
Copy of input object, shifted.
- Return type:
Differences from pandas
shift with
axis="index" is only supported with ``freq
specified andfill_value
undefined. Other configurations make this operation order-sensitive.See also
Index.shift
Shift values of Index.
DatetimeIndex.shift
Shift values of DatetimeIndex.
PeriodIndex.shift
Shift values of PeriodIndex.
Examples
NOTE: These examples are pulled directly from the pandas documentation for convenience. Usage of the Beam DataFrame API will look different because it is a deferred API. In addition, some arguments shown here may not be supported, see ‘Differences from pandas’ for details.
>>> df = pd.DataFrame({"Col1": [10, 20, 15, 30, 45], ... "Col2": [13, 23, 18, 33, 48], ... "Col3": [17, 27, 22, 37, 52]}, ... index=pd.date_range("2020-01-01", "2020-01-05")) >>> df Col1 Col2 Col3 2020-01-01 10 13 17 2020-01-02 20 23 27 2020-01-03 15 18 22 2020-01-04 30 33 37 2020-01-05 45 48 52 >>> df.shift(periods=3) Col1 Col2 Col3 2020-01-01 NaN NaN NaN 2020-01-02 NaN NaN NaN 2020-01-03 NaN NaN NaN 2020-01-04 10.0 13.0 17.0 2020-01-05 20.0 23.0 27.0 >>> df.shift(periods=1, axis="columns") Col1 Col2 Col3 2020-01-01 NaN 10 13 2020-01-02 NaN 20 23 2020-01-03 NaN 15 18 2020-01-04 NaN 30 33 2020-01-05 NaN 45 48 >>> df.shift(periods=3, fill_value=0) Col1 Col2 Col3 2020-01-01 0 0 0 2020-01-02 0 0 0 2020-01-03 0 0 0 2020-01-04 10 13 17 2020-01-05 20 23 27 >>> df.shift(periods=3, freq="D") Col1 Col2 Col3 2020-01-04 10 13 17 2020-01-05 20 23 27 2020-01-06 15 18 22 2020-01-07 30 33 37 2020-01-08 45 48 52 >>> df.shift(periods=3, freq="infer") Col1 Col2 Col3 2020-01-04 10 13 17 2020-01-05 20 23 27 2020-01-06 15 18 22 2020-01-07 30 33 37 2020-01-08 45 48 52 >>> df['Col1'].shift(periods=[0, 1, 2]) Col1_0 Col1_1 Col1_2 2020-01-01 10 NaN NaN 2020-01-02 20 10.0 NaN 2020-01-03 15 20.0 10.0 2020-01-04 30 15.0 20.0 2020-01-05 45 30.0 15.0
- property shape
pandas.DataFrame.shape()
is not yet supported in the Beam DataFrame API because it produces an output type that is not deferred.For more information see https://s.apache.org/dataframe-non-deferred-result.
- stack(**kwargs)
Stack the prescribed level(s) from columns to index.
Return a reshaped DataFrame or Series having a multi-level index with one or more new inner-most levels compared to the current DataFrame. The new inner-most levels are created by pivoting the columns of the current dataframe:
if the columns have a single level, the output is a Series;
if the columns have multiple levels, the new index level(s) is (are) taken from the prescribed level(s) and the output is a DataFrame.
- Parameters:
level (int, str, list, default -1) – Level(s) to stack from the column axis onto the index axis, defined as one index or label, or a list of indices or labels.
dropna (bool, default True) – Whether to drop rows in the resulting Frame/DeferredSeries with missing values. Stacking a column level onto the index axis can create combinations of index and column values that are missing from the original dataframe. See Examples section.
sort (bool, default True) – Whether to sort the levels of the resulting MultiIndex.
future_stack (bool, default False) – Whether to use the new implementation that will replace the current implementation in pandas 3.0. When True, dropna and sort have no impact on the result and must remain unspecified. See pandas 2.1.0 Release notes for more details.
- Returns:
Stacked dataframe or series.
- Return type:
Differences from pandas
This operation has no known divergences from the pandas API.
See also
DeferredDataFrame.unstack
Unstack prescribed level(s) from index axis onto column axis.
DeferredDataFrame.pivot
Reshape dataframe from long format to wide format.
DeferredDataFrame.pivot_table
Create a spreadsheet-style pivot table as a DeferredDataFrame.
Notes
The function is named by analogy with a collection of books being reorganized from being side by side on a horizontal position (the columns of the dataframe) to being stacked vertically on top of each other (in the index of the dataframe).
Reference the user guide for more examples.
Examples
NOTE: These examples are pulled directly from the pandas documentation for convenience. Usage of the Beam DataFrame API will look different because it is a deferred API.
**Single level columns** >>> df_single_level_cols = pd.DataFrame([[0, 1], [2, 3]], ... index=['cat', 'dog'], ... columns=['weight', 'height']) Stacking a dataframe with a single level column axis returns a Series: >>> df_single_level_cols weight height cat 0 1 dog 2 3 >>> df_single_level_cols.stack(future_stack=True) cat weight 0 height 1 dog weight 2 height 3 dtype: int64 **Multi level columns: simple case** >>> multicol1 = pd.MultiIndex.from_tuples([('weight', 'kg'), ... ('weight', 'pounds')]) >>> df_multi_level_cols1 = pd.DataFrame([[1, 2], [2, 4]], ... index=['cat', 'dog'], ... columns=multicol1) Stacking a dataframe with a multi-level column axis: >>> df_multi_level_cols1 weight kg pounds cat 1 2 dog 2 4 >>> df_multi_level_cols1.stack(future_stack=True) weight cat kg 1 pounds 2 dog kg 2 pounds 4 **Missing values** >>> multicol2 = pd.MultiIndex.from_tuples([('weight', 'kg'), ... ('height', 'm')]) >>> df_multi_level_cols2 = pd.DataFrame([[1.0, 2.0], [3.0, 4.0]], ... index=['cat', 'dog'], ... columns=multicol2) It is common to have missing values when stacking a dataframe with multi-level columns, as the stacked dataframe typically has more values than the original dataframe. Missing values are filled with NaNs: >>> df_multi_level_cols2 weight height kg m cat 1.0 2.0 dog 3.0 4.0 >>> df_multi_level_cols2.stack(future_stack=True) weight height cat kg 1.0 NaN m NaN 2.0 dog kg 3.0 NaN m NaN 4.0 **Prescribing the level(s) to be stacked** The first parameter controls which level or levels are stacked: >>> df_multi_level_cols2.stack(0, future_stack=True) kg m cat weight 1.0 NaN height NaN 2.0 dog weight 3.0 NaN height NaN 4.0 >>> df_multi_level_cols2.stack([0, 1], future_stack=True) cat weight kg 1.0 height m 2.0 dog weight kg 3.0 height m 4.0 dtype: float64 **Dropping missing values** >>> df_multi_level_cols3 = pd.DataFrame([[None, 1.0], [2.0, 3.0]], ... index=['cat', 'dog'], ... columns=multicol2) Note that rows where all values are missing are dropped by default but this behaviour can be controlled via the dropna keyword parameter: >>> df_multi_level_cols3 weight height kg m cat NaN 1.0 dog 2.0 3.0 >>> df_multi_level_cols3.stack(dropna=False) weight height cat kg NaN NaN m NaN 1.0 dog kg 2.0 NaN m NaN 3.0 >>> df_multi_level_cols3.stack(dropna=True) weight height cat m NaN 1.0 dog kg 2.0 NaN m NaN 3.0
- all(*args, **kwargs)
Return whether all elements are True, potentially over an axis.
Returns True unless there at least one element within a series or along a Dataframe axis that is False or equivalent (e.g. zero or empty).
- Parameters:
axis ({0 or 'index', 1 or 'columns', None}, default 0) –
Indicate which axis or axes should be reduced. For DeferredSeries this parameter is unused and defaults to 0.
0 / ‘index’ : reduce the index, return a DeferredSeries whose index is the original column labels.
1 / ‘columns’ : reduce the columns, return a DeferredSeries whose index is the original index.
None : reduce all axes, return a scalar.
bool_only (bool, default False) – Include only boolean columns. Not implemented for DeferredSeries.
skipna (bool, default True) – Exclude NA/null values. If the entire row/column is NA and skipna is True, then the result will be True, as for an empty row/column. If skipna is False, then NA are treated as True, because these are not equal to zero.
**kwargs (any, default None) – Additional keywords have no effect but might be accepted for compatibility with NumPy.
- Returns:
If level is specified, then, DeferredDataFrame is returned; otherwise, DeferredSeries is returned.
- Return type:
Differences from pandas
This operation has no known divergences from the pandas API.
See also
DeferredSeries.all
Return True if all elements are True.
DeferredDataFrame.any
Return True if one (or more) elements are True.
Examples
NOTE: These examples are pulled directly from the pandas documentation for convenience. Usage of the Beam DataFrame API will look different because it is a deferred API.
**Series** >>> pd.Series([True, True]).all() True >>> pd.Series([True, False]).all() False >>> pd.Series([], dtype="float64").all() True >>> pd.Series([np.nan]).all() True >>> pd.Series([np.nan]).all(skipna=False) True **DataFrames** Create a dataframe from a dictionary. >>> df = pd.DataFrame({'col1': [True, True], 'col2': [True, False]}) >>> df col1 col2 0 True True 1 True False Default behaviour checks if values in each column all return True. >>> df.all() col1 True col2 False dtype: bool Specify ``axis='columns'`` to check if values in each row all return True. >>> df.all(axis='columns') 0 True 1 False dtype: bool Or ``axis=None`` for whether every value is True. >>> df.all(axis=None) False
- any(*args, **kwargs)
Return whether any element is True, potentially over an axis.
Returns False unless there is at least one element within a series or along a Dataframe axis that is True or equivalent (e.g. non-zero or non-empty).
- Parameters:
axis ({0 or 'index', 1 or 'columns', None}, default 0) –
Indicate which axis or axes should be reduced. For DeferredSeries this parameter is unused and defaults to 0.
0 / ‘index’ : reduce the index, return a DeferredSeries whose index is the original column labels.
1 / ‘columns’ : reduce the columns, return a DeferredSeries whose index is the original index.
None : reduce all axes, return a scalar.
bool_only (bool, default False) – Include only boolean columns. Not implemented for DeferredSeries.
skipna (bool, default True) – Exclude NA/null values. If the entire row/column is NA and skipna is True, then the result will be False, as for an empty row/column. If skipna is False, then NA are treated as True, because these are not equal to zero.
**kwargs (any, default None) – Additional keywords have no effect but might be accepted for compatibility with NumPy.
- Returns:
If level is specified, then, DeferredDataFrame is returned; otherwise, DeferredSeries is returned.
- Return type:
Differences from pandas
This operation has no known divergences from the pandas API.
See also
numpy.any
Numpy version of this method.
DeferredSeries.any
Return whether any element is True.
DeferredSeries.all
Return whether all elements are True.
DeferredDataFrame.any
Return whether any element is True over requested axis.
DeferredDataFrame.all
Return whether all elements are True over requested axis.
Examples
NOTE: These examples are pulled directly from the pandas documentation for convenience. Usage of the Beam DataFrame API will look different because it is a deferred API.
**Series** For Series input, the output is a scalar indicating whether any element is True. >>> pd.Series([False, False]).any() False >>> pd.Series([True, False]).any() True >>> pd.Series([], dtype="float64").any() False >>> pd.Series([np.nan]).any() False >>> pd.Series([np.nan]).any(skipna=False) True **DataFrame** Whether each column contains at least one True element (the default). >>> df = pd.DataFrame({"A": [1, 2], "B": [0, 2], "C": [0, 0]}) >>> df A B C 0 1 0 0 1 2 2 0 >>> df.any() A True B True C False dtype: bool Aggregating over the columns. >>> df = pd.DataFrame({"A": [True, False], "B": [1, 2]}) >>> df A B 0 True 1 1 False 2 >>> df.any(axis='columns') 0 True 1 True dtype: bool >>> df = pd.DataFrame({"A": [True, False], "B": [1, 0]}) >>> df A B 0 True 1 1 False 0 >>> df.any(axis='columns') 0 True 1 False dtype: bool Aggregating over the entire DataFrame with ``axis=None``. >>> df.any(axis=None) True `any` for an empty DataFrame is an empty Series. >>> pd.DataFrame([]).any() Series([], dtype: bool)
- count(*args, **kwargs)
Count non-NA cells for each column or row.
The values None, NaN, NaT,
pandas.NA
are considered NA.- Parameters:
axis ({0 or 'index', 1 or 'columns'}, default 0) – If 0 or ‘index’ counts are generated for each column. If 1 or ‘columns’ counts are generated for each row.
numeric_only (bool, default False) – Include only float, int or boolean data.
- Returns:
For each column/row the number of non-NA/null entries.
- Return type:
Differences from pandas
This operation has no known divergences from the pandas API.
See also
DeferredSeries.count
Number of non-NA elements in a DeferredSeries.
DeferredDataFrame.value_counts
Count unique combinations of columns.
DeferredDataFrame.shape
Number of DeferredDataFrame rows and columns (including NA elements).
DeferredDataFrame.isna
Boolean same-sized DeferredDataFrame showing places of NA elements.
Examples
NOTE: These examples are pulled directly from the pandas documentation for convenience. Usage of the Beam DataFrame API will look different because it is a deferred API.
Constructing DataFrame from a dictionary: >>> df = pd.DataFrame({"Person": ... ["John", "Myla", "Lewis", "John", "Myla"], ... "Age": [24., np.nan, 21., 33, 26], ... "Single": [False, True, True, True, False]}) >>> df Person Age Single 0 John 24.0 False 1 Myla NaN True 2 Lewis 21.0 True 3 John 33.0 True 4 Myla 26.0 False Notice the uncounted NA values: >>> df.count() Person 5 Age 4 Single 5 dtype: int64 Counts for each **row**: >>> df.count(axis='columns') 0 3 1 2 2 3 3 3 4 3 dtype: int64
- describe(*args, **kwargs)
Generate descriptive statistics.
Descriptive statistics include those that summarize the central tendency, dispersion and shape of a dataset’s distribution, excluding
NaN
values.Analyzes both numeric and object series, as well as
DataFrame
column sets of mixed data types. The output will vary depending on what is provided. Refer to the notes below for more detail.- Parameters:
percentiles (list-like of numbers, optional) – The percentiles to include in the output. All should fall between 0 and 1. The default is
[.25, .5, .75]
, which returns the 25th, 50th, and 75th percentiles.include ('all', list-like of dtypes or None (default), optional) –
A white list of data types to include in the result. Ignored for
DeferredSeries
. Here are the options:’all’ : All columns of the input will be included in the output.
A list-like of dtypes : Limits the results to the provided data types. To limit the result to numeric types submit
numpy.number
. To limit it instead to object columns submit thenumpy.object
data type. Strings can also be used in the style ofselect_dtypes
(e.g.df.describe(include=['O'])
). To select pandas categorical columns, use'category'
None (default) : The result will include all numeric columns.
exclude (list-like of dtypes or None (default), optional,) –
A black list of data types to omit from the result. Ignored for
DeferredSeries
. Here are the options:A list-like of dtypes : Excludes the provided data types from the result. To exclude numeric types submit
numpy.number
. To exclude object columns submit the data typenumpy.object
. Strings can also be used in the style ofselect_dtypes
(e.g.df.describe(exclude=['O'])
). To exclude pandas categorical columns, use'category'
None (default) : The result will exclude nothing.
- Returns:
Summary statistics of the DeferredSeries or Dataframe provided.
- Return type:
Differences from pandas
describe
cannot currently be parallelized. It will require collecting all data on a single node.See also
DeferredDataFrame.count
Count number of non-NA/null observations.
DeferredDataFrame.max
Maximum of the values in the object.
DeferredDataFrame.min
Minimum of the values in the object.
DeferredDataFrame.mean
Mean of the values.
DeferredDataFrame.std
Standard deviation of the observations.
DeferredDataFrame.select_dtypes
Subset of a DeferredDataFrame including/excluding columns based on their dtype.
Notes
For numeric data, the result’s index will include
count
,mean
,std
,min
,max
as well as lower,50
and upper percentiles. By default the lower percentile is25
and the upper percentile is75
. The50
percentile is the same as the median.For object data (e.g. strings or timestamps), the result’s index will include
count
,unique
,top
, andfreq
. Thetop
is the most common value. Thefreq
is the most common value’s frequency. Timestamps also include thefirst
andlast
items.If multiple object values have the highest count, then the
count
andtop
results will be arbitrarily chosen from among those with the highest count.For mixed data types provided via a
DeferredDataFrame
, the default is to return only an analysis of numeric columns. If the dataframe consists only of object and categorical data without any numeric columns, the default is to return an analysis of both the object and categorical columns. Ifinclude='all'
is provided as an option, the result will include a union of attributes of each type.The include and exclude parameters can be used to limit which columns in a
DeferredDataFrame
are analyzed for the output. The parameters are ignored when analyzing aDeferredSeries
.Examples
NOTE: These examples are pulled directly from the pandas documentation for convenience. Usage of the Beam DataFrame API will look different because it is a deferred API. In addition, some arguments shown here may not be supported, see ‘Differences from pandas’ for details.
Describing a numeric ``Series``. >>> s = pd.Series([1, 2, 3]) >>> s.describe() count 3.0 mean 2.0 std 1.0 min 1.0 25% 1.5 50% 2.0 75% 2.5 max 3.0 dtype: float64 Describing a categorical ``Series``. >>> s = pd.Series(['a', 'a', 'b', 'c']) >>> s.describe() count 4 unique 3 top a freq 2 dtype: object Describing a timestamp ``Series``. >>> s = pd.Series([ ... np.datetime64("2000-01-01"), ... np.datetime64("2010-01-01"), ... np.datetime64("2010-01-01") ... ]) >>> s.describe() count 3 mean 2006-09-01 08:00:00 min 2000-01-01 00:00:00 25% 2004-12-31 12:00:00 50% 2010-01-01 00:00:00 75% 2010-01-01 00:00:00 max 2010-01-01 00:00:00 dtype: object Describing a ``DataFrame``. By default only numeric fields are returned. >>> df = pd.DataFrame({'categorical': pd.Categorical(['d','e','f']), ... 'numeric': [1, 2, 3], ... 'object': ['a', 'b', 'c'] ... }) >>> df.describe() numeric count 3.0 mean 2.0 std 1.0 min 1.0 25% 1.5 50% 2.0 75% 2.5 max 3.0 Describing all columns of a ``DataFrame`` regardless of data type. >>> df.describe(include='all') categorical numeric object count 3 3.0 3 unique 3 NaN 3 top f NaN a freq 1 NaN 1 mean NaN 2.0 NaN std NaN 1.0 NaN min NaN 1.0 NaN 25% NaN 1.5 NaN 50% NaN 2.0 NaN 75% NaN 2.5 NaN max NaN 3.0 NaN Describing a column from a ``DataFrame`` by accessing it as an attribute. >>> df.numeric.describe() count 3.0 mean 2.0 std 1.0 min 1.0 25% 1.5 50% 2.0 75% 2.5 max 3.0 Name: numeric, dtype: float64 Including only numeric columns in a ``DataFrame`` description. >>> df.describe(include=[np.number]) numeric count 3.0 mean 2.0 std 1.0 min 1.0 25% 1.5 50% 2.0 75% 2.5 max 3.0 Including only string columns in a ``DataFrame`` description. >>> df.describe(include=[object]) object count 3 unique 3 top a freq 1 Including only categorical columns from a ``DataFrame`` description. >>> df.describe(include=['category']) categorical count 3 unique 3 top d freq 1 Excluding numeric columns from a ``DataFrame`` description. >>> df.describe(exclude=[np.number]) categorical object count 3 3 unique 3 3 top f a freq 1 1 Excluding object columns from a ``DataFrame`` description. >>> df.describe(exclude=[object]) categorical numeric count 3 3.0 unique 3 NaN top f NaN freq 1 NaN mean NaN 2.0 std NaN 1.0 min NaN 1.0 25% NaN 1.5 50% NaN 2.0 75% NaN 2.5 max NaN 3.0
- max(*args, **kwargs)
Return the maximum of the values over the requested axis.
If you want the index of the maximum, use
idxmax
. This is the equivalent of thenumpy.ndarray
methodargmax
.- Parameters:
axis ({index (0), columns (1)}) –
Axis for the function to be applied on. For DeferredSeries this parameter is unused and defaults to 0.
For DeferredDataFrames, specifying
axis=None
will apply the aggregation across both axes.Added in version 2.0.0.
skipna (bool, default True) – Exclude NA/null values when computing the result.
numeric_only (bool, default False) – Include only float, int, boolean columns. Not implemented for DeferredSeries.
**kwargs – Additional keyword arguments to be passed to the function.
- Return type:
DeferredSeries or scalar
Differences from pandas
This operation has no known divergences from the pandas API.
See also
DeferredSeries.sum
Return the sum.
DeferredSeries.min
Return the minimum.
DeferredSeries.max
Return the maximum.
DeferredSeries.idxmin
Return the index of the minimum.
DeferredSeries.idxmax
Return the index of the maximum.
DeferredDataFrame.sum
Return the sum over the requested axis.
DeferredDataFrame.min
Return the minimum over the requested axis.
DeferredDataFrame.max
Return the maximum over the requested axis.
DeferredDataFrame.idxmin
Return the index of the minimum over the requested axis.
DeferredDataFrame.idxmax
Return the index of the maximum over the requested axis.
Examples
NOTE: These examples are pulled directly from the pandas documentation for convenience. Usage of the Beam DataFrame API will look different because it is a deferred API.
>>> idx = pd.MultiIndex.from_arrays([ ... ['warm', 'warm', 'cold', 'cold'], ... ['dog', 'falcon', 'fish', 'spider']], ... names=['blooded', 'animal']) >>> s = pd.Series([4, 2, 0, 8], name='legs', index=idx) >>> s blooded animal warm dog 4 falcon 2 cold fish 0 spider 8 Name: legs, dtype: int64 >>> s.max() 8
- min(*args, **kwargs)
Return the minimum of the values over the requested axis.
If you want the index of the minimum, use
idxmin
. This is the equivalent of thenumpy.ndarray
methodargmin
.- Parameters:
axis ({index (0), columns (1)}) –
Axis for the function to be applied on. For DeferredSeries this parameter is unused and defaults to 0.
For DeferredDataFrames, specifying
axis=None
will apply the aggregation across both axes.Added in version 2.0.0.
skipna (bool, default True) – Exclude NA/null values when computing the result.
numeric_only (bool, default False) – Include only float, int, boolean columns. Not implemented for DeferredSeries.
**kwargs – Additional keyword arguments to be passed to the function.
- Return type:
DeferredSeries or scalar
Differences from pandas
This operation has no known divergences from the pandas API.
See also
DeferredSeries.sum
Return the sum.
DeferredSeries.min
Return the minimum.
DeferredSeries.max
Return the maximum.
DeferredSeries.idxmin
Return the index of the minimum.
DeferredSeries.idxmax
Return the index of the maximum.
DeferredDataFrame.sum
Return the sum over the requested axis.
DeferredDataFrame.min
Return the minimum over the requested axis.
DeferredDataFrame.max
Return the maximum over the requested axis.
DeferredDataFrame.idxmin
Return the index of the minimum over the requested axis.
DeferredDataFrame.idxmax
Return the index of the maximum over the requested axis.
Examples
NOTE: These examples are pulled directly from the pandas documentation for convenience. Usage of the Beam DataFrame API will look different because it is a deferred API.
>>> idx = pd.MultiIndex.from_arrays([ ... ['warm', 'warm', 'cold', 'cold'], ... ['dog', 'falcon', 'fish', 'spider']], ... names=['blooded', 'animal']) >>> s = pd.Series([4, 2, 0, 8], name='legs', index=idx) >>> s blooded animal warm dog 4 falcon 2 cold fish 0 spider 8 Name: legs, dtype: int64 >>> s.min() 0
- pivot(index=None, columns=None, values=None, **kwargs)[source]
Return reshaped DataFrame organized by given index / column values.
Reshape data (produce a “pivot” table) based on column values. Uses unique values from specified index / columns to form axes of the resulting DataFrame. This function does not support data aggregation, multiple values will result in a MultiIndex in the columns. See the User Guide for more on reshaping.
- Parameters:
columns (str or object or a list of str) – Column to use to make new frame’s columns.
index (str or object or a list of str, optional) – Column to use to make new frame’s index. If not given, uses existing index.
values (str, object or a list of the previous, optional) – Column(s) to use for populating new frame’s values. If not specified, all remaining columns will be used and the result will have hierarchically indexed columns.
- Returns:
Returns reshaped DeferredDataFrame.
- Return type:
- Raises:
ValueError: – When there are any index, columns combinations with multiple values. DeferredDataFrame.pivot_table when you need to aggregate.
Differences from pandas
Because pivot is a non-deferred method, any columns specified in
columns
must be CategoricalDType so we can determine the output column names.See also
DeferredDataFrame.pivot_table
Generalization of pivot that can handle duplicate values for one index/column pair.
DeferredDataFrame.unstack
Pivot based on the index values instead of a column.
wide_to_long
Wide panel to long format. Less flexible but more user-friendly than melt.
Notes
For finer-tuned control, see hierarchical indexing documentation along with the related stack/unstack methods.
Reference the user guide for more examples.
Examples
NOTE: These examples are pulled directly from the pandas documentation for convenience. Usage of the Beam DataFrame API will look different because it is a deferred API. In addition, some arguments shown here may not be supported, see ‘Differences from pandas’ for details.
>>> df = pd.DataFrame({'foo': ['one', 'one', 'one', 'two', 'two', ... 'two'], ... 'bar': ['A', 'B', 'C', 'A', 'B', 'C'], ... 'baz': [1, 2, 3, 4, 5, 6], ... 'zoo': ['x', 'y', 'z', 'q', 'w', 't']}) >>> df foo bar baz zoo 0 one A 1 x 1 one B 2 y 2 one C 3 z 3 two A 4 q 4 two B 5 w 5 two C 6 t >>> df.pivot(index='foo', columns='bar', values='baz') bar A B C foo one 1 2 3 two 4 5 6 >>> df.pivot(index='foo', columns='bar')['baz'] bar A B C foo one 1 2 3 two 4 5 6 >>> df.pivot(index='foo', columns='bar', values=['baz', 'zoo']) baz zoo bar A B C A B C foo one 1 2 3 x y z two 4 5 6 q w t You could also assign a list of column names or a list of index names. >>> df = pd.DataFrame({ ... "lev1": [1, 1, 1, 2, 2, 2], ... "lev2": [1, 1, 2, 1, 1, 2], ... "lev3": [1, 2, 1, 2, 1, 2], ... "lev4": [1, 2, 3, 4, 5, 6], ... "values": [0, 1, 2, 3, 4, 5]}) >>> df lev1 lev2 lev3 lev4 values 0 1 1 1 1 0 1 1 1 2 2 1 2 1 2 1 3 2 3 2 1 2 4 3 4 2 1 1 5 4 5 2 2 2 6 5 >>> df.pivot(index="lev1", columns=["lev2", "lev3"], values="values") lev2 1 2 lev3 1 2 1 2 lev1 1 0.0 1.0 2.0 NaN 2 4.0 3.0 NaN 5.0 >>> df.pivot(index=["lev1", "lev2"], columns=["lev3"], values="values") lev3 1 2 lev1 lev2 1 1 0.0 1.0 2 2.0 NaN 2 1 4.0 3.0 2 NaN 5.0 A ValueError is raised if there are any duplicates. >>> df = pd.DataFrame({"foo": ['one', 'one', 'two', 'two'], ... "bar": ['A', 'A', 'B', 'C'], ... "baz": [1, 2, 3, 4]}) >>> df foo bar baz 0 one A 1 1 one A 2 2 two B 3 3 two C 4 Notice that the first two rows are the same for our `index` and `columns` arguments. >>> df.pivot(index='foo', columns='bar', values='baz') Traceback (most recent call last): ... ValueError: Index contains duplicate entries, cannot reshape
- prod(*args, **kwargs)
Return the product of the values over the requested axis.
- Parameters:
axis ({index (0), columns (1)}) –
Axis for the function to be applied on. For DeferredSeries this parameter is unused and defaults to 0.
For DeferredDataFrames, specifying
axis=None
will apply the aggregation across both axes.Added in version 2.0.0.
skipna (bool, default True) – Exclude NA/null values when computing the result.
numeric_only (bool, default False) – Include only float, int, boolean columns. Not implemented for DeferredSeries.
min_count (int, default 0) – The required number of valid values to perform the operation. If fewer than
min_count
non-NA values are present the result will be NA.**kwargs – Additional keyword arguments to be passed to the function.
- Return type:
DeferredSeries or scalar
Differences from pandas
This operation has no known divergences from the pandas API.
See also
DeferredSeries.sum
Return the sum.
DeferredSeries.min
Return the minimum.
DeferredSeries.max
Return the maximum.
DeferredSeries.idxmin
Return the index of the minimum.
DeferredSeries.idxmax
Return the index of the maximum.
DeferredDataFrame.sum
Return the sum over the requested axis.
DeferredDataFrame.min
Return the minimum over the requested axis.
DeferredDataFrame.max
Return the maximum over the requested axis.
DeferredDataFrame.idxmin
Return the index of the minimum over the requested axis.
DeferredDataFrame.idxmax
Return the index of the maximum over the requested axis.
Examples
NOTE: These examples are pulled directly from the pandas documentation for convenience. Usage of the Beam DataFrame API will look different because it is a deferred API.
By default, the product of an empty or all-NA Series is ``1`` >>> pd.Series([], dtype="float64").prod() 1.0 This can be controlled with the ``min_count`` parameter >>> pd.Series([], dtype="float64").prod(min_count=1) nan Thanks to the ``skipna`` parameter, ``min_count`` handles all-NA and empty series identically. >>> pd.Series([np.nan]).prod() 1.0 >>> pd.Series([np.nan]).prod(min_count=1) nan
- product(*args, **kwargs)
Return the product of the values over the requested axis.
- Parameters:
axis ({index (0), columns (1)}) –
Axis for the function to be applied on. For DeferredSeries this parameter is unused and defaults to 0.
For DeferredDataFrames, specifying
axis=None
will apply the aggregation across both axes.Added in version 2.0.0.
skipna (bool, default True) – Exclude NA/null values when computing the result.
numeric_only (bool, default False) – Include only float, int, boolean columns. Not implemented for DeferredSeries.
min_count (int, default 0) – The required number of valid values to perform the operation. If fewer than
min_count
non-NA values are present the result will be NA.**kwargs – Additional keyword arguments to be passed to the function.
- Return type:
DeferredSeries or scalar
Differences from pandas
This operation has no known divergences from the pandas API.
See also
DeferredSeries.sum
Return the sum.
DeferredSeries.min
Return the minimum.
DeferredSeries.max
Return the maximum.
DeferredSeries.idxmin
Return the index of the minimum.
DeferredSeries.idxmax
Return the index of the maximum.
DeferredDataFrame.sum
Return the sum over the requested axis.
DeferredDataFrame.min
Return the minimum over the requested axis.
DeferredDataFrame.max
Return the maximum over the requested axis.
DeferredDataFrame.idxmin
Return the index of the minimum over the requested axis.
DeferredDataFrame.idxmax
Return the index of the maximum over the requested axis.
Examples
NOTE: These examples are pulled directly from the pandas documentation for convenience. Usage of the Beam DataFrame API will look different because it is a deferred API.
By default, the product of an empty or all-NA Series is ``1`` >>> pd.Series([], dtype="float64").prod() 1.0 This can be controlled with the ``min_count`` parameter >>> pd.Series([], dtype="float64").prod(min_count=1) nan Thanks to the ``skipna`` parameter, ``min_count`` handles all-NA and empty series identically. >>> pd.Series([np.nan]).prod() 1.0 >>> pd.Series([np.nan]).prod(min_count=1) nan
- sum(*args, **kwargs)
Return the sum of the values over the requested axis.
This is equivalent to the method
numpy.sum
.- Parameters:
axis ({index (0), columns (1)}) –
Axis for the function to be applied on. For DeferredSeries this parameter is unused and defaults to 0.
For DeferredDataFrames, specifying
axis=None
will apply the aggregation across both axes.Added in version 2.0.0.
skipna (bool, default True) – Exclude NA/null values when computing the result.
numeric_only (bool, default False) – Include only float, int, boolean columns. Not implemented for DeferredSeries.
min_count (int, default 0) – The required number of valid values to perform the operation. If fewer than
min_count
non-NA values are present the result will be NA.**kwargs – Additional keyword arguments to be passed to the function.
- Return type:
DeferredSeries or scalar
Differences from pandas
This operation has no known divergences from the pandas API.
See also
DeferredSeries.sum
Return the sum.
DeferredSeries.min
Return the minimum.
DeferredSeries.max
Return the maximum.
DeferredSeries.idxmin
Return the index of the minimum.
DeferredSeries.idxmax
Return the index of the maximum.
DeferredDataFrame.sum
Return the sum over the requested axis.
DeferredDataFrame.min
Return the minimum over the requested axis.
DeferredDataFrame.max
Return the maximum over the requested axis.
DeferredDataFrame.idxmin
Return the index of the minimum over the requested axis.
DeferredDataFrame.idxmax
Return the index of the maximum over the requested axis.
Examples
NOTE: These examples are pulled directly from the pandas documentation for convenience. Usage of the Beam DataFrame API will look different because it is a deferred API.
>>> idx = pd.MultiIndex.from_arrays([ ... ['warm', 'warm', 'cold', 'cold'], ... ['dog', 'falcon', 'fish', 'spider']], ... names=['blooded', 'animal']) >>> s = pd.Series([4, 2, 0, 8], name='legs', index=idx) >>> s blooded animal warm dog 4 falcon 2 cold fish 0 spider 8 Name: legs, dtype: int64 >>> s.sum() 14 By default, the sum of an empty or all-NA Series is ``0``. >>> pd.Series([], dtype="float64").sum() # min_count=0 is the default 0.0 This can be controlled with the ``min_count`` parameter. For example, if you'd like the sum of an empty series to be NaN, pass ``min_count=1``. >>> pd.Series([], dtype="float64").sum(min_count=1) nan Thanks to the ``skipna`` parameter, ``min_count`` handles all-NA and empty series identically. >>> pd.Series([np.nan]).sum() 0.0 >>> pd.Series([np.nan]).sum(min_count=1) nan
- mean(*args, **kwargs)
Return the mean of the values over the requested axis.
- Parameters:
axis ({index (0), columns (1)}) –
Axis for the function to be applied on. For DeferredSeries this parameter is unused and defaults to 0.
For DeferredDataFrames, specifying
axis=None
will apply the aggregation across both axes.Added in version 2.0.0.
skipna (bool, default True) – Exclude NA/null values when computing the result.
numeric_only (bool, default False) – Include only float, int, boolean columns. Not implemented for DeferredSeries.
**kwargs – Additional keyword arguments to be passed to the function.
- Return type:
Series or scalar
Examples
Series or scalar Examples -------- >>> s = pd.Series([1, 2, 3]) >>> s.mean() 2.0 With a DataFrame >>> df = pd.DataFrame({'a': [1, 2], 'b': [2, 3]}, index=['tiger', 'zebra']) >>> df a b tiger 1 2 zebra 2 3 >>> df.mean() a 1.5 b 2.5 dtype: float64 Using axis=1 >>> df.mean(axis=1) tiger 1.5 zebra 2.5 dtype: float64 In this case, `numeric_only` should be set to `True` to avoid getting an error. >>> df = pd.DataFrame({'a': [1, 2], 'b': ['T', 'Z']}, ... index=['tiger', 'zebra']) >>> df.mean(numeric_only=True) a 1.5 dtype: float64 -------- >>> s = pd.Series([1, 2, 3]) >>> s.mean() 2.0 With a DataFrame >>> df = pd.DataFrame({'a': [1, 2], 'b': [2, 3]}, index=['tiger', 'zebra']) >>> df a b tiger 1 2 zebra 2 3 >>> df.mean() a 1.5 b 2.5 dtype: float64 Using axis=1 >>> df.mean(axis=1) tiger 1.5 zebra 2.5 dtype: float64 In this case, `numeric_only` should be set to `True` to avoid getting an error. >>> df = pd.DataFrame({'a': [1, 2], 'b': ['T', 'Z']}, ... index=['tiger', 'zebra']) >>> df.mean(numeric_only=True) a 1.5 dtype: float64
Differences from pandas
This operation has no known divergences from the pandas API.
- median(*args, **kwargs)
Return the median of the values over the requested axis.
- Parameters:
axis ({index (0), columns (1)}) –
Axis for the function to be applied on. For DeferredSeries this parameter is unused and defaults to 0.
For DeferredDataFrames, specifying
axis=None
will apply the aggregation across both axes.Added in version 2.0.0.
skipna (bool, default True) – Exclude NA/null values when computing the result.
numeric_only (bool, default False) – Include only float, int, boolean columns. Not implemented for DeferredSeries.
**kwargs – Additional keyword arguments to be passed to the function.
- Return type:
Series or scalar
Examples
Series or scalar Examples -------- >>> s = pd.Series([1, 2, 3]) >>> s.median() 2.0 With a DataFrame >>> df = pd.DataFrame({'a': [1, 2], 'b': [2, 3]}, index=['tiger', 'zebra']) >>> df a b tiger 1 2 zebra 2 3 >>> df.median() a 1.5 b 2.5 dtype: float64 Using axis=1 >>> df.median(axis=1) tiger 1.5 zebra 2.5 dtype: float64 In this case, `numeric_only` should be set to `True` to avoid getting an error. >>> df = pd.DataFrame({'a': [1, 2], 'b': ['T', 'Z']}, ... index=['tiger', 'zebra']) >>> df.median(numeric_only=True) a 1.5 dtype: float64 -------- >>> s = pd.Series([1, 2, 3]) >>> s.median() 2.0 With a DataFrame >>> df = pd.DataFrame({'a': [1, 2], 'b': [2, 3]}, index=['tiger', 'zebra']) >>> df a b tiger 1 2 zebra 2 3 >>> df.median() a 1.5 b 2.5 dtype: float64 Using axis=1 >>> df.median(axis=1) tiger 1.5 zebra 2.5 dtype: float64 In this case, `numeric_only` should be set to `True` to avoid getting an error. >>> df = pd.DataFrame({'a': [1, 2], 'b': ['T', 'Z']}, ... index=['tiger', 'zebra']) >>> df.median(numeric_only=True) a 1.5 dtype: float64
Differences from pandas
median
cannot currently be parallelized. It will require collecting all data on a single node.
- nunique(*args, **kwargs)
Count number of distinct elements in specified axis.
Return Series with number of distinct elements. Can ignore NaN values.
- Parameters:
axis ({0 or 'index', 1 or 'columns'}, default 0) – The axis to use. 0 or ‘index’ for row-wise, 1 or ‘columns’ for column-wise.
dropna (bool, default True) – Don’t include NaN in the counts.
- Return type:
Differences from pandas
This operation has no known divergences from the pandas API.
See also
DeferredSeries.nunique
Method nunique for DeferredSeries.
DeferredDataFrame.count
Count non-NA cells for each column or row.
Examples
NOTE: These examples are pulled directly from the pandas documentation for convenience. Usage of the Beam DataFrame API will look different because it is a deferred API.
>>> df = pd.DataFrame({'A': [4, 5, 6], 'B': [4, 1, 1]}) >>> df.nunique() A 3 B 2 dtype: int64 >>> df.nunique(axis=1) 0 1 1 2 2 2 dtype: int64
- std(*args, **kwargs)
Return sample standard deviation over requested axis.
Normalized by N-1 by default. This can be changed using the ddof argument.
- Parameters:
axis ({index (0), columns (1)}) – For DeferredSeries this parameter is unused and defaults to 0.
skipna (bool, default True) – Exclude NA/null values. If an entire row/column is NA, the result will be NA.
ddof (int, default 1) – Delta Degrees of Freedom. The divisor used in calculations is N - ddof, where N represents the number of elements.
numeric_only (bool, default False) – Include only float, int, boolean columns. Not implemented for DeferredSeries.
- Return type:
DeferredSeries or DeferredDataFrame (if level specified)
Differences from pandas
This operation has no known divergences from the pandas API.
Notes
To have the same behaviour as numpy.std, use ddof=0 (instead of the default ddof=1)
Examples
NOTE: These examples are pulled directly from the pandas documentation for convenience. Usage of the Beam DataFrame API will look different because it is a deferred API.
>>> df = pd.DataFrame({'person_id': [0, 1, 2, 3], ... 'age': [21, 25, 62, 43], ... 'height': [1.61, 1.87, 1.49, 2.01]} ... ).set_index('person_id') >>> df age height person_id 0 21 1.61 1 25 1.87 2 62 1.49 3 43 2.01 The standard deviation of the columns can be found as follows: >>> df.std() age 18.786076 height 0.237417 dtype: float64 Alternatively, `ddof=0` can be set to normalize by N instead of N-1: >>> df.std(ddof=0) age 16.269219 height 0.205609 dtype: float64
- var(*args, **kwargs)
Return unbiased variance over requested axis.
Normalized by N-1 by default. This can be changed using the ddof argument.
- Parameters:
axis ({index (0), columns (1)}) – For DeferredSeries this parameter is unused and defaults to 0.
skipna (bool, default True) – Exclude NA/null values. If an entire row/column is NA, the result will be NA.
ddof (int, default 1) – Delta Degrees of Freedom. The divisor used in calculations is N - ddof, where N represents the number of elements.
numeric_only (bool, default False) – Include only float, int, boolean columns. Not implemented for DeferredSeries.
- Return type:
DeferredSeries or DeferredDataFrame (if level specified)
Differences from pandas
This operation has no known divergences from the pandas API.
Examples
NOTE: These examples are pulled directly from the pandas documentation for convenience. Usage of the Beam DataFrame API will look different because it is a deferred API.
>>> df = pd.DataFrame({'person_id': [0, 1, 2, 3], ... 'age': [21, 25, 62, 43], ... 'height': [1.61, 1.87, 1.49, 2.01]} ... ).set_index('person_id') >>> df age height person_id 0 21 1.61 1 25 1.87 2 62 1.49 3 43 2.01 >>> df.var() age 352.916667 height 0.056367 dtype: float64 Alternatively, ``ddof=0`` can be set to normalize by N instead of N-1: >>> df.var(ddof=0) age 264.687500 height 0.042275 dtype: float64
- sem(*args, **kwargs)
Return unbiased standard error of the mean over requested axis.
Normalized by N-1 by default. This can be changed using the ddof argument
- Parameters:
axis ({index (0), columns (1)}) – For DeferredSeries this parameter is unused and defaults to 0.
skipna (bool, default True) – Exclude NA/null values. If an entire row/column is NA, the result will be NA.
ddof (int, default 1) – Delta Degrees of Freedom. The divisor used in calculations is N - ddof, where N represents the number of elements.
numeric_only (bool, default False) – Include only float, int, boolean columns. Not implemented for DeferredSeries.
- Return type:
Series or DataFrame (if level specified)
Examples
Series or DataFrame (if level specified) Examples -------- >>> s = pd.Series([1, 2, 3]) >>> s.sem().round(6) 0.57735 With a DataFrame >>> df = pd.DataFrame({'a': [1, 2], 'b': [2, 3]}, index=['tiger', 'zebra']) >>> df a b tiger 1 2 zebra 2 3 >>> df.sem() a 0.5 b 0.5 dtype: float64 Using axis=1 >>> df.sem(axis=1) tiger 0.5 zebra 0.5 dtype: float64 In this case, `numeric_only` should be set to `True` to avoid getting an error. >>> df = pd.DataFrame({'a': [1, 2], 'b': ['T', 'Z']}, ... index=['tiger', 'zebra']) >>> df.sem(numeric_only=True) a 0.5 dtype: float64 -------- >>> s = pd.Series([1, 2, 3]) >>> s.sem().round(6) 0.57735 With a DataFrame >>> df = pd.DataFrame({'a': [1, 2], 'b': [2, 3]}, index=['tiger', 'zebra']) >>> df a b tiger 1 2 zebra 2 3 >>> df.sem() a 0.5 b 0.5 dtype: float64 Using axis=1 >>> df.sem(axis=1) tiger 0.5 zebra 0.5 dtype: float64 In this case, `numeric_only` should be set to `True` to avoid getting an error. >>> df = pd.DataFrame({'a': [1, 2], 'b': ['T', 'Z']}, ... index=['tiger', 'zebra']) >>> df.sem(numeric_only=True) a 0.5 dtype: float64
Differences from pandas
sem
cannot currently be parallelized. It will require collecting all data on a single node.
- skew(*args, **kwargs)
Return unbiased skew over requested axis.
Normalized by N-1.
- Parameters:
axis ({index (0), columns (1)}) –
Axis for the function to be applied on. For DeferredSeries this parameter is unused and defaults to 0.
For DeferredDataFrames, specifying
axis=None
will apply the aggregation across both axes.Added in version 2.0.0.
skipna (bool, default True) – Exclude NA/null values when computing the result.
numeric_only (bool, default False) – Include only float, int, boolean columns. Not implemented for DeferredSeries.
**kwargs – Additional keyword arguments to be passed to the function.
- Return type:
Series or scalar
Examples
Series or scalar Examples -------- >>> s = pd.Series([1, 2, 3]) >>> s.skew() 0.0 With a DataFrame >>> df = pd.DataFrame({'a': [1, 2, 3], 'b': [2, 3, 4], 'c': [1, 3, 5]}, ... index=['tiger', 'zebra', 'cow']) >>> df a b c tiger 1 2 1 zebra 2 3 3 cow 3 4 5 >>> df.skew() a 0.0 b 0.0 c 0.0 dtype: float64 Using axis=1 >>> df.skew(axis=1) tiger 1.732051 zebra -1.732051 cow 0.000000 dtype: float64 In this case, `numeric_only` should be set to `True` to avoid getting an error. >>> df = pd.DataFrame({'a': [1, 2, 3], 'b': ['T', 'Z', 'X']}, ... index=['tiger', 'zebra', 'cow']) >>> df.skew(numeric_only=True) a 0.0 dtype: float64 -------- >>> s = pd.Series([1, 2, 3]) >>> s.skew() 0.0 With a DataFrame >>> df = pd.DataFrame({'a': [1, 2, 3], 'b': [2, 3, 4], 'c': [1, 3, 5]}, ... index=['tiger', 'zebra', 'cow']) >>> df a b c tiger 1 2 1 zebra 2 3 3 cow 3 4 5 >>> df.skew() a 0.0 b 0.0 c 0.0 dtype: float64 Using axis=1 >>> df.skew(axis=1) tiger 1.732051 zebra -1.732051 cow 0.000000 dtype: float64 In this case, `numeric_only` should be set to `True` to avoid getting an error. >>> df = pd.DataFrame({'a': [1, 2, 3], 'b': ['T', 'Z', 'X']}, ... index=['tiger', 'zebra', 'cow']) >>> df.skew(numeric_only=True) a 0.0 dtype: float64
Differences from pandas
This operation has no known divergences from the pandas API.
- kurt(*args, **kwargs)
Return unbiased kurtosis over requested axis.
Kurtosis obtained using Fisher’s definition of kurtosis (kurtosis of normal == 0.0). Normalized by N-1.
- Parameters:
axis ({index (0), columns (1)}) –
Axis for the function to be applied on. For DeferredSeries this parameter is unused and defaults to 0.
For DeferredDataFrames, specifying
axis=None
will apply the aggregation across both axes.Added in version 2.0.0.
skipna (bool, default True) – Exclude NA/null values when computing the result.
numeric_only (bool, default False) – Include only float, int, boolean columns. Not implemented for DeferredSeries.
**kwargs – Additional keyword arguments to be passed to the function.
- Return type:
Series or scalar
Examples
Series or scalar Examples -------- >>> s = pd.Series([1, 2, 2, 3], index=['cat', 'dog', 'dog', 'mouse']) >>> s cat 1 dog 2 dog 2 mouse 3 dtype: int64 >>> s.kurt() 1.5 With a DataFrame >>> df = pd.DataFrame({'a': [1, 2, 2, 3], 'b': [3, 4, 4, 4]}, ... index=['cat', 'dog', 'dog', 'mouse']) >>> df a b cat 1 3 dog 2 4 dog 2 4 mouse 3 4 >>> df.kurt() a 1.5 b 4.0 dtype: float64 With axis=None >>> df.kurt(axis=None).round(6) -0.988693 Using axis=1 >>> df = pd.DataFrame({'a': [1, 2], 'b': [3, 4], 'c': [3, 4], 'd': [1, 2]}, ... index=['cat', 'dog']) >>> df.kurt(axis=1) cat -6.0 dog -6.0 dtype: float64 -------- >>> s = pd.Series([1, 2, 2, 3], index=['cat', 'dog', 'dog', 'mouse']) >>> s cat 1 dog 2 dog 2 mouse 3 dtype: int64 >>> s.kurt() 1.5 With a DataFrame >>> df = pd.DataFrame({'a': [1, 2, 2, 3], 'b': [3, 4, 4, 4]}, ... index=['cat', 'dog', 'dog', 'mouse']) >>> df a b cat 1 3 dog 2 4 dog 2 4 mouse 3 4 >>> df.kurt() a 1.5 b 4.0 dtype: float64 With axis=None >>> df.kurt(axis=None).round(6) -0.988693 Using axis=1 >>> df = pd.DataFrame({'a': [1, 2], 'b': [3, 4], 'c': [3, 4], 'd': [1, 2]}, ... index=['cat', 'dog']) >>> df.kurt(axis=1) cat -6.0 dog -6.0 dtype: float64
Differences from pandas
This operation has no known divergences from the pandas API.
- kurtosis(*args, **kwargs)
Return unbiased kurtosis over requested axis.
Kurtosis obtained using Fisher’s definition of kurtosis (kurtosis of normal == 0.0). Normalized by N-1.
- Parameters:
axis ({index (0), columns (1)}) –
Axis for the function to be applied on. For DeferredSeries this parameter is unused and defaults to 0.
For DeferredDataFrames, specifying
axis=None
will apply the aggregation across both axes.Added in version 2.0.0.
skipna (bool, default True) – Exclude NA/null values when computing the result.
numeric_only (bool, default False) – Include only float, int, boolean columns. Not implemented for DeferredSeries.
**kwargs – Additional keyword arguments to be passed to the function.
- Return type:
Series or scalar
Examples
Series or scalar Examples -------- >>> s = pd.Series([1, 2, 2, 3], index=['cat', 'dog', 'dog', 'mouse']) >>> s cat 1 dog 2 dog 2 mouse 3 dtype: int64 >>> s.kurt() 1.5 With a DataFrame >>> df = pd.DataFrame({'a': [1, 2, 2, 3], 'b': [3, 4, 4, 4]}, ... index=['cat', 'dog', 'dog', 'mouse']) >>> df a b cat 1 3 dog 2 4 dog 2 4 mouse 3 4 >>> df.kurt() a 1.5 b 4.0 dtype: float64 With axis=None >>> df.kurt(axis=None).round(6) -0.988693 Using axis=1 >>> df = pd.DataFrame({'a': [1, 2], 'b': [3, 4], 'c': [3, 4], 'd': [1, 2]}, ... index=['cat', 'dog']) >>> df.kurt(axis=1) cat -6.0 dog -6.0 dtype: float64 -------- >>> s = pd.Series([1, 2, 2, 3], index=['cat', 'dog', 'dog', 'mouse']) >>> s cat 1 dog 2 dog 2 mouse 3 dtype: int64 >>> s.kurt() 1.5 With a DataFrame >>> df = pd.DataFrame({'a': [1, 2, 2, 3], 'b': [3, 4, 4, 4]}, ... index=['cat', 'dog', 'dog', 'mouse']) >>> df a b cat 1 3 dog 2 4 dog 2 4 mouse 3 4 >>> df.kurt() a 1.5 b 4.0 dtype: float64 With axis=None >>> df.kurt(axis=None).round(6) -0.988693 Using axis=1 >>> df = pd.DataFrame({'a': [1, 2], 'b': [3, 4], 'c': [3, 4], 'd': [1, 2]}, ... index=['cat', 'dog']) >>> df.kurt(axis=1) cat -6.0 dog -6.0 dtype: float64
Differences from pandas
This operation has no known divergences from the pandas API.
- take(**kwargs)
pandas.DataFrame.take()
is not yet supported in the Beam DataFrame API because it is deprecated in pandas.
- to_records(**kwargs)
pandas.DataFrame.to_records()
is not yet supported in the Beam DataFrame API because it produces an output type that is not deferred.For more information see https://s.apache.org/dataframe-non-deferred-result.
- to_dict(**kwargs)
pandas.DataFrame.to_dict()
is not yet supported in the Beam DataFrame API because it produces an output type that is not deferred.For more information see https://s.apache.org/dataframe-non-deferred-result.
- to_numpy(**kwargs)
pandas.DataFrame.to_numpy()
is not yet supported in the Beam DataFrame API because it produces an output type that is not deferred.For more information see https://s.apache.org/dataframe-non-deferred-result.
- to_string(**kwargs)
pandas.DataFrame.to_string()
is not yet supported in the Beam DataFrame API because it produces an output type that is not deferred.For more information see https://s.apache.org/dataframe-non-deferred-result.
- to_sparse(**kwargs)
pandas.DataFrame.to_sparse()
is not yet supported in the Beam DataFrame API because it produces an output type that is not deferred.For more information see https://s.apache.org/dataframe-non-deferred-result.
- transpose(**kwargs)
pandas.DataFrame.transpose()
is not yet supported in the Beam DataFrame API because the columns in the output DataFrame depend on the data.For more information see https://s.apache.org/dataframe-non-deferred-columns.
- property T
pandas.DataFrame.T()
is not yet supported in the Beam DataFrame API because the columns in the output DataFrame depend on the data.For more information see https://s.apache.org/dataframe-non-deferred-columns.
- update(**kwargs)
Modify in place using non-NA values from another DataFrame.
Aligns on indices. There is no return value.
- Parameters:
other (DeferredDataFrame, or object coercible into a DeferredDataFrame) – Should have at least one matching index/column label with the original DeferredDataFrame. If a DeferredSeries is passed, its name attribute must be set, and that will be used as the column name to align with the original DeferredDataFrame.
join ({'left'}, default 'left') – Only left join is implemented, keeping the index and columns of the original object.
overwrite (bool, default True) –
How to handle non-NA values for overlapping keys:
True: overwrite original DeferredDataFrame’s values with values from other.
False: only update values that are NA in the original DeferredDataFrame.
filter_func (callable(1d-array) -> bool 1d-array, optional) – Can choose to replace values other than NA. Return True for values that should be updated.
errors ({'raise', 'ignore'}, default 'ignore') – If ‘raise’, will raise a ValueError if the DeferredDataFrame and other both contain non-NA data in the same place.
- Returns:
This method directly changes calling object.
- Return type:
None
- Raises:
When errors=’raise’ and there’s overlapping non-NA data. * When errors is not either ‘ignore’ or ‘raise’
If join != ‘left’
Differences from pandas
This operation has no known divergences from the pandas API.
See also
dict.update
Similar method for dictionaries.
DeferredDataFrame.merge
For column(s)-on-column(s) operations.
Examples
NOTE: These examples are pulled directly from the pandas documentation for convenience. Usage of the Beam DataFrame API will look different because it is a deferred API.
>>> df = pd.DataFrame({'A': [1, 2, 3], ... 'B': [400, 500, 600]}) >>> new_df = pd.DataFrame({'B': [4, 5, 6], ... 'C': [7, 8, 9]}) >>> df.update(new_df) >>> df A B 0 1 4 1 2 5 2 3 6 The DataFrame's length does not increase as a result of the update, only values at matching index/column labels are updated. >>> df = pd.DataFrame({'A': ['a', 'b', 'c'], ... 'B': ['x', 'y', 'z']}) >>> new_df = pd.DataFrame({'B': ['d', 'e', 'f', 'g', 'h', 'i']}) >>> df.update(new_df) >>> df A B 0 a d 1 b e 2 c f For Series, its name attribute must be set. >>> df = pd.DataFrame({'A': ['a', 'b', 'c'], ... 'B': ['x', 'y', 'z']}) >>> new_column = pd.Series(['d', 'e'], name='B', index=[0, 2]) >>> df.update(new_column) >>> df A B 0 a d 1 b y 2 c e >>> df = pd.DataFrame({'A': ['a', 'b', 'c'], ... 'B': ['x', 'y', 'z']}) >>> new_df = pd.DataFrame({'B': ['d', 'e']}, index=[1, 2]) >>> df.update(new_df) >>> df A B 0 a x 1 b d 2 c e If `other` contains NaNs the corresponding values are not updated in the original dataframe. >>> df = pd.DataFrame({'A': [1, 2, 3], ... 'B': [400, 500, 600]}) >>> new_df = pd.DataFrame({'B': [4, np.nan, 6]}) >>> df.update(new_df) >>> df A B 0 1 4 1 2 500 2 3 6
- property values
pandas.DataFrame.values()
is not yet supported in the Beam DataFrame API because it produces an output type that is not deferred.For more information see https://s.apache.org/dataframe-non-deferred-result.
- property style
pandas.DataFrame.style()
is not yet supported in the Beam DataFrame API because it produces an output type that is not deferred.For more information see https://s.apache.org/dataframe-non-deferred-result.
- melt(ignore_index, **kwargs)[source]
Unpivot a DataFrame from wide to long format, optionally leaving identifiers set.
This function is useful to massage a DataFrame into a format where one or more columns are identifier variables (id_vars), while all other columns, considered measured variables (value_vars), are “unpivoted” to the row axis, leaving just two non-identifier columns, ‘variable’ and ‘value’.
- Parameters:
id_vars (tuple, list, or ndarray, optional) – Column(s) to use as identifier variables.
value_vars (tuple, list, or ndarray, optional) – Column(s) to unpivot. If not specified, uses all columns that are not set as id_vars.
var_name (scalar) – Name to use for the ‘variable’ column. If None it uses
frame.columns.name
or ‘variable’.value_name (scalar, default 'value') – Name to use for the ‘value’ column.
col_level (int or str, optional) – If columns are a MultiIndex then use this level to melt.
ignore_index (bool, default True) – If True, original index is ignored. If False, the original index is retained. Index labels will be repeated as necessary.
- Returns:
Unpivoted DeferredDataFrame.
- Return type:
Differences from pandas
ignore_index=True
is not supported, because it requires generating an order-sensitive index.See also
melt
Identical method.
pivot_table
Create a spreadsheet-style pivot table as a DeferredDataFrame.
DeferredDataFrame.pivot
Return reshaped DeferredDataFrame organized by given index / column values.
DeferredDataFrame.explode
Explode a DeferredDataFrame from list-like columns to long format.
Notes
Reference the user guide for more examples.
Examples
NOTE: These examples are pulled directly from the pandas documentation for convenience. Usage of the Beam DataFrame API will look different because it is a deferred API. In addition, some arguments shown here may not be supported, see ‘Differences from pandas’ for details.
>>> df = pd.DataFrame({'A': {0: 'a', 1: 'b', 2: 'c'}, ... 'B': {0: 1, 1: 3, 2: 5}, ... 'C': {0: 2, 1: 4, 2: 6}}) >>> df A B C 0 a 1 2 1 b 3 4 2 c 5 6 >>> df.melt(id_vars=['A'], value_vars=['B']) A variable value 0 a B 1 1 b B 3 2 c B 5 >>> df.melt(id_vars=['A'], value_vars=['B', 'C']) A variable value 0 a B 1 1 b B 3 2 c B 5 3 a C 2 4 b C 4 5 c C 6 The names of 'variable' and 'value' columns can be customized: >>> df.melt(id_vars=['A'], value_vars=['B'], ... var_name='myVarname', value_name='myValname') A myVarname myValname 0 a B 1 1 b B 3 2 c B 5 Original index values can be kept around: >>> df.melt(id_vars=['A'], value_vars=['B', 'C'], ignore_index=False) A variable value 0 a B 1 1 b B 3 2 c B 5 0 a C 2 1 b C 4 2 c C 6 If you have multi-index columns: >>> df.columns = [list('ABC'), list('DEF')] >>> df A B C D E F 0 a 1 2 1 b 3 4 2 c 5 6 >>> df.melt(col_level=0, id_vars=['A'], value_vars=['B']) A variable value 0 a B 1 1 b B 3 2 c B 5 >>> df.melt(id_vars=[('A', 'D')], value_vars=[('B', 'E')]) (A, D) variable_0 variable_1 value 0 a B E 1 1 b B E 3 2 c B E 5
- value_counts(subset=None, sort=False, normalize=False, ascending=False, dropna=True)[source]
Return a Series containing the frequency of each distinct row in the Dataframe.
- Parameters:
subset (label or list of labels, optional) – Columns to use when counting unique combinations.
normalize (bool, default False) – Return proportions rather than frequencies.
sort (bool, default True) – Sort by frequencies when True. Sort by DeferredDataFrame column values when False.
ascending (bool, default False) – Sort in ascending order.
dropna (bool, default True) –
Don’t include counts of rows that contain NA values.
Added in version 1.3.0.
- Return type:
Differences from pandas
sort
isFalse
by default, andsort=True
is not supported because it imposes an ordering on the dataset which likely will not be preserved.See also
DeferredSeries.value_counts
Equivalent method on DeferredSeries.
Notes
The returned DeferredSeries will have a MultiIndex with one level per input column but an Index (non-multi) for a single label. By default, rows that contain any NA values are omitted from the result. By default, the resulting DeferredSeries will be in descending order so that the first element is the most frequently-occurring row.
Examples
NOTE: These examples are pulled directly from the pandas documentation for convenience. Usage of the Beam DataFrame API will look different because it is a deferred API. In addition, some arguments shown here may not be supported, see ‘Differences from pandas’ for details.
>>> df = pd.DataFrame({'num_legs': [2, 4, 4, 6], ... 'num_wings': [2, 0, 0, 0]}, ... index=['falcon', 'dog', 'cat', 'ant']) >>> df num_legs num_wings falcon 2 2 dog 4 0 cat 4 0 ant 6 0 >>> df.value_counts() num_legs num_wings 4 0 2 2 2 1 6 0 1 Name: count, dtype: int64 >>> df.value_counts(sort=False) num_legs num_wings 2 2 1 4 0 2 6 0 1 Name: count, dtype: int64 >>> df.value_counts(ascending=True) num_legs num_wings 2 2 1 6 0 1 4 0 2 Name: count, dtype: int64 >>> df.value_counts(normalize=True) num_legs num_wings 4 0 0.50 2 2 0.25 6 0 0.25 Name: proportion, dtype: float64 With `dropna` set to `False` we can also count rows with NA values. >>> df = pd.DataFrame({'first_name': ['John', 'Anne', 'John', 'Beth'], ... 'middle_name': ['Smith', pd.NA, pd.NA, 'Louise']}) >>> df first_name middle_name 0 John Smith 1 Anne <NA> 2 John <NA> 3 Beth Louise >>> df.value_counts() first_name middle_name Beth Louise 1 John Smith 1 Name: count, dtype: int64 >>> df.value_counts(dropna=False) first_name middle_name Anne NaN 1 Beth Louise 1 John Smith 1 NaN 1 Name: count, dtype: int64 >>> df.value_counts("first_name") first_name John 2 Anne 1 Beth 1 Name: count, dtype: int64
- compare(other, align_axis, keep_shape, **kwargs)[source]
Compare to another DataFrame and show the differences.
- Parameters:
other (DeferredDataFrame) – Object to compare with.
align_axis ({0 or 'index', 1 or 'columns'}, default 1) –
Determine which axis to align the comparison on.
- 0, or ‘index’Resulting differences are stacked vertically
with rows drawn alternately from self and other.
- 1, or ‘columns’Resulting differences are aligned horizontally
with columns drawn alternately from self and other.
keep_shape (bool, default False) – If true, all rows and columns are kept. Otherwise, only the ones with different values are kept.
keep_equal (bool, default False) – If true, the result keeps values that are equal. Otherwise, equal values are shown as NaNs.
result_names (tuple, default ('self', 'other')) –
Set the dataframes names in the comparison.
Added in version 1.5.0.
- Returns:
DeferredDataFrame that shows the differences stacked side by side.
The resulting index will be a MultiIndex with ‘self’ and ‘other’ stacked alternately at the inner level.
- Return type:
- Raises:
ValueError – When the two DeferredDataFrames don’t have identical labels or shape.
Differences from pandas
The default values
align_axis=1 and ``keep_shape=False
are not supported, because the output columns depend on the data. To usealign_axis=1
, please specifykeep_shape=True
.See also
DeferredSeries.compare
Compare with another DeferredSeries and show differences.
DeferredDataFrame.equals
Test whether two objects contain the same elements.
Notes
Matching NaNs will not appear as a difference.
Can only compare identically-labeled (i.e. same shape, identical row and column labels) DeferredDataFrames
Examples
NOTE: These examples are pulled directly from the pandas documentation for convenience. Usage of the Beam DataFrame API will look different because it is a deferred API. In addition, some arguments shown here may not be supported, see ‘Differences from pandas’ for details.
>>> df = pd.DataFrame( ... { ... "col1": ["a", "a", "b", "b", "a"], ... "col2": [1.0, 2.0, 3.0, np.nan, 5.0], ... "col3": [1.0, 2.0, 3.0, 4.0, 5.0] ... }, ... columns=["col1", "col2", "col3"], ... ) >>> df col1 col2 col3 0 a 1.0 1.0 1 a 2.0 2.0 2 b 3.0 3.0 3 b NaN 4.0 4 a 5.0 5.0 >>> df2 = df.copy() >>> df2.loc[0, 'col1'] = 'c' >>> df2.loc[2, 'col3'] = 4.0 >>> df2 col1 col2 col3 0 c 1.0 1.0 1 a 2.0 2.0 2 b 3.0 4.0 3 b NaN 4.0 4 a 5.0 5.0 Align the differences on columns >>> df.compare(df2) col1 col3 self other self other 0 a c NaN NaN 2 NaN NaN 3.0 4.0 Assign result_names >>> df.compare(df2, result_names=("left", "right")) col1 col3 left right left right 0 a c NaN NaN 2 NaN NaN 3.0 4.0 Stack the differences on rows >>> df.compare(df2, align_axis=0) col1 col3 0 self a NaN other c NaN 2 self NaN 3.0 other NaN 4.0 Keep the equal values >>> df.compare(df2, keep_equal=True) col1 col3 self other self other 0 a c 1.0 1.0 2 b b 3.0 4.0 Keep all original rows and columns >>> df.compare(df2, keep_shape=True) col1 col2 col3 self other self other self other 0 a c NaN NaN NaN NaN 1 NaN NaN NaN NaN NaN NaN 2 NaN NaN NaN NaN 3.0 4.0 3 NaN NaN NaN NaN NaN NaN 4 NaN NaN NaN NaN NaN NaN Keep all original rows and columns and also all original values >>> df.compare(df2, keep_shape=True, keep_equal=True) col1 col2 col3 self other self other self other 0 a c 1.0 1.0 1.0 1.0 1 a a 2.0 2.0 2.0 2.0 2 b b 3.0 3.0 3.0 4.0 3 b b NaN NaN 4.0 4.0 4 a a 5.0 5.0 5.0 5.0
- idxmin(**kwargs)[source]
Return index of first occurrence of minimum over requested axis.
NA/null values are excluded.
- Parameters:
axis ({0 or 'index', 1 or 'columns'}, default 0) – The axis to use. 0 or ‘index’ for row-wise, 1 or ‘columns’ for column-wise.
skipna (bool, default True) – Exclude NA/null values. If an entire row/column is NA, the result will be NA.
numeric_only (bool, default False) –
Include only float, int or boolean data.
Added in version 1.5.0.
- Returns:
Indexes of minima along the specified axis.
- Return type:
- Raises:
If the row/column is empty
Differences from pandas
This operation has no known divergences from the pandas API.
See also
DeferredSeries.idxmin
Return index of the minimum element.
Notes
This method is the DeferredDataFrame version of
ndarray.argmin
.Examples
NOTE: These examples are pulled directly from the pandas documentation for convenience. Usage of the Beam DataFrame API will look different because it is a deferred API.
Consider a dataset containing food consumption in Argentina. >>> df = pd.DataFrame({'consumption': [10.51, 103.11, 55.48], ... 'co2_emissions': [37.2, 19.66, 1712]}, ... index=['Pork', 'Wheat Products', 'Beef']) >>> df consumption co2_emissions Pork 10.51 37.20 Wheat Products 103.11 19.66 Beef 55.48 1712.00 By default, it returns the index for the minimum value in each column. >>> df.idxmin() consumption Pork co2_emissions Wheat Products dtype: object To return the index for the minimum value in each row, use ``axis="columns"``. >>> df.idxmin(axis="columns") Pork consumption Wheat Products co2_emissions Beef consumption dtype: object
- idxmax(**kwargs)[source]
Return index of first occurrence of maximum over requested axis.
NA/null values are excluded.
- Parameters:
axis ({0 or 'index', 1 or 'columns'}, default 0) – The axis to use. 0 or ‘index’ for row-wise, 1 or ‘columns’ for column-wise.
skipna (bool, default True) – Exclude NA/null values. If an entire row/column is NA, the result will be NA.
numeric_only (bool, default False) –
Include only float, int or boolean data.
Added in version 1.5.0.
- Returns:
Indexes of maxima along the specified axis.
- Return type:
- Raises:
If the row/column is empty
Differences from pandas
This operation has no known divergences from the pandas API.
See also
DeferredSeries.idxmax
Return index of the maximum element.
Notes
This method is the DeferredDataFrame version of
ndarray.argmax
.Examples
NOTE: These examples are pulled directly from the pandas documentation for convenience. Usage of the Beam DataFrame API will look different because it is a deferred API.
Consider a dataset containing food consumption in Argentina. >>> df = pd.DataFrame({'consumption': [10.51, 103.11, 55.48], ... 'co2_emissions': [37.2, 19.66, 1712]}, ... index=['Pork', 'Wheat Products', 'Beef']) >>> df consumption co2_emissions Pork 10.51 37.20 Wheat Products 103.11 19.66 Beef 55.48 1712.00 By default, it returns the index for the maximum value in each column. >>> df.idxmax() consumption Wheat Products co2_emissions Beef dtype: object To return the index for the maximum value in each row, use ``axis="columns"``. >>> df.idxmax(axis="columns") Pork co2_emissions Wheat Products consumption Beef co2_emissions dtype: object
- add(**kwargs)
Get Addition of dataframe and other, element-wise (binary operator add).
Equivalent to
dataframe + other
, but with support to substitute a fill_value for missing data in one of the inputs. With reverse version, radd.Among flexible wrappers (add, sub, mul, div, floordiv, mod, pow) to arithmetic operators: +, -, *, /, //, %, **.
- Parameters:
other (scalar, sequence, DeferredSeries, dict or DeferredDataFrame) – Any single or multiple element data structure, or list-like object.
axis ({0 or 'index', 1 or 'columns'}) – Whether to compare by the index (0 or ‘index’) or columns. (1 or ‘columns’). For DeferredSeries input, axis to match DeferredSeries index on.
level (int or label) – Broadcast across a level, matching Index values on the passed MultiIndex level.
fill_value (float or None, default None) – Fill existing missing (NaN) values, and any new element needed for successful DeferredDataFrame alignment, with this value before computation. If data in both corresponding DeferredDataFrame locations is missing the result will be missing.
- Returns:
Result of the arithmetic operation.
- Return type:
Differences from pandas
Only level=None is supported
See also
DeferredDataFrame.add
Add DeferredDataFrames.
DeferredDataFrame.sub
Subtract DeferredDataFrames.
DeferredDataFrame.mul
Multiply DeferredDataFrames.
DeferredDataFrame.div
Divide DeferredDataFrames (float division).
DeferredDataFrame.truediv
Divide DeferredDataFrames (float division).
DeferredDataFrame.floordiv
Divide DeferredDataFrames (integer division).
DeferredDataFrame.mod
Calculate modulo (remainder after division).
DeferredDataFrame.pow
Calculate exponential power.
Notes
Mismatched indices will be unioned together.
Examples
NOTE: These examples are pulled directly from the pandas documentation for convenience. Usage of the Beam DataFrame API will look different because it is a deferred API. In addition, some arguments shown here may not be supported, see ‘Differences from pandas’ for details.
>>> df = pd.DataFrame({'angles': [0, 3, 4], ... 'degrees': [360, 180, 360]}, ... index=['circle', 'triangle', 'rectangle']) >>> df angles degrees circle 0 360 triangle 3 180 rectangle 4 360 Add a scalar with operator version which return the same results. >>> df + 1 angles degrees circle 1 361 triangle 4 181 rectangle 5 361 >>> df.add(1) angles degrees circle 1 361 triangle 4 181 rectangle 5 361 Divide by constant with reverse version. >>> df.div(10) angles degrees circle 0.0 36.0 triangle 0.3 18.0 rectangle 0.4 36.0 >>> df.rdiv(10) angles degrees circle inf 0.027778 triangle 3.333333 0.055556 rectangle 2.500000 0.027778 Subtract a list and Series by axis with operator version. >>> df - [1, 2] angles degrees circle -1 358 triangle 2 178 rectangle 3 358 >>> df.sub([1, 2], axis='columns') angles degrees circle -1 358 triangle 2 178 rectangle 3 358 >>> df.sub(pd.Series([1, 1, 1], index=['circle', 'triangle', 'rectangle']), ... axis='index') angles degrees circle -1 359 triangle 2 179 rectangle 3 359 Multiply a dictionary by axis. >>> df.mul({'angles': 0, 'degrees': 2}) angles degrees circle 0 720 triangle 0 360 rectangle 0 720 >>> df.mul({'circle': 0, 'triangle': 2, 'rectangle': 3}, axis='index') angles degrees circle 0 0 triangle 6 360 rectangle 12 1080 Multiply a DataFrame of different shape with operator version. >>> other = pd.DataFrame({'angles': [0, 3, 4]}, ... index=['circle', 'triangle', 'rectangle']) >>> other angles circle 0 triangle 3 rectangle 4 >>> df * other angles degrees circle 0 NaN triangle 9 NaN rectangle 16 NaN >>> df.mul(other, fill_value=0) angles degrees circle 0 0.0 triangle 9 0.0 rectangle 16 0.0 Divide by a MultiIndex by level. >>> df_multindex = pd.DataFrame({'angles': [0, 3, 4, 4, 5, 6], ... 'degrees': [360, 180, 360, 360, 540, 720]}, ... index=[['A', 'A', 'A', 'B', 'B', 'B'], ... ['circle', 'triangle', 'rectangle', ... 'square', 'pentagon', 'hexagon']]) >>> df_multindex angles degrees A circle 0 360 triangle 3 180 rectangle 4 360 B square 4 360 pentagon 5 540 hexagon 6 720 >>> df.div(df_multindex, level=1, fill_value=0) angles degrees A circle NaN 1.0 triangle 1.0 1.0 rectangle 1.0 1.0 B square 0.0 0.0 pentagon 0.0 0.0 hexagon 0.0 0.0
- apply(**kwargs)
pandas.DataFrame.apply()
is not implemented yet in the Beam DataFrame API.If support for ‘apply’ is important to you, please let the Beam community know by writing to user@beam.apache.org or commenting on 20318.
- asfreq(**kwargs)
pandas.DataFrame.asfreq()
is not implemented yet in the Beam DataFrame API.If support for ‘asfreq’ is important to you, please let the Beam community know by writing to user@beam.apache.org or commenting on 20318.
- property at
pandas.DataFrame.at()
is not implemented yet in the Beam DataFrame API.If support for ‘at’ is important to you, please let the Beam community know by writing to user@beam.apache.org or commenting on 20318.
- boxplot(**kwargs)
pandas.DataFrame.boxplot()
is not implemented yet in the Beam DataFrame API.If support for ‘boxplot’ is important to you, please let the Beam community know by writing to user@beam.apache.org or commenting on 20318.
- convert_dtypes(**kwargs)
pandas.DataFrame.convert_dtypes()
is not implemented yet in the Beam DataFrame API.If support for ‘convert_dtypes’ is important to you, please let the Beam community know by writing to user@beam.apache.org or commenting on 20318.
- div(**kwargs)
Get Floating division of dataframe and other, element-wise (binary operator truediv).
Equivalent to
dataframe / other
, but with support to substitute a fill_value for missing data in one of the inputs. With reverse version, rtruediv.Among flexible wrappers (add, sub, mul, div, floordiv, mod, pow) to arithmetic operators: +, -, *, /, //, %, **.
- Parameters:
other (scalar, sequence, DeferredSeries, dict or DeferredDataFrame) – Any single or multiple element data structure, or list-like object.
axis ({0 or 'index', 1 or 'columns'}) – Whether to compare by the index (0 or ‘index’) or columns. (1 or ‘columns’). For DeferredSeries input, axis to match DeferredSeries index on.
level (int or label) – Broadcast across a level, matching Index values on the passed MultiIndex level.
fill_value (float or None, default None) – Fill existing missing (NaN) values, and any new element needed for successful DeferredDataFrame alignment, with this value before computation. If data in both corresponding DeferredDataFrame locations is missing the result will be missing.
- Returns:
Result of the arithmetic operation.
- Return type:
Differences from pandas
Only level=None is supported
See also
DeferredDataFrame.add
Add DeferredDataFrames.
DeferredDataFrame.sub
Subtract DeferredDataFrames.
DeferredDataFrame.mul
Multiply DeferredDataFrames.
DeferredDataFrame.div
Divide DeferredDataFrames (float division).
DeferredDataFrame.truediv
Divide DeferredDataFrames (float division).
DeferredDataFrame.floordiv
Divide DeferredDataFrames (integer division).
DeferredDataFrame.mod
Calculate modulo (remainder after division).
DeferredDataFrame.pow
Calculate exponential power.
Notes
Mismatched indices will be unioned together.
Examples
NOTE: These examples are pulled directly from the pandas documentation for convenience. Usage of the Beam DataFrame API will look different because it is a deferred API. In addition, some arguments shown here may not be supported, see ‘Differences from pandas’ for details.
>>> df = pd.DataFrame({'angles': [0, 3, 4], ... 'degrees': [360, 180, 360]}, ... index=['circle', 'triangle', 'rectangle']) >>> df angles degrees circle 0 360 triangle 3 180 rectangle 4 360 Add a scalar with operator version which return the same results. >>> df + 1 angles degrees circle 1 361 triangle 4 181 rectangle 5 361 >>> df.add(1) angles degrees circle 1 361 triangle 4 181 rectangle 5 361 Divide by constant with reverse version. >>> df.div(10) angles degrees circle 0.0 36.0 triangle 0.3 18.0 rectangle 0.4 36.0 >>> df.rdiv(10) angles degrees circle inf 0.027778 triangle 3.333333 0.055556 rectangle 2.500000 0.027778 Subtract a list and Series by axis with operator version. >>> df - [1, 2] angles degrees circle -1 358 triangle 2 178 rectangle 3 358 >>> df.sub([1, 2], axis='columns') angles degrees circle -1 358 triangle 2 178 rectangle 3 358 >>> df.sub(pd.Series([1, 1, 1], index=['circle', 'triangle', 'rectangle']), ... axis='index') angles degrees circle -1 359 triangle 2 179 rectangle 3 359 Multiply a dictionary by axis. >>> df.mul({'angles': 0, 'degrees': 2}) angles degrees circle 0 720 triangle 0 360 rectangle 0 720 >>> df.mul({'circle': 0, 'triangle': 2, 'rectangle': 3}, axis='index') angles degrees circle 0 0 triangle 6 360 rectangle 12 1080 Multiply a DataFrame of different shape with operator version. >>> other = pd.DataFrame({'angles': [0, 3, 4]}, ... index=['circle', 'triangle', 'rectangle']) >>> other angles circle 0 triangle 3 rectangle 4 >>> df * other angles degrees circle 0 NaN triangle 9 NaN rectangle 16 NaN >>> df.mul(other, fill_value=0) angles degrees circle 0 0.0 triangle 9 0.0 rectangle 16 0.0 Divide by a MultiIndex by level. >>> df_multindex = pd.DataFrame({'angles': [0, 3, 4, 4, 5, 6], ... 'degrees': [360, 180, 360, 360, 540, 720]}, ... index=[['A', 'A', 'A', 'B', 'B', 'B'], ... ['circle', 'triangle', 'rectangle', ... 'square', 'pentagon', 'hexagon']]) >>> df_multindex angles degrees A circle 0 360 triangle 3 180 rectangle 4 360 B square 4 360 pentagon 5 540 hexagon 6 720 >>> df.div(df_multindex, level=1, fill_value=0) angles degrees A circle NaN 1.0 triangle 1.0 1.0 rectangle 1.0 1.0 B square 0.0 0.0 pentagon 0.0 0.0 hexagon 0.0 0.0
- divide(**kwargs)
Get Floating division of dataframe and other, element-wise (binary operator truediv).
Equivalent to
dataframe / other
, but with support to substitute a fill_value for missing data in one of the inputs. With reverse version, rtruediv.Among flexible wrappers (add, sub, mul, div, floordiv, mod, pow) to arithmetic operators: +, -, *, /, //, %, **.
- Parameters:
other (scalar, sequence, DeferredSeries, dict or DeferredDataFrame) – Any single or multiple element data structure, or list-like object.
axis ({0 or 'index', 1 or 'columns'}) – Whether to compare by the index (0 or ‘index’) or columns. (1 or ‘columns’). For DeferredSeries input, axis to match DeferredSeries index on.
level (int or label) – Broadcast across a level, matching Index values on the passed MultiIndex level.
fill_value (float or None, default None) – Fill existing missing (NaN) values, and any new element needed for successful DeferredDataFrame alignment, with this value before computation. If data in both corresponding DeferredDataFrame locations is missing the result will be missing.
- Returns:
Result of the arithmetic operation.
- Return type:
Differences from pandas
Only level=None is supported
See also
DeferredDataFrame.add
Add DeferredDataFrames.
DeferredDataFrame.sub
Subtract DeferredDataFrames.
DeferredDataFrame.mul
Multiply DeferredDataFrames.
DeferredDataFrame.div
Divide DeferredDataFrames (float division).
DeferredDataFrame.truediv
Divide DeferredDataFrames (float division).
DeferredDataFrame.floordiv
Divide DeferredDataFrames (integer division).
DeferredDataFrame.mod
Calculate modulo (remainder after division).
DeferredDataFrame.pow
Calculate exponential power.
Notes
Mismatched indices will be unioned together.
Examples
NOTE: These examples are pulled directly from the pandas documentation for convenience. Usage of the Beam DataFrame API will look different because it is a deferred API. In addition, some arguments shown here may not be supported, see ‘Differences from pandas’ for details.
>>> df = pd.DataFrame({'angles': [0, 3, 4], ... 'degrees': [360, 180, 360]}, ... index=['circle', 'triangle', 'rectangle']) >>> df angles degrees circle 0 360 triangle 3 180 rectangle 4 360 Add a scalar with operator version which return the same results. >>> df + 1 angles degrees circle 1 361 triangle 4 181 rectangle 5 361 >>> df.add(1) angles degrees circle 1 361 triangle 4 181 rectangle 5 361 Divide by constant with reverse version. >>> df.div(10) angles degrees circle 0.0 36.0 triangle 0.3 18.0 rectangle 0.4 36.0 >>> df.rdiv(10) angles degrees circle inf 0.027778 triangle 3.333333 0.055556 rectangle 2.500000 0.027778 Subtract a list and Series by axis with operator version. >>> df - [1, 2] angles degrees circle -1 358 triangle 2 178 rectangle 3 358 >>> df.sub([1, 2], axis='columns') angles degrees circle -1 358 triangle 2 178 rectangle 3 358 >>> df.sub(pd.Series([1, 1, 1], index=['circle', 'triangle', 'rectangle']), ... axis='index') angles degrees circle -1 359 triangle 2 179 rectangle 3 359 Multiply a dictionary by axis. >>> df.mul({'angles': 0, 'degrees': 2}) angles degrees circle 0 720 triangle 0 360 rectangle 0 720 >>> df.mul({'circle': 0, 'triangle': 2, 'rectangle': 3}, axis='index') angles degrees circle 0 0 triangle 6 360 rectangle 12 1080 Multiply a DataFrame of different shape with operator version. >>> other = pd.DataFrame({'angles': [0, 3, 4]}, ... index=['circle', 'triangle', 'rectangle']) >>> other angles circle 0 triangle 3 rectangle 4 >>> df * other angles degrees circle 0 NaN triangle 9 NaN rectangle 16 NaN >>> df.mul(other, fill_value=0) angles degrees circle 0 0.0 triangle 9 0.0 rectangle 16 0.0 Divide by a MultiIndex by level. >>> df_multindex = pd.DataFrame({'angles': [0, 3, 4, 4, 5, 6], ... 'degrees': [360, 180, 360, 360, 540, 720]}, ... index=[['A', 'A', 'A', 'B', 'B', 'B'], ... ['circle', 'triangle', 'rectangle', ... 'square', 'pentagon', 'hexagon']]) >>> df_multindex angles degrees A circle 0 360 triangle 3 180 rectangle 4 360 B square 4 360 pentagon 5 540 hexagon 6 720 >>> df.div(df_multindex, level=1, fill_value=0) angles degrees A circle NaN 1.0 triangle 1.0 1.0 rectangle 1.0 1.0 B square 0.0 0.0 pentagon 0.0 0.0 hexagon 0.0 0.0
- eq(**kwargs)
Get Equal to of dataframe and other, element-wise (binary operator eq).
Among flexible wrappers (eq, ne, le, lt, ge, gt) to comparison operators.
Equivalent to ==, !=, <=, <, >=, > with support to choose axis (rows or columns) and level for comparison.
- Parameters:
other (scalar, sequence, DeferredSeries, or DeferredDataFrame) – Any single or multiple element data structure, or list-like object.
axis ({0 or 'index', 1 or 'columns'}, default 'columns') – Whether to compare by the index (0 or ‘index’) or columns (1 or ‘columns’).
level (int or label) – Broadcast across a level, matching Index values on the passed MultiIndex level.
- Returns:
Result of the comparison.
- Return type:
Differences from pandas
This operation has no known divergences from the pandas API.
See also
DeferredDataFrame.eq
Compare DeferredDataFrames for equality elementwise.
DeferredDataFrame.ne
Compare DeferredDataFrames for inequality elementwise.
DeferredDataFrame.le
Compare DeferredDataFrames for less than inequality or equality elementwise.
DeferredDataFrame.lt
Compare DeferredDataFrames for strictly less than inequality elementwise.
DeferredDataFrame.ge
Compare DeferredDataFrames for greater than inequality or equality elementwise.
DeferredDataFrame.gt
Compare DeferredDataFrames for strictly greater than inequality elementwise.
Notes
Mismatched indices will be unioned together. NaN values are considered different (i.e. NaN != NaN).
Examples
NOTE: These examples are pulled directly from the pandas documentation for convenience. Usage of the Beam DataFrame API will look different because it is a deferred API.
>>> df = pd.DataFrame({'cost': [250, 150, 100], ... 'revenue': [100, 250, 300]}, ... index=['A', 'B', 'C']) >>> df cost revenue A 250 100 B 150 250 C 100 300 Comparison with a scalar, using either the operator or method: >>> df == 100 cost revenue A False True B False False C True False >>> df.eq(100) cost revenue A False True B False False C True False When `other` is a :class:`Series`, the columns of a DataFrame are aligned with the index of `other` and broadcast: >>> df != pd.Series([100, 250], index=["cost", "revenue"]) cost revenue A True True B True False C False True Use the method to control the broadcast axis: >>> df.ne(pd.Series([100, 300], index=["A", "D"]), axis='index') cost revenue A True False B True True C True True D True True When comparing to an arbitrary sequence, the number of columns must match the number elements in `other`: >>> df == [250, 100] cost revenue A True True B False False C False False Use the method to control the axis: >>> df.eq([250, 250, 100], axis='index') cost revenue A True False B False True C True False Compare to a DataFrame of different shape. >>> other = pd.DataFrame({'revenue': [300, 250, 100, 150]}, ... index=['A', 'B', 'C', 'D']) >>> other revenue A 300 B 250 C 100 D 150 >>> df.gt(other) cost revenue A False False B False False C False True D False False Compare to a MultiIndex by level. >>> df_multindex = pd.DataFrame({'cost': [250, 150, 100, 150, 300, 220], ... 'revenue': [100, 250, 300, 200, 175, 225]}, ... index=[['Q1', 'Q1', 'Q1', 'Q2', 'Q2', 'Q2'], ... ['A', 'B', 'C', 'A', 'B', 'C']]) >>> df_multindex cost revenue Q1 A 250 100 B 150 250 C 100 300 Q2 A 150 200 B 300 175 C 220 225 >>> df.le(df_multindex, level=1) cost revenue Q1 A True True B True True C True True Q2 A False True B True False C True False
- filter(**kwargs)
Subset the dataframe rows or columns according to the specified index labels.
Note that this routine does not filter a dataframe on its contents. The filter is applied to the labels of the index.
- Parameters:
items (list-like) – Keep labels from axis which are in items.
like (str) – Keep labels from axis for which “like in label == True”.
regex (str (regular expression)) – Keep labels from axis for which re.search(regex, label) == True.
axis ({0 or 'index', 1 or 'columns', None}, default None) – The axis to filter on, expressed either as an index (int) or axis name (str). By default this is the info axis, ‘columns’ for DeferredDataFrame. For DeferredSeries this parameter is unused and defaults to None.
- Return type:
same type as input object
Differences from pandas
This operation has no known divergences from the pandas API.
See also
DeferredDataFrame.loc
Access a group of rows and columns by label(s) or a boolean array.
Notes
The
items
,like
, andregex
parameters are enforced to be mutually exclusive.axis
defaults to the info axis that is used when indexing with[]
.Examples
NOTE: These examples are pulled directly from the pandas documentation for convenience. Usage of the Beam DataFrame API will look different because it is a deferred API.
>>> df = pd.DataFrame(np.array(([1, 2, 3], [4, 5, 6])), ... index=['mouse', 'rabbit'], ... columns=['one', 'two', 'three']) >>> df one two three mouse 1 2 3 rabbit 4 5 6 >>> # select columns by name >>> df.filter(items=['one', 'three']) one three mouse 1 3 rabbit 4 6 >>> # select columns by regular expression >>> df.filter(regex='e$', axis=1) one three mouse 1 3 rabbit 4 6 >>> # select rows containing 'bbi' >>> df.filter(like='bbi', axis=0) one two three rabbit 4 5 6
- property flags
pandas.DataFrame.flags()
is not implemented yet in the Beam DataFrame API.If support for ‘flags’ is important to you, please let the Beam community know by writing to user@beam.apache.org or commenting on 20318.
- floordiv(**kwargs)
Get Integer division of dataframe and other, element-wise (binary operator floordiv).
Equivalent to
dataframe // other
, but with support to substitute a fill_value for missing data in one of the inputs. With reverse version, rfloordiv.Among flexible wrappers (add, sub, mul, div, floordiv, mod, pow) to arithmetic operators: +, -, *, /, //, %, **.
- Parameters:
other (scalar, sequence, DeferredSeries, dict or DeferredDataFrame) – Any single or multiple element data structure, or list-like object.
axis ({0 or 'index', 1 or 'columns'}) – Whether to compare by the index (0 or ‘index’) or columns. (1 or ‘columns’). For DeferredSeries input, axis to match DeferredSeries index on.
level (int or label) – Broadcast across a level, matching Index values on the passed MultiIndex level.
fill_value (float or None, default None) – Fill existing missing (NaN) values, and any new element needed for successful DeferredDataFrame alignment, with this value before computation. If data in both corresponding DeferredDataFrame locations is missing the result will be missing.
- Returns:
Result of the arithmetic operation.
- Return type:
Differences from pandas
Only level=None is supported
See also
DeferredDataFrame.add
Add DeferredDataFrames.
DeferredDataFrame.sub
Subtract DeferredDataFrames.
DeferredDataFrame.mul
Multiply DeferredDataFrames.
DeferredDataFrame.div
Divide DeferredDataFrames (float division).
DeferredDataFrame.truediv
Divide DeferredDataFrames (float division).
DeferredDataFrame.floordiv
Divide DeferredDataFrames (integer division).
DeferredDataFrame.mod
Calculate modulo (remainder after division).
DeferredDataFrame.pow
Calculate exponential power.
Notes
Mismatched indices will be unioned together.
Examples
NOTE: These examples are pulled directly from the pandas documentation for convenience. Usage of the Beam DataFrame API will look different because it is a deferred API. In addition, some arguments shown here may not be supported, see ‘Differences from pandas’ for details.
>>> df = pd.DataFrame({'angles': [0, 3, 4], ... 'degrees': [360, 180, 360]}, ... index=['circle', 'triangle', 'rectangle']) >>> df angles degrees circle 0 360 triangle 3 180 rectangle 4 360 Add a scalar with operator version which return the same results. >>> df + 1 angles degrees circle 1 361 triangle 4 181 rectangle 5 361 >>> df.add(1) angles degrees circle 1 361 triangle 4 181 rectangle 5 361 Divide by constant with reverse version. >>> df.div(10) angles degrees circle 0.0 36.0 triangle 0.3 18.0 rectangle 0.4 36.0 >>> df.rdiv(10) angles degrees circle inf 0.027778 triangle 3.333333 0.055556 rectangle 2.500000 0.027778 Subtract a list and Series by axis with operator version. >>> df - [1, 2] angles degrees circle -1 358 triangle 2 178 rectangle 3 358 >>> df.sub([1, 2], axis='columns') angles degrees circle -1 358 triangle 2 178 rectangle 3 358 >>> df.sub(pd.Series([1, 1, 1], index=['circle', 'triangle', 'rectangle']), ... axis='index') angles degrees circle -1 359 triangle 2 179 rectangle 3 359 Multiply a dictionary by axis. >>> df.mul({'angles': 0, 'degrees': 2}) angles degrees circle 0 720 triangle 0 360 rectangle 0 720 >>> df.mul({'circle': 0, 'triangle': 2, 'rectangle': 3}, axis='index') angles degrees circle 0 0 triangle 6 360 rectangle 12 1080 Multiply a DataFrame of different shape with operator version. >>> other = pd.DataFrame({'angles': [0, 3, 4]}, ... index=['circle', 'triangle', 'rectangle']) >>> other angles circle 0 triangle 3 rectangle 4 >>> df * other angles degrees circle 0 NaN triangle 9 NaN rectangle 16 NaN >>> df.mul(other, fill_value=0) angles degrees circle 0 0.0 triangle 9 0.0 rectangle 16 0.0 Divide by a MultiIndex by level. >>> df_multindex = pd.DataFrame({'angles': [0, 3, 4, 4, 5, 6], ... 'degrees': [360, 180, 360, 360, 540, 720]}, ... index=[['A', 'A', 'A', 'B', 'B', 'B'], ... ['circle', 'triangle', 'rectangle', ... 'square', 'pentagon', 'hexagon']]) >>> df_multindex angles degrees A circle 0 360 triangle 3 180 rectangle 4 360 B square 4 360 pentagon 5 540 hexagon 6 720 >>> df.div(df_multindex, level=1, fill_value=0) angles degrees A circle NaN 1.0 triangle 1.0 1.0 rectangle 1.0 1.0 B square 0.0 0.0 pentagon 0.0 0.0 hexagon 0.0 0.0
- ge(**kwargs)
Get Greater than or equal to of dataframe and other, element-wise (binary operator ge).
Among flexible wrappers (eq, ne, le, lt, ge, gt) to comparison operators.
Equivalent to ==, !=, <=, <, >=, > with support to choose axis (rows or columns) and level for comparison.
- Parameters:
other (scalar, sequence, DeferredSeries, or DeferredDataFrame) – Any single or multiple element data structure, or list-like object.
axis ({0 or 'index', 1 or 'columns'}, default 'columns') – Whether to compare by the index (0 or ‘index’) or columns (1 or ‘columns’).
level (int or label) – Broadcast across a level, matching Index values on the passed MultiIndex level.
- Returns:
Result of the comparison.
- Return type:
Differences from pandas
This operation has no known divergences from the pandas API.
See also
DeferredDataFrame.eq
Compare DeferredDataFrames for equality elementwise.
DeferredDataFrame.ne
Compare DeferredDataFrames for inequality elementwise.
DeferredDataFrame.le
Compare DeferredDataFrames for less than inequality or equality elementwise.
DeferredDataFrame.lt
Compare DeferredDataFrames for strictly less than inequality elementwise.
DeferredDataFrame.ge
Compare DeferredDataFrames for greater than inequality or equality elementwise.
DeferredDataFrame.gt
Compare DeferredDataFrames for strictly greater than inequality elementwise.
Notes
Mismatched indices will be unioned together. NaN values are considered different (i.e. NaN != NaN).
Examples
NOTE: These examples are pulled directly from the pandas documentation for convenience. Usage of the Beam DataFrame API will look different because it is a deferred API.
>>> df = pd.DataFrame({'cost': [250, 150, 100], ... 'revenue': [100, 250, 300]}, ... index=['A', 'B', 'C']) >>> df cost revenue A 250 100 B 150 250 C 100 300 Comparison with a scalar, using either the operator or method: >>> df == 100 cost revenue A False True B False False C True False >>> df.eq(100) cost revenue A False True B False False C True False When `other` is a :class:`Series`, the columns of a DataFrame are aligned with the index of `other` and broadcast: >>> df != pd.Series([100, 250], index=["cost", "revenue"]) cost revenue A True True B True False C False True Use the method to control the broadcast axis: >>> df.ne(pd.Series([100, 300], index=["A", "D"]), axis='index') cost revenue A True False B True True C True True D True True When comparing to an arbitrary sequence, the number of columns must match the number elements in `other`: >>> df == [250, 100] cost revenue A True True B False False C False False Use the method to control the axis: >>> df.eq([250, 250, 100], axis='index') cost revenue A True False B False True C True False Compare to a DataFrame of different shape. >>> other = pd.DataFrame({'revenue': [300, 250, 100, 150]}, ... index=['A', 'B', 'C', 'D']) >>> other revenue A 300 B 250 C 100 D 150 >>> df.gt(other) cost revenue A False False B False False C False True D False False Compare to a MultiIndex by level. >>> df_multindex = pd.DataFrame({'cost': [250, 150, 100, 150, 300, 220], ... 'revenue': [100, 250, 300, 200, 175, 225]}, ... index=[['Q1', 'Q1', 'Q1', 'Q2', 'Q2', 'Q2'], ... ['A', 'B', 'C', 'A', 'B', 'C']]) >>> df_multindex cost revenue Q1 A 250 100 B 150 250 C 100 300 Q2 A 150 200 B 300 175 C 220 225 >>> df.le(df_multindex, level=1) cost revenue Q1 A True True B True True C True True Q2 A False True B True False C True False
- gt(**kwargs)
Get Greater than of dataframe and other, element-wise (binary operator gt).
Among flexible wrappers (eq, ne, le, lt, ge, gt) to comparison operators.
Equivalent to ==, !=, <=, <, >=, > with support to choose axis (rows or columns) and level for comparison.
- Parameters:
other (scalar, sequence, DeferredSeries, or DeferredDataFrame) – Any single or multiple element data structure, or list-like object.
axis ({0 or 'index', 1 or 'columns'}, default 'columns') – Whether to compare by the index (0 or ‘index’) or columns (1 or ‘columns’).
level (int or label) – Broadcast across a level, matching Index values on the passed MultiIndex level.
- Returns:
Result of the comparison.
- Return type:
Differences from pandas
This operation has no known divergences from the pandas API.
See also
DeferredDataFrame.eq
Compare DeferredDataFrames for equality elementwise.
DeferredDataFrame.ne
Compare DeferredDataFrames for inequality elementwise.
DeferredDataFrame.le
Compare DeferredDataFrames for less than inequality or equality elementwise.
DeferredDataFrame.lt
Compare DeferredDataFrames for strictly less than inequality elementwise.
DeferredDataFrame.ge
Compare DeferredDataFrames for greater than inequality or equality elementwise.
DeferredDataFrame.gt
Compare DeferredDataFrames for strictly greater than inequality elementwise.
Notes
Mismatched indices will be unioned together. NaN values are considered different (i.e. NaN != NaN).
Examples
NOTE: These examples are pulled directly from the pandas documentation for convenience. Usage of the Beam DataFrame API will look different because it is a deferred API.
>>> df = pd.DataFrame({'cost': [250, 150, 100], ... 'revenue': [100, 250, 300]}, ... index=['A', 'B', 'C']) >>> df cost revenue A 250 100 B 150 250 C 100 300 Comparison with a scalar, using either the operator or method: >>> df == 100 cost revenue A False True B False False C True False >>> df.eq(100) cost revenue A False True B False False C True False When `other` is a :class:`Series`, the columns of a DataFrame are aligned with the index of `other` and broadcast: >>> df != pd.Series([100, 250], index=["cost", "revenue"]) cost revenue A True True B True False C False True Use the method to control the broadcast axis: >>> df.ne(pd.Series([100, 300], index=["A", "D"]), axis='index') cost revenue A True False B True True C True True D True True When comparing to an arbitrary sequence, the number of columns must match the number elements in `other`: >>> df == [250, 100] cost revenue A True True B False False C False False Use the method to control the axis: >>> df.eq([250, 250, 100], axis='index') cost revenue A True False B False True C True False Compare to a DataFrame of different shape. >>> other = pd.DataFrame({'revenue': [300, 250, 100, 150]}, ... index=['A', 'B', 'C', 'D']) >>> other revenue A 300 B 250 C 100 D 150 >>> df.gt(other) cost revenue A False False B False False C False True D False False Compare to a MultiIndex by level. >>> df_multindex = pd.DataFrame({'cost': [250, 150, 100, 150, 300, 220], ... 'revenue': [100, 250, 300, 200, 175, 225]}, ... index=[['Q1', 'Q1', 'Q1', 'Q2', 'Q2', 'Q2'], ... ['A', 'B', 'C', 'A', 'B', 'C']]) >>> df_multindex cost revenue Q1 A 250 100 B 150 250 C 100 300 Q2 A 150 200 B 300 175 C 220 225 >>> df.le(df_multindex, level=1) cost revenue Q1 A True True B True True C True True Q2 A False True B True False C True False
- infer_objects(**kwargs)
pandas.DataFrame.infer_objects()
is not implemented yet in the Beam DataFrame API.If support for ‘infer_objects’ is important to you, please let the Beam community know by writing to user@beam.apache.org or commenting on 20318.
- isetitem(**kwargs)
pandas.DataFrame.isetitem()
is not implemented yet in the Beam DataFrame API.If support for ‘isetitem’ is important to you, please let the Beam community know by writing to user@beam.apache.org or commenting on 20318.
- le(**kwargs)
Get Less than or equal to of dataframe and other, element-wise (binary operator le).
Among flexible wrappers (eq, ne, le, lt, ge, gt) to comparison operators.
Equivalent to ==, !=, <=, <, >=, > with support to choose axis (rows or columns) and level for comparison.
- Parameters:
other (scalar, sequence, DeferredSeries, or DeferredDataFrame) – Any single or multiple element data structure, or list-like object.
axis ({0 or 'index', 1 or 'columns'}, default 'columns') – Whether to compare by the index (0 or ‘index’) or columns (1 or ‘columns’).
level (int or label) – Broadcast across a level, matching Index values on the passed MultiIndex level.
- Returns:
Result of the comparison.
- Return type:
Differences from pandas
This operation has no known divergences from the pandas API.
See also
DeferredDataFrame.eq
Compare DeferredDataFrames for equality elementwise.
DeferredDataFrame.ne
Compare DeferredDataFrames for inequality elementwise.
DeferredDataFrame.le
Compare DeferredDataFrames for less than inequality or equality elementwise.
DeferredDataFrame.lt
Compare DeferredDataFrames for strictly less than inequality elementwise.
DeferredDataFrame.ge
Compare DeferredDataFrames for greater than inequality or equality elementwise.
DeferredDataFrame.gt
Compare DeferredDataFrames for strictly greater than inequality elementwise.
Notes
Mismatched indices will be unioned together. NaN values are considered different (i.e. NaN != NaN).
Examples
NOTE: These examples are pulled directly from the pandas documentation for convenience. Usage of the Beam DataFrame API will look different because it is a deferred API.
>>> df = pd.DataFrame({'cost': [250, 150, 100], ... 'revenue': [100, 250, 300]}, ... index=['A', 'B', 'C']) >>> df cost revenue A 250 100 B 150 250 C 100 300 Comparison with a scalar, using either the operator or method: >>> df == 100 cost revenue A False True B False False C True False >>> df.eq(100) cost revenue A False True B False False C True False When `other` is a :class:`Series`, the columns of a DataFrame are aligned with the index of `other` and broadcast: >>> df != pd.Series([100, 250], index=["cost", "revenue"]) cost revenue A True True B True False C False True Use the method to control the broadcast axis: >>> df.ne(pd.Series([100, 300], index=["A", "D"]), axis='index') cost revenue A True False B True True C True True D True True When comparing to an arbitrary sequence, the number of columns must match the number elements in `other`: >>> df == [250, 100] cost revenue A True True B False False C False False Use the method to control the axis: >>> df.eq([250, 250, 100], axis='index') cost revenue A True False B False True C True False Compare to a DataFrame of different shape. >>> other = pd.DataFrame({'revenue': [300, 250, 100, 150]}, ... index=['A', 'B', 'C', 'D']) >>> other revenue A 300 B 250 C 100 D 150 >>> df.gt(other) cost revenue A False False B False False C False True D False False Compare to a MultiIndex by level. >>> df_multindex = pd.DataFrame({'cost': [250, 150, 100, 150, 300, 220], ... 'revenue': [100, 250, 300, 200, 175, 225]}, ... index=[['Q1', 'Q1', 'Q1', 'Q2', 'Q2', 'Q2'], ... ['A', 'B', 'C', 'A', 'B', 'C']]) >>> df_multindex cost revenue Q1 A 250 100 B 150 250 C 100 300 Q2 A 150 200 B 300 175 C 220 225 >>> df.le(df_multindex, level=1) cost revenue Q1 A True True B True True C True True Q2 A False True B True False C True False
- lt(**kwargs)
Get Less than of dataframe and other, element-wise (binary operator lt).
Among flexible wrappers (eq, ne, le, lt, ge, gt) to comparison operators.
Equivalent to ==, !=, <=, <, >=, > with support to choose axis (rows or columns) and level for comparison.
- Parameters:
other (scalar, sequence, DeferredSeries, or DeferredDataFrame) – Any single or multiple element data structure, or list-like object.
axis ({0 or 'index', 1 or 'columns'}, default 'columns') – Whether to compare by the index (0 or ‘index’) or columns (1 or ‘columns’).
level (int or label) – Broadcast across a level, matching Index values on the passed MultiIndex level.
- Returns:
Result of the comparison.
- Return type:
Differences from pandas
This operation has no known divergences from the pandas API.
See also
DeferredDataFrame.eq
Compare DeferredDataFrames for equality elementwise.
DeferredDataFrame.ne
Compare DeferredDataFrames for inequality elementwise.
DeferredDataFrame.le
Compare DeferredDataFrames for less than inequality or equality elementwise.
DeferredDataFrame.lt
Compare DeferredDataFrames for strictly less than inequality elementwise.
DeferredDataFrame.ge
Compare DeferredDataFrames for greater than inequality or equality elementwise.
DeferredDataFrame.gt
Compare DeferredDataFrames for strictly greater than inequality elementwise.
Notes
Mismatched indices will be unioned together. NaN values are considered different (i.e. NaN != NaN).
Examples
NOTE: These examples are pulled directly from the pandas documentation for convenience. Usage of the Beam DataFrame API will look different because it is a deferred API.
>>> df = pd.DataFrame({'cost': [250, 150, 100], ... 'revenue': [100, 250, 300]}, ... index=['A', 'B', 'C']) >>> df cost revenue A 250 100 B 150 250 C 100 300 Comparison with a scalar, using either the operator or method: >>> df == 100 cost revenue A False True B False False C True False >>> df.eq(100) cost revenue A False True B False False C True False When `other` is a :class:`Series`, the columns of a DataFrame are aligned with the index of `other` and broadcast: >>> df != pd.Series([100, 250], index=["cost", "revenue"]) cost revenue A True True B True False C False True Use the method to control the broadcast axis: >>> df.ne(pd.Series([100, 300], index=["A", "D"]), axis='index') cost revenue A True False B True True C True True D True True When comparing to an arbitrary sequence, the number of columns must match the number elements in `other`: >>> df == [250, 100] cost revenue A True True B False False C False False Use the method to control the axis: >>> df.eq([250, 250, 100], axis='index') cost revenue A True False B False True C True False Compare to a DataFrame of different shape. >>> other = pd.DataFrame({'revenue': [300, 250, 100, 150]}, ... index=['A', 'B', 'C', 'D']) >>> other revenue A 300 B 250 C 100 D 150 >>> df.gt(other) cost revenue A False False B False False C False True D False False Compare to a MultiIndex by level. >>> df_multindex = pd.DataFrame({'cost': [250, 150, 100, 150, 300, 220], ... 'revenue': [100, 250, 300, 200, 175, 225]}, ... index=[['Q1', 'Q1', 'Q1', 'Q2', 'Q2', 'Q2'], ... ['A', 'B', 'C', 'A', 'B', 'C']]) >>> df_multindex cost revenue Q1 A 250 100 B 150 250 C 100 300 Q2 A 150 200 B 300 175 C 220 225 >>> df.le(df_multindex, level=1) cost revenue Q1 A True True B True True C True True Q2 A False True B True False C True False
- mod(**kwargs)
Get Modulo of dataframe and other, element-wise (binary operator mod).
Equivalent to
dataframe % other
, but with support to substitute a fill_value for missing data in one of the inputs. With reverse version, rmod.Among flexible wrappers (add, sub, mul, div, floordiv, mod, pow) to arithmetic operators: +, -, *, /, //, %, **.
- Parameters:
other (scalar, sequence, DeferredSeries, dict or DeferredDataFrame) – Any single or multiple element data structure, or list-like object.
axis ({0 or 'index', 1 or 'columns'}) – Whether to compare by the index (0 or ‘index’) or columns. (1 or ‘columns’). For DeferredSeries input, axis to match DeferredSeries index on.
level (int or label) – Broadcast across a level, matching Index values on the passed MultiIndex level.
fill_value (float or None, default None) – Fill existing missing (NaN) values, and any new element needed for successful DeferredDataFrame alignment, with this value before computation. If data in both corresponding DeferredDataFrame locations is missing the result will be missing.
- Returns:
Result of the arithmetic operation.
- Return type:
Differences from pandas
Only level=None is supported
See also
DeferredDataFrame.add
Add DeferredDataFrames.
DeferredDataFrame.sub
Subtract DeferredDataFrames.
DeferredDataFrame.mul
Multiply DeferredDataFrames.
DeferredDataFrame.div
Divide DeferredDataFrames (float division).
DeferredDataFrame.truediv
Divide DeferredDataFrames (float division).
DeferredDataFrame.floordiv
Divide DeferredDataFrames (integer division).
DeferredDataFrame.mod
Calculate modulo (remainder after division).
DeferredDataFrame.pow
Calculate exponential power.
Notes
Mismatched indices will be unioned together.
Examples
NOTE: These examples are pulled directly from the pandas documentation for convenience. Usage of the Beam DataFrame API will look different because it is a deferred API. In addition, some arguments shown here may not be supported, see ‘Differences from pandas’ for details.
>>> df = pd.DataFrame({'angles': [0, 3, 4], ... 'degrees': [360, 180, 360]}, ... index=['circle', 'triangle', 'rectangle']) >>> df angles degrees circle 0 360 triangle 3 180 rectangle 4 360 Add a scalar with operator version which return the same results. >>> df + 1 angles degrees circle 1 361 triangle 4 181 rectangle 5 361 >>> df.add(1) angles degrees circle 1 361 triangle 4 181 rectangle 5 361 Divide by constant with reverse version. >>> df.div(10) angles degrees circle 0.0 36.0 triangle 0.3 18.0 rectangle 0.4 36.0 >>> df.rdiv(10) angles degrees circle inf 0.027778 triangle 3.333333 0.055556 rectangle 2.500000 0.027778 Subtract a list and Series by axis with operator version. >>> df - [1, 2] angles degrees circle -1 358 triangle 2 178 rectangle 3 358 >>> df.sub([1, 2], axis='columns') angles degrees circle -1 358 triangle 2 178 rectangle 3 358 >>> df.sub(pd.Series([1, 1, 1], index=['circle', 'triangle', 'rectangle']), ... axis='index') angles degrees circle -1 359 triangle 2 179 rectangle 3 359 Multiply a dictionary by axis. >>> df.mul({'angles': 0, 'degrees': 2}) angles degrees circle 0 720 triangle 0 360 rectangle 0 720 >>> df.mul({'circle': 0, 'triangle': 2, 'rectangle': 3}, axis='index') angles degrees circle 0 0 triangle 6 360 rectangle 12 1080 Multiply a DataFrame of different shape with operator version. >>> other = pd.DataFrame({'angles': [0, 3, 4]}, ... index=['circle', 'triangle', 'rectangle']) >>> other angles circle 0 triangle 3 rectangle 4 >>> df * other angles degrees circle 0 NaN triangle 9 NaN rectangle 16 NaN >>> df.mul(other, fill_value=0) angles degrees circle 0 0.0 triangle 9 0.0 rectangle 16 0.0 Divide by a MultiIndex by level. >>> df_multindex = pd.DataFrame({'angles': [0, 3, 4, 4, 5, 6], ... 'degrees': [360, 180, 360, 360, 540, 720]}, ... index=[['A', 'A', 'A', 'B', 'B', 'B'], ... ['circle', 'triangle', 'rectangle', ... 'square', 'pentagon', 'hexagon']]) >>> df_multindex angles degrees A circle 0 360 triangle 3 180 rectangle 4 360 B square 4 360 pentagon 5 540 hexagon 6 720 >>> df.div(df_multindex, level=1, fill_value=0) angles degrees A circle NaN 1.0 triangle 1.0 1.0 rectangle 1.0 1.0 B square 0.0 0.0 pentagon 0.0 0.0 hexagon 0.0 0.0
- mul(**kwargs)
Get Multiplication of dataframe and other, element-wise (binary operator mul).
Equivalent to
dataframe * other
, but with support to substitute a fill_value for missing data in one of the inputs. With reverse version, rmul.Among flexible wrappers (add, sub, mul, div, floordiv, mod, pow) to arithmetic operators: +, -, *, /, //, %, **.
- Parameters:
other (scalar, sequence, DeferredSeries, dict or DeferredDataFrame) – Any single or multiple element data structure, or list-like object.
axis ({0 or 'index', 1 or 'columns'}) – Whether to compare by the index (0 or ‘index’) or columns. (1 or ‘columns’). For DeferredSeries input, axis to match DeferredSeries index on.
level (int or label) – Broadcast across a level, matching Index values on the passed MultiIndex level.
fill_value (float or None, default None) – Fill existing missing (NaN) values, and any new element needed for successful DeferredDataFrame alignment, with this value before computation. If data in both corresponding DeferredDataFrame locations is missing the result will be missing.
- Returns:
Result of the arithmetic operation.
- Return type:
Differences from pandas
Only level=None is supported
See also
DeferredDataFrame.add
Add DeferredDataFrames.
DeferredDataFrame.sub
Subtract DeferredDataFrames.
DeferredDataFrame.mul
Multiply DeferredDataFrames.
DeferredDataFrame.div
Divide DeferredDataFrames (float division).
DeferredDataFrame.truediv
Divide DeferredDataFrames (float division).
DeferredDataFrame.floordiv
Divide DeferredDataFrames (integer division).
DeferredDataFrame.mod
Calculate modulo (remainder after division).
DeferredDataFrame.pow
Calculate exponential power.
Notes
Mismatched indices will be unioned together.
Examples
NOTE: These examples are pulled directly from the pandas documentation for convenience. Usage of the Beam DataFrame API will look different because it is a deferred API. In addition, some arguments shown here may not be supported, see ‘Differences from pandas’ for details.
>>> df = pd.DataFrame({'angles': [0, 3, 4], ... 'degrees': [360, 180, 360]}, ... index=['circle', 'triangle', 'rectangle']) >>> df angles degrees circle 0 360 triangle 3 180 rectangle 4 360 Add a scalar with operator version which return the same results. >>> df + 1 angles degrees circle 1 361 triangle 4 181 rectangle 5 361 >>> df.add(1) angles degrees circle 1 361 triangle 4 181 rectangle 5 361 Divide by constant with reverse version. >>> df.div(10) angles degrees circle 0.0 36.0 triangle 0.3 18.0 rectangle 0.4 36.0 >>> df.rdiv(10) angles degrees circle inf 0.027778 triangle 3.333333 0.055556 rectangle 2.500000 0.027778 Subtract a list and Series by axis with operator version. >>> df - [1, 2] angles degrees circle -1 358 triangle 2 178 rectangle 3 358 >>> df.sub([1, 2], axis='columns') angles degrees circle -1 358 triangle 2 178 rectangle 3 358 >>> df.sub(pd.Series([1, 1, 1], index=['circle', 'triangle', 'rectangle']), ... axis='index') angles degrees circle -1 359 triangle 2 179 rectangle 3 359 Multiply a dictionary by axis. >>> df.mul({'angles': 0, 'degrees': 2}) angles degrees circle 0 720 triangle 0 360 rectangle 0 720 >>> df.mul({'circle': 0, 'triangle': 2, 'rectangle': 3}, axis='index') angles degrees circle 0 0 triangle 6 360 rectangle 12 1080 Multiply a DataFrame of different shape with operator version. >>> other = pd.DataFrame({'angles': [0, 3, 4]}, ... index=['circle', 'triangle', 'rectangle']) >>> other angles circle 0 triangle 3 rectangle 4 >>> df * other angles degrees circle 0 NaN triangle 9 NaN rectangle 16 NaN >>> df.mul(other, fill_value=0) angles degrees circle 0 0.0 triangle 9 0.0 rectangle 16 0.0 Divide by a MultiIndex by level. >>> df_multindex = pd.DataFrame({'angles': [0, 3, 4, 4, 5, 6], ... 'degrees': [360, 180, 360, 360, 540, 720]}, ... index=[['A', 'A', 'A', 'B', 'B', 'B'], ... ['circle', 'triangle', 'rectangle', ... 'square', 'pentagon', 'hexagon']]) >>> df_multindex angles degrees A circle 0 360 triangle 3 180 rectangle 4 360 B square 4 360 pentagon 5 540 hexagon 6 720 >>> df.div(df_multindex, level=1, fill_value=0) angles degrees A circle NaN 1.0 triangle 1.0 1.0 rectangle 1.0 1.0 B square 0.0 0.0 pentagon 0.0 0.0 hexagon 0.0 0.0
- multiply(**kwargs)
Get Multiplication of dataframe and other, element-wise (binary operator mul).
Equivalent to
dataframe * other
, but with support to substitute a fill_value for missing data in one of the inputs. With reverse version, rmul.Among flexible wrappers (add, sub, mul, div, floordiv, mod, pow) to arithmetic operators: +, -, *, /, //, %, **.
- Parameters:
other (scalar, sequence, DeferredSeries, dict or DeferredDataFrame) – Any single or multiple element data structure, or list-like object.
axis ({0 or 'index', 1 or 'columns'}) – Whether to compare by the index (0 or ‘index’) or columns. (1 or ‘columns’). For DeferredSeries input, axis to match DeferredSeries index on.
level (int or label) – Broadcast across a level, matching Index values on the passed MultiIndex level.
fill_value (float or None, default None) – Fill existing missing (NaN) values, and any new element needed for successful DeferredDataFrame alignment, with this value before computation. If data in both corresponding DeferredDataFrame locations is missing the result will be missing.
- Returns:
Result of the arithmetic operation.
- Return type:
Differences from pandas
Only level=None is supported
See also
DeferredDataFrame.add
Add DeferredDataFrames.
DeferredDataFrame.sub
Subtract DeferredDataFrames.
DeferredDataFrame.mul
Multiply DeferredDataFrames.
DeferredDataFrame.div
Divide DeferredDataFrames (float division).
DeferredDataFrame.truediv
Divide DeferredDataFrames (float division).
DeferredDataFrame.floordiv
Divide DeferredDataFrames (integer division).
DeferredDataFrame.mod
Calculate modulo (remainder after division).
DeferredDataFrame.pow
Calculate exponential power.
Notes
Mismatched indices will be unioned together.
Examples
NOTE: These examples are pulled directly from the pandas documentation for convenience. Usage of the Beam DataFrame API will look different because it is a deferred API. In addition, some arguments shown here may not be supported, see ‘Differences from pandas’ for details.
>>> df = pd.DataFrame({'angles': [0, 3, 4], ... 'degrees': [360, 180, 360]}, ... index=['circle', 'triangle', 'rectangle']) >>> df angles degrees circle 0 360 triangle 3 180 rectangle 4 360 Add a scalar with operator version which return the same results. >>> df + 1 angles degrees circle 1 361 triangle 4 181 rectangle 5 361 >>> df.add(1) angles degrees circle 1 361 triangle 4 181 rectangle 5 361 Divide by constant with reverse version. >>> df.div(10) angles degrees circle 0.0 36.0 triangle 0.3 18.0 rectangle 0.4 36.0 >>> df.rdiv(10) angles degrees circle inf 0.027778 triangle 3.333333 0.055556 rectangle 2.500000 0.027778 Subtract a list and Series by axis with operator version. >>> df - [1, 2] angles degrees circle -1 358 triangle 2 178 rectangle 3 358 >>> df.sub([1, 2], axis='columns') angles degrees circle -1 358 triangle 2 178 rectangle 3 358 >>> df.sub(pd.Series([1, 1, 1], index=['circle', 'triangle', 'rectangle']), ... axis='index') angles degrees circle -1 359 triangle 2 179 rectangle 3 359 Multiply a dictionary by axis. >>> df.mul({'angles': 0, 'degrees': 2}) angles degrees circle 0 720 triangle 0 360 rectangle 0 720 >>> df.mul({'circle': 0, 'triangle': 2, 'rectangle': 3}, axis='index') angles degrees circle 0 0 triangle 6 360 rectangle 12 1080 Multiply a DataFrame of different shape with operator version. >>> other = pd.DataFrame({'angles': [0, 3, 4]}, ... index=['circle', 'triangle', 'rectangle']) >>> other angles circle 0 triangle 3 rectangle 4 >>> df * other angles degrees circle 0 NaN triangle 9 NaN rectangle 16 NaN >>> df.mul(other, fill_value=0) angles degrees circle 0 0.0 triangle 9 0.0 rectangle 16 0.0 Divide by a MultiIndex by level. >>> df_multindex = pd.DataFrame({'angles': [0, 3, 4, 4, 5, 6], ... 'degrees': [360, 180, 360, 360, 540, 720]}, ... index=[['A', 'A', 'A', 'B', 'B', 'B'], ... ['circle', 'triangle', 'rectangle', ... 'square', 'pentagon', 'hexagon']]) >>> df_multindex angles degrees A circle 0 360 triangle 3 180 rectangle 4 360 B square 4 360 pentagon 5 540 hexagon 6 720 >>> df.div(df_multindex, level=1, fill_value=0) angles degrees A circle NaN 1.0 triangle 1.0 1.0 rectangle 1.0 1.0 B square 0.0 0.0 pentagon 0.0 0.0 hexagon 0.0 0.0
- ne(**kwargs)
Get Not equal to of dataframe and other, element-wise (binary operator ne).
Among flexible wrappers (eq, ne, le, lt, ge, gt) to comparison operators.
Equivalent to ==, !=, <=, <, >=, > with support to choose axis (rows or columns) and level for comparison.
- Parameters:
other (scalar, sequence, DeferredSeries, or DeferredDataFrame) – Any single or multiple element data structure, or list-like object.
axis ({0 or 'index', 1 or 'columns'}, default 'columns') – Whether to compare by the index (0 or ‘index’) or columns (1 or ‘columns’).
level (int or label) – Broadcast across a level, matching Index values on the passed MultiIndex level.
- Returns:
Result of the comparison.
- Return type:
Differences from pandas
This operation has no known divergences from the pandas API.
See also
DeferredDataFrame.eq
Compare DeferredDataFrames for equality elementwise.
DeferredDataFrame.ne
Compare DeferredDataFrames for inequality elementwise.
DeferredDataFrame.le
Compare DeferredDataFrames for less than inequality or equality elementwise.
DeferredDataFrame.lt
Compare DeferredDataFrames for strictly less than inequality elementwise.
DeferredDataFrame.ge
Compare DeferredDataFrames for greater than inequality or equality elementwise.
DeferredDataFrame.gt
Compare DeferredDataFrames for strictly greater than inequality elementwise.
Notes
Mismatched indices will be unioned together. NaN values are considered different (i.e. NaN != NaN).
Examples
NOTE: These examples are pulled directly from the pandas documentation for convenience. Usage of the Beam DataFrame API will look different because it is a deferred API.
>>> df = pd.DataFrame({'cost': [250, 150, 100], ... 'revenue': [100, 250, 300]}, ... index=['A', 'B', 'C']) >>> df cost revenue A 250 100 B 150 250 C 100 300 Comparison with a scalar, using either the operator or method: >>> df == 100 cost revenue A False True B False False C True False >>> df.eq(100) cost revenue A False True B False False C True False When `other` is a :class:`Series`, the columns of a DataFrame are aligned with the index of `other` and broadcast: >>> df != pd.Series([100, 250], index=["cost", "revenue"]) cost revenue A True True B True False C False True Use the method to control the broadcast axis: >>> df.ne(pd.Series([100, 300], index=["A", "D"]), axis='index') cost revenue A True False B True True C True True D True True When comparing to an arbitrary sequence, the number of columns must match the number elements in `other`: >>> df == [250, 100] cost revenue A True True B False False C False False Use the method to control the axis: >>> df.eq([250, 250, 100], axis='index') cost revenue A True False B False True C True False Compare to a DataFrame of different shape. >>> other = pd.DataFrame({'revenue': [300, 250, 100, 150]}, ... index=['A', 'B', 'C', 'D']) >>> other revenue A 300 B 250 C 100 D 150 >>> df.gt(other) cost revenue A False False B False False C False True D False False Compare to a MultiIndex by level. >>> df_multindex = pd.DataFrame({'cost': [250, 150, 100, 150, 300, 220], ... 'revenue': [100, 250, 300, 200, 175, 225]}, ... index=[['Q1', 'Q1', 'Q1', 'Q2', 'Q2', 'Q2'], ... ['A', 'B', 'C', 'A', 'B', 'C']]) >>> df_multindex cost revenue Q1 A 250 100 B 150 250 C 100 300 Q2 A 150 200 B 300 175 C 220 225 >>> df.le(df_multindex, level=1) cost revenue Q1 A True True B True True C True True Q2 A False True B True False C True False
- pivot_table(**kwargs)
pandas.DataFrame.pivot_table()
is not implemented yet in the Beam DataFrame API.If support for ‘pivot_table’ is important to you, please let the Beam community know by writing to user@beam.apache.org or commenting on 20318.
- pow(**kwargs)
Get Exponential power of dataframe and other, element-wise (binary operator pow).
Equivalent to
dataframe ** other
, but with support to substitute a fill_value for missing data in one of the inputs. With reverse version, rpow.Among flexible wrappers (add, sub, mul, div, floordiv, mod, pow) to arithmetic operators: +, -, *, /, //, %, **.
- Parameters:
other (scalar, sequence, DeferredSeries, dict or DeferredDataFrame) – Any single or multiple element data structure, or list-like object.
axis ({0 or 'index', 1 or 'columns'}) – Whether to compare by the index (0 or ‘index’) or columns. (1 or ‘columns’). For DeferredSeries input, axis to match DeferredSeries index on.
level (int or label) – Broadcast across a level, matching Index values on the passed MultiIndex level.
fill_value (float or None, default None) – Fill existing missing (NaN) values, and any new element needed for successful DeferredDataFrame alignment, with this value before computation. If data in both corresponding DeferredDataFrame locations is missing the result will be missing.
- Returns:
Result of the arithmetic operation.
- Return type:
Differences from pandas
Only level=None is supported
See also
DeferredDataFrame.add
Add DeferredDataFrames.
DeferredDataFrame.sub
Subtract DeferredDataFrames.
DeferredDataFrame.mul
Multiply DeferredDataFrames.
DeferredDataFrame.div
Divide DeferredDataFrames (float division).
DeferredDataFrame.truediv
Divide DeferredDataFrames (float division).
DeferredDataFrame.floordiv
Divide DeferredDataFrames (integer division).
DeferredDataFrame.mod
Calculate modulo (remainder after division).
DeferredDataFrame.pow
Calculate exponential power.
Notes
Mismatched indices will be unioned together.
Examples
NOTE: These examples are pulled directly from the pandas documentation for convenience. Usage of the Beam DataFrame API will look different because it is a deferred API. In addition, some arguments shown here may not be supported, see ‘Differences from pandas’ for details.
>>> df = pd.DataFrame({'angles': [0, 3, 4], ... 'degrees': [360, 180, 360]}, ... index=['circle', 'triangle', 'rectangle']) >>> df angles degrees circle 0 360 triangle 3 180 rectangle 4 360 Add a scalar with operator version which return the same results. >>> df + 1 angles degrees circle 1 361 triangle 4 181 rectangle 5 361 >>> df.add(1) angles degrees circle 1 361 triangle 4 181 rectangle 5 361 Divide by constant with reverse version. >>> df.div(10) angles degrees circle 0.0 36.0 triangle 0.3 18.0 rectangle 0.4 36.0 >>> df.rdiv(10) angles degrees circle inf 0.027778 triangle 3.333333 0.055556 rectangle 2.500000 0.027778 Subtract a list and Series by axis with operator version. >>> df - [1, 2] angles degrees circle -1 358 triangle 2 178 rectangle 3 358 >>> df.sub([1, 2], axis='columns') angles degrees circle -1 358 triangle 2 178 rectangle 3 358 >>> df.sub(pd.Series([1, 1, 1], index=['circle', 'triangle', 'rectangle']), ... axis='index') angles degrees circle -1 359 triangle 2 179 rectangle 3 359 Multiply a dictionary by axis. >>> df.mul({'angles': 0, 'degrees': 2}) angles degrees circle 0 720 triangle 0 360 rectangle 0 720 >>> df.mul({'circle': 0, 'triangle': 2, 'rectangle': 3}, axis='index') angles degrees circle 0 0 triangle 6 360 rectangle 12 1080 Multiply a DataFrame of different shape with operator version. >>> other = pd.DataFrame({'angles': [0, 3, 4]}, ... index=['circle', 'triangle', 'rectangle']) >>> other angles circle 0 triangle 3 rectangle 4 >>> df * other angles degrees circle 0 NaN triangle 9 NaN rectangle 16 NaN >>> df.mul(other, fill_value=0) angles degrees circle 0 0.0 triangle 9 0.0 rectangle 16 0.0 Divide by a MultiIndex by level. >>> df_multindex = pd.DataFrame({'angles': [0, 3, 4, 4, 5, 6], ... 'degrees': [360, 180, 360, 360, 540, 720]}, ... index=[['A', 'A', 'A', 'B', 'B', 'B'], ... ['circle', 'triangle', 'rectangle', ... 'square', 'pentagon', 'hexagon']]) >>> df_multindex angles degrees A circle 0 360 triangle 3 180 rectangle 4 360 B square 4 360 pentagon 5 540 hexagon 6 720 >>> df.div(df_multindex, level=1, fill_value=0) angles degrees A circle NaN 1.0 triangle 1.0 1.0 rectangle 1.0 1.0 B square 0.0 0.0 pentagon 0.0 0.0 hexagon 0.0 0.0
- radd(**kwargs)
Get Addition of dataframe and other, element-wise (binary operator radd).
Equivalent to
other + dataframe
, but with support to substitute a fill_value for missing data in one of the inputs. With reverse version, add.Among flexible wrappers (add, sub, mul, div, floordiv, mod, pow) to arithmetic operators: +, -, *, /, //, %, **.
- Parameters:
other (scalar, sequence, DeferredSeries, dict or DeferredDataFrame) – Any single or multiple element data structure, or list-like object.
axis ({0 or 'index', 1 or 'columns'}) – Whether to compare by the index (0 or ‘index’) or columns. (1 or ‘columns’). For DeferredSeries input, axis to match DeferredSeries index on.
level (int or label) – Broadcast across a level, matching Index values on the passed MultiIndex level.
fill_value (float or None, default None) – Fill existing missing (NaN) values, and any new element needed for successful DeferredDataFrame alignment, with this value before computation. If data in both corresponding DeferredDataFrame locations is missing the result will be missing.
- Returns:
Result of the arithmetic operation.
- Return type:
Differences from pandas
Only level=None is supported
See also
DeferredDataFrame.add
Add DeferredDataFrames.
DeferredDataFrame.sub
Subtract DeferredDataFrames.
DeferredDataFrame.mul
Multiply DeferredDataFrames.
DeferredDataFrame.div
Divide DeferredDataFrames (float division).
DeferredDataFrame.truediv
Divide DeferredDataFrames (float division).
DeferredDataFrame.floordiv
Divide DeferredDataFrames (integer division).
DeferredDataFrame.mod
Calculate modulo (remainder after division).
DeferredDataFrame.pow
Calculate exponential power.
Notes
Mismatched indices will be unioned together.
Examples
NOTE: These examples are pulled directly from the pandas documentation for convenience. Usage of the Beam DataFrame API will look different because it is a deferred API. In addition, some arguments shown here may not be supported, see ‘Differences from pandas’ for details.
>>> df = pd.DataFrame({'angles': [0, 3, 4], ... 'degrees': [360, 180, 360]}, ... index=['circle', 'triangle', 'rectangle']) >>> df angles degrees circle 0 360 triangle 3 180 rectangle 4 360 Add a scalar with operator version which return the same results. >>> df + 1 angles degrees circle 1 361 triangle 4 181 rectangle 5 361 >>> df.add(1) angles degrees circle 1 361 triangle 4 181 rectangle 5 361 Divide by constant with reverse version. >>> df.div(10) angles degrees circle 0.0 36.0 triangle 0.3 18.0 rectangle 0.4 36.0 >>> df.rdiv(10) angles degrees circle inf 0.027778 triangle 3.333333 0.055556 rectangle 2.500000 0.027778 Subtract a list and Series by axis with operator version. >>> df - [1, 2] angles degrees circle -1 358 triangle 2 178 rectangle 3 358 >>> df.sub([1, 2], axis='columns') angles degrees circle -1 358 triangle 2 178 rectangle 3 358 >>> df.sub(pd.Series([1, 1, 1], index=['circle', 'triangle', 'rectangle']), ... axis='index') angles degrees circle -1 359 triangle 2 179 rectangle 3 359 Multiply a dictionary by axis. >>> df.mul({'angles': 0, 'degrees': 2}) angles degrees circle 0 720 triangle 0 360 rectangle 0 720 >>> df.mul({'circle': 0, 'triangle': 2, 'rectangle': 3}, axis='index') angles degrees circle 0 0 triangle 6 360 rectangle 12 1080 Multiply a DataFrame of different shape with operator version. >>> other = pd.DataFrame({'angles': [0, 3, 4]}, ... index=['circle', 'triangle', 'rectangle']) >>> other angles circle 0 triangle 3 rectangle 4 >>> df * other angles degrees circle 0 NaN triangle 9 NaN rectangle 16 NaN >>> df.mul(other, fill_value=0) angles degrees circle 0 0.0 triangle 9 0.0 rectangle 16 0.0 Divide by a MultiIndex by level. >>> df_multindex = pd.DataFrame({'angles': [0, 3, 4, 4, 5, 6], ... 'degrees': [360, 180, 360, 360, 540, 720]}, ... index=[['A', 'A', 'A', 'B', 'B', 'B'], ... ['circle', 'triangle', 'rectangle', ... 'square', 'pentagon', 'hexagon']]) >>> df_multindex angles degrees A circle 0 360 triangle 3 180 rectangle 4 360 B square 4 360 pentagon 5 540 hexagon 6 720 >>> df.div(df_multindex, level=1, fill_value=0) angles degrees A circle NaN 1.0 triangle 1.0 1.0 rectangle 1.0 1.0 B square 0.0 0.0 pentagon 0.0 0.0 hexagon 0.0 0.0
- rank(**kwargs)
pandas.DataFrame.rank()
is not implemented yet in the Beam DataFrame API.If support for ‘rank’ is important to you, please let the Beam community know by writing to user@beam.apache.org or commenting on 20318.
- rdiv(**kwargs)
Get Floating division of dataframe and other, element-wise (binary operator rtruediv).
Equivalent to
other / dataframe
, but with support to substitute a fill_value for missing data in one of the inputs. With reverse version, truediv.Among flexible wrappers (add, sub, mul, div, floordiv, mod, pow) to arithmetic operators: +, -, *, /, //, %, **.
- Parameters:
other (scalar, sequence, DeferredSeries, dict or DeferredDataFrame) – Any single or multiple element data structure, or list-like object.
axis ({0 or 'index', 1 or 'columns'}) – Whether to compare by the index (0 or ‘index’) or columns. (1 or ‘columns’). For DeferredSeries input, axis to match DeferredSeries index on.
level (int or label) – Broadcast across a level, matching Index values on the passed MultiIndex level.
fill_value (float or None, default None) – Fill existing missing (NaN) values, and any new element needed for successful DeferredDataFrame alignment, with this value before computation. If data in both corresponding DeferredDataFrame locations is missing the result will be missing.
- Returns:
Result of the arithmetic operation.
- Return type:
Differences from pandas
Only level=None is supported
See also
DeferredDataFrame.add
Add DeferredDataFrames.
DeferredDataFrame.sub
Subtract DeferredDataFrames.
DeferredDataFrame.mul
Multiply DeferredDataFrames.
DeferredDataFrame.div
Divide DeferredDataFrames (float division).
DeferredDataFrame.truediv
Divide DeferredDataFrames (float division).
DeferredDataFrame.floordiv
Divide DeferredDataFrames (integer division).
DeferredDataFrame.mod
Calculate modulo (remainder after division).
DeferredDataFrame.pow
Calculate exponential power.
Notes
Mismatched indices will be unioned together.
Examples
NOTE: These examples are pulled directly from the pandas documentation for convenience. Usage of the Beam DataFrame API will look different because it is a deferred API. In addition, some arguments shown here may not be supported, see ‘Differences from pandas’ for details.
>>> df = pd.DataFrame({'angles': [0, 3, 4], ... 'degrees': [360, 180, 360]}, ... index=['circle', 'triangle', 'rectangle']) >>> df angles degrees circle 0 360 triangle 3 180 rectangle 4 360 Add a scalar with operator version which return the same results. >>> df + 1 angles degrees circle 1 361 triangle 4 181 rectangle 5 361 >>> df.add(1) angles degrees circle 1 361 triangle 4 181 rectangle 5 361 Divide by constant with reverse version. >>> df.div(10) angles degrees circle 0.0 36.0 triangle 0.3 18.0 rectangle 0.4 36.0 >>> df.rdiv(10) angles degrees circle inf 0.027778 triangle 3.333333 0.055556 rectangle 2.500000 0.027778 Subtract a list and Series by axis with operator version. >>> df - [1, 2] angles degrees circle -1 358 triangle 2 178 rectangle 3 358 >>> df.sub([1, 2], axis='columns') angles degrees circle -1 358 triangle 2 178 rectangle 3 358 >>> df.sub(pd.Series([1, 1, 1], index=['circle', 'triangle', 'rectangle']), ... axis='index') angles degrees circle -1 359 triangle 2 179 rectangle 3 359 Multiply a dictionary by axis. >>> df.mul({'angles': 0, 'degrees': 2}) angles degrees circle 0 720 triangle 0 360 rectangle 0 720 >>> df.mul({'circle': 0, 'triangle': 2, 'rectangle': 3}, axis='index') angles degrees circle 0 0 triangle 6 360 rectangle 12 1080 Multiply a DataFrame of different shape with operator version. >>> other = pd.DataFrame({'angles': [0, 3, 4]}, ... index=['circle', 'triangle', 'rectangle']) >>> other angles circle 0 triangle 3 rectangle 4 >>> df * other angles degrees circle 0 NaN triangle 9 NaN rectangle 16 NaN >>> df.mul(other, fill_value=0) angles degrees circle 0 0.0 triangle 9 0.0 rectangle 16 0.0 Divide by a MultiIndex by level. >>> df_multindex = pd.DataFrame({'angles': [0, 3, 4, 4, 5, 6], ... 'degrees': [360, 180, 360, 360, 540, 720]}, ... index=[['A', 'A', 'A', 'B', 'B', 'B'], ... ['circle', 'triangle', 'rectangle', ... 'square', 'pentagon', 'hexagon']]) >>> df_multindex angles degrees A circle 0 360 triangle 3 180 rectangle 4 360 B square 4 360 pentagon 5 540 hexagon 6 720 >>> df.div(df_multindex, level=1, fill_value=0) angles degrees A circle NaN 1.0 triangle 1.0 1.0 rectangle 1.0 1.0 B square 0.0 0.0 pentagon 0.0 0.0 hexagon 0.0 0.0
- reindex_like(**kwargs)
pandas.DataFrame.reindex_like()
is not implemented yet in the Beam DataFrame API.If support for ‘reindex_like’ is important to you, please let the Beam community know by writing to user@beam.apache.org or commenting on 20318.
- rfloordiv(**kwargs)
Get Integer division of dataframe and other, element-wise (binary operator rfloordiv).
Equivalent to
other // dataframe
, but with support to substitute a fill_value for missing data in one of the inputs. With reverse version, floordiv.Among flexible wrappers (add, sub, mul, div, floordiv, mod, pow) to arithmetic operators: +, -, *, /, //, %, **.
- Parameters:
other (scalar, sequence, DeferredSeries, dict or DeferredDataFrame) – Any single or multiple element data structure, or list-like object.
axis ({0 or 'index', 1 or 'columns'}) – Whether to compare by the index (0 or ‘index’) or columns. (1 or ‘columns’). For DeferredSeries input, axis to match DeferredSeries index on.
level (int or label) – Broadcast across a level, matching Index values on the passed MultiIndex level.
fill_value (float or None, default None) – Fill existing missing (NaN) values, and any new element needed for successful DeferredDataFrame alignment, with this value before computation. If data in both corresponding DeferredDataFrame locations is missing the result will be missing.
- Returns:
Result of the arithmetic operation.
- Return type:
Differences from pandas
Only level=None is supported
See also
DeferredDataFrame.add
Add DeferredDataFrames.
DeferredDataFrame.sub
Subtract DeferredDataFrames.
DeferredDataFrame.mul
Multiply DeferredDataFrames.
DeferredDataFrame.div
Divide DeferredDataFrames (float division).
DeferredDataFrame.truediv
Divide DeferredDataFrames (float division).
DeferredDataFrame.floordiv
Divide DeferredDataFrames (integer division).
DeferredDataFrame.mod
Calculate modulo (remainder after division).
DeferredDataFrame.pow
Calculate exponential power.
Notes
Mismatched indices will be unioned together.
Examples
NOTE: These examples are pulled directly from the pandas documentation for convenience. Usage of the Beam DataFrame API will look different because it is a deferred API. In addition, some arguments shown here may not be supported, see ‘Differences from pandas’ for details.
>>> df = pd.DataFrame({'angles': [0, 3, 4], ... 'degrees': [360, 180, 360]}, ... index=['circle', 'triangle', 'rectangle']) >>> df angles degrees circle 0 360 triangle 3 180 rectangle 4 360 Add a scalar with operator version which return the same results. >>> df + 1 angles degrees circle 1 361 triangle 4 181 rectangle 5 361 >>> df.add(1) angles degrees circle 1 361 triangle 4 181 rectangle 5 361 Divide by constant with reverse version. >>> df.div(10) angles degrees circle 0.0 36.0 triangle 0.3 18.0 rectangle 0.4 36.0 >>> df.rdiv(10) angles degrees circle inf 0.027778 triangle 3.333333 0.055556 rectangle 2.500000 0.027778 Subtract a list and Series by axis with operator version. >>> df - [1, 2] angles degrees circle -1 358 triangle 2 178 rectangle 3 358 >>> df.sub([1, 2], axis='columns') angles degrees circle -1 358 triangle 2 178 rectangle 3 358 >>> df.sub(pd.Series([1, 1, 1], index=['circle', 'triangle', 'rectangle']), ... axis='index') angles degrees circle -1 359 triangle 2 179 rectangle 3 359 Multiply a dictionary by axis. >>> df.mul({'angles': 0, 'degrees': 2}) angles degrees circle 0 720 triangle 0 360 rectangle 0 720 >>> df.mul({'circle': 0, 'triangle': 2, 'rectangle': 3}, axis='index') angles degrees circle 0 0 triangle 6 360 rectangle 12 1080 Multiply a DataFrame of different shape with operator version. >>> other = pd.DataFrame({'angles': [0, 3, 4]}, ... index=['circle', 'triangle', 'rectangle']) >>> other angles circle 0 triangle 3 rectangle 4 >>> df * other angles degrees circle 0 NaN triangle 9 NaN rectangle 16 NaN >>> df.mul(other, fill_value=0) angles degrees circle 0 0.0 triangle 9 0.0 rectangle 16 0.0 Divide by a MultiIndex by level. >>> df_multindex = pd.DataFrame({'angles': [0, 3, 4, 4, 5, 6], ... 'degrees': [360, 180, 360, 360, 540, 720]}, ... index=[['A', 'A', 'A', 'B', 'B', 'B'], ... ['circle', 'triangle', 'rectangle', ... 'square', 'pentagon', 'hexagon']]) >>> df_multindex angles degrees A circle 0 360 triangle 3 180 rectangle 4 360 B square 4 360 pentagon 5 540 hexagon 6 720 >>> df.div(df_multindex, level=1, fill_value=0) angles degrees A circle NaN 1.0 triangle 1.0 1.0 rectangle 1.0 1.0 B square 0.0 0.0 pentagon 0.0 0.0 hexagon 0.0 0.0
- rmod(**kwargs)
Get Modulo of dataframe and other, element-wise (binary operator rmod).
Equivalent to
other % dataframe
, but with support to substitute a fill_value for missing data in one of the inputs. With reverse version, mod.Among flexible wrappers (add, sub, mul, div, floordiv, mod, pow) to arithmetic operators: +, -, *, /, //, %, **.
- Parameters:
other (scalar, sequence, DeferredSeries, dict or DeferredDataFrame) – Any single or multiple element data structure, or list-like object.
axis ({0 or 'index', 1 or 'columns'}) – Whether to compare by the index (0 or ‘index’) or columns. (1 or ‘columns’). For DeferredSeries input, axis to match DeferredSeries index on.
level (int or label) – Broadcast across a level, matching Index values on the passed MultiIndex level.
fill_value (float or None, default None) – Fill existing missing (NaN) values, and any new element needed for successful DeferredDataFrame alignment, with this value before computation. If data in both corresponding DeferredDataFrame locations is missing the result will be missing.
- Returns:
Result of the arithmetic operation.
- Return type:
Differences from pandas
Only level=None is supported
See also
DeferredDataFrame.add
Add DeferredDataFrames.
DeferredDataFrame.sub
Subtract DeferredDataFrames.
DeferredDataFrame.mul
Multiply DeferredDataFrames.
DeferredDataFrame.div
Divide DeferredDataFrames (float division).
DeferredDataFrame.truediv
Divide DeferredDataFrames (float division).
DeferredDataFrame.floordiv
Divide DeferredDataFrames (integer division).
DeferredDataFrame.mod
Calculate modulo (remainder after division).
DeferredDataFrame.pow
Calculate exponential power.
Notes
Mismatched indices will be unioned together.
Examples
NOTE: These examples are pulled directly from the pandas documentation for convenience. Usage of the Beam DataFrame API will look different because it is a deferred API. In addition, some arguments shown here may not be supported, see ‘Differences from pandas’ for details.
>>> df = pd.DataFrame({'angles': [0, 3, 4], ... 'degrees': [360, 180, 360]}, ... index=['circle', 'triangle', 'rectangle']) >>> df angles degrees circle 0 360 triangle 3 180 rectangle 4 360 Add a scalar with operator version which return the same results. >>> df + 1 angles degrees circle 1 361 triangle 4 181 rectangle 5 361 >>> df.add(1) angles degrees circle 1 361 triangle 4 181 rectangle 5 361 Divide by constant with reverse version. >>> df.div(10) angles degrees circle 0.0 36.0 triangle 0.3 18.0 rectangle 0.4 36.0 >>> df.rdiv(10) angles degrees circle inf 0.027778 triangle 3.333333 0.055556 rectangle 2.500000 0.027778 Subtract a list and Series by axis with operator version. >>> df - [1, 2] angles degrees circle -1 358 triangle 2 178 rectangle 3 358 >>> df.sub([1, 2], axis='columns') angles degrees circle -1 358 triangle 2 178 rectangle 3 358 >>> df.sub(pd.Series([1, 1, 1], index=['circle', 'triangle', 'rectangle']), ... axis='index') angles degrees circle -1 359 triangle 2 179 rectangle 3 359 Multiply a dictionary by axis. >>> df.mul({'angles': 0, 'degrees': 2}) angles degrees circle 0 720 triangle 0 360 rectangle 0 720 >>> df.mul({'circle': 0, 'triangle': 2, 'rectangle': 3}, axis='index') angles degrees circle 0 0 triangle 6 360 rectangle 12 1080 Multiply a DataFrame of different shape with operator version. >>> other = pd.DataFrame({'angles': [0, 3, 4]}, ... index=['circle', 'triangle', 'rectangle']) >>> other angles circle 0 triangle 3 rectangle 4 >>> df * other angles degrees circle 0 NaN triangle 9 NaN rectangle 16 NaN >>> df.mul(other, fill_value=0) angles degrees circle 0 0.0 triangle 9 0.0 rectangle 16 0.0 Divide by a MultiIndex by level. >>> df_multindex = pd.DataFrame({'angles': [0, 3, 4, 4, 5, 6], ... 'degrees': [360, 180, 360, 360, 540, 720]}, ... index=[['A', 'A', 'A', 'B', 'B', 'B'], ... ['circle', 'triangle', 'rectangle', ... 'square', 'pentagon', 'hexagon']]) >>> df_multindex angles degrees A circle 0 360 triangle 3 180 rectangle 4 360 B square 4 360 pentagon 5 540 hexagon 6 720 >>> df.div(df_multindex, level=1, fill_value=0) angles degrees A circle NaN 1.0 triangle 1.0 1.0 rectangle 1.0 1.0 B square 0.0 0.0 pentagon 0.0 0.0 hexagon 0.0 0.0
- rmul(**kwargs)
Get Multiplication of dataframe and other, element-wise (binary operator rmul).
Equivalent to
other * dataframe
, but with support to substitute a fill_value for missing data in one of the inputs. With reverse version, mul.Among flexible wrappers (add, sub, mul, div, floordiv, mod, pow) to arithmetic operators: +, -, *, /, //, %, **.
- Parameters:
other (scalar, sequence, DeferredSeries, dict or DeferredDataFrame) – Any single or multiple element data structure, or list-like object.
axis ({0 or 'index', 1 or 'columns'}) – Whether to compare by the index (0 or ‘index’) or columns. (1 or ‘columns’). For DeferredSeries input, axis to match DeferredSeries index on.
level (int or label) – Broadcast across a level, matching Index values on the passed MultiIndex level.
fill_value (float or None, default None) – Fill existing missing (NaN) values, and any new element needed for successful DeferredDataFrame alignment, with this value before computation. If data in both corresponding DeferredDataFrame locations is missing the result will be missing.
- Returns:
Result of the arithmetic operation.
- Return type:
Differences from pandas
Only level=None is supported
See also
DeferredDataFrame.add
Add DeferredDataFrames.
DeferredDataFrame.sub
Subtract DeferredDataFrames.
DeferredDataFrame.mul
Multiply DeferredDataFrames.
DeferredDataFrame.div
Divide DeferredDataFrames (float division).
DeferredDataFrame.truediv
Divide DeferredDataFrames (float division).
DeferredDataFrame.floordiv
Divide DeferredDataFrames (integer division).
DeferredDataFrame.mod
Calculate modulo (remainder after division).
DeferredDataFrame.pow
Calculate exponential power.
Notes
Mismatched indices will be unioned together.
Examples
NOTE: These examples are pulled directly from the pandas documentation for convenience. Usage of the Beam DataFrame API will look different because it is a deferred API. In addition, some arguments shown here may not be supported, see ‘Differences from pandas’ for details.
>>> df = pd.DataFrame({'angles': [0, 3, 4], ... 'degrees': [360, 180, 360]}, ... index=['circle', 'triangle', 'rectangle']) >>> df angles degrees circle 0 360 triangle 3 180 rectangle 4 360 Add a scalar with operator version which return the same results. >>> df + 1 angles degrees circle 1 361 triangle 4 181 rectangle 5 361 >>> df.add(1) angles degrees circle 1 361 triangle 4 181 rectangle 5 361 Divide by constant with reverse version. >>> df.div(10) angles degrees circle 0.0 36.0 triangle 0.3 18.0 rectangle 0.4 36.0 >>> df.rdiv(10) angles degrees circle inf 0.027778 triangle 3.333333 0.055556 rectangle 2.500000 0.027778 Subtract a list and Series by axis with operator version. >>> df - [1, 2] angles degrees circle -1 358 triangle 2 178 rectangle 3 358 >>> df.sub([1, 2], axis='columns') angles degrees circle -1 358 triangle 2 178 rectangle 3 358 >>> df.sub(pd.Series([1, 1, 1], index=['circle', 'triangle', 'rectangle']), ... axis='index') angles degrees circle -1 359 triangle 2 179 rectangle 3 359 Multiply a dictionary by axis. >>> df.mul({'angles': 0, 'degrees': 2}) angles degrees circle 0 720 triangle 0 360 rectangle 0 720 >>> df.mul({'circle': 0, 'triangle': 2, 'rectangle': 3}, axis='index') angles degrees circle 0 0 triangle 6 360 rectangle 12 1080 Multiply a DataFrame of different shape with operator version. >>> other = pd.DataFrame({'angles': [0, 3, 4]}, ... index=['circle', 'triangle', 'rectangle']) >>> other angles circle 0 triangle 3 rectangle 4 >>> df * other angles degrees circle 0 NaN triangle 9 NaN rectangle 16 NaN >>> df.mul(other, fill_value=0) angles degrees circle 0 0.0 triangle 9 0.0 rectangle 16 0.0 Divide by a MultiIndex by level. >>> df_multindex = pd.DataFrame({'angles': [0, 3, 4, 4, 5, 6], ... 'degrees': [360, 180, 360, 360, 540, 720]}, ... index=[['A', 'A', 'A', 'B', 'B', 'B'], ... ['circle', 'triangle', 'rectangle', ... 'square', 'pentagon', 'hexagon']]) >>> df_multindex angles degrees A circle 0 360 triangle 3 180 rectangle 4 360 B square 4 360 pentagon 5 540 hexagon 6 720 >>> df.div(df_multindex, level=1, fill_value=0) angles degrees A circle NaN 1.0 triangle 1.0 1.0 rectangle 1.0 1.0 B square 0.0 0.0 pentagon 0.0 0.0 hexagon 0.0 0.0
- rpow(**kwargs)
Get Exponential power of dataframe and other, element-wise (binary operator rpow).
Equivalent to
other ** dataframe
, but with support to substitute a fill_value for missing data in one of the inputs. With reverse version, pow.Among flexible wrappers (add, sub, mul, div, floordiv, mod, pow) to arithmetic operators: +, -, *, /, //, %, **.
- Parameters:
other (scalar, sequence, DeferredSeries, dict or DeferredDataFrame) – Any single or multiple element data structure, or list-like object.
axis ({0 or 'index', 1 or 'columns'}) – Whether to compare by the index (0 or ‘index’) or columns. (1 or ‘columns’). For DeferredSeries input, axis to match DeferredSeries index on.
level (int or label) – Broadcast across a level, matching Index values on the passed MultiIndex level.
fill_value (float or None, default None) – Fill existing missing (NaN) values, and any new element needed for successful DeferredDataFrame alignment, with this value before computation. If data in both corresponding DeferredDataFrame locations is missing the result will be missing.
- Returns:
Result of the arithmetic operation.
- Return type:
Differences from pandas
Only level=None is supported
See also
DeferredDataFrame.add
Add DeferredDataFrames.
DeferredDataFrame.sub
Subtract DeferredDataFrames.
DeferredDataFrame.mul
Multiply DeferredDataFrames.
DeferredDataFrame.div
Divide DeferredDataFrames (float division).
DeferredDataFrame.truediv
Divide DeferredDataFrames (float division).
DeferredDataFrame.floordiv
Divide DeferredDataFrames (integer division).
DeferredDataFrame.mod
Calculate modulo (remainder after division).
DeferredDataFrame.pow
Calculate exponential power.
Notes
Mismatched indices will be unioned together.
Examples
NOTE: These examples are pulled directly from the pandas documentation for convenience. Usage of the Beam DataFrame API will look different because it is a deferred API. In addition, some arguments shown here may not be supported, see ‘Differences from pandas’ for details.
>>> df = pd.DataFrame({'angles': [0, 3, 4], ... 'degrees': [360, 180, 360]}, ... index=['circle', 'triangle', 'rectangle']) >>> df angles degrees circle 0 360 triangle 3 180 rectangle 4 360 Add a scalar with operator version which return the same results. >>> df + 1 angles degrees circle 1 361 triangle 4 181 rectangle 5 361 >>> df.add(1) angles degrees circle 1 361 triangle 4 181 rectangle 5 361 Divide by constant with reverse version. >>> df.div(10) angles degrees circle 0.0 36.0 triangle 0.3 18.0 rectangle 0.4 36.0 >>> df.rdiv(10) angles degrees circle inf 0.027778 triangle 3.333333 0.055556 rectangle 2.500000 0.027778 Subtract a list and Series by axis with operator version. >>> df - [1, 2] angles degrees circle -1 358 triangle 2 178 rectangle 3 358 >>> df.sub([1, 2], axis='columns') angles degrees circle -1 358 triangle 2 178 rectangle 3 358 >>> df.sub(pd.Series([1, 1, 1], index=['circle', 'triangle', 'rectangle']), ... axis='index') angles degrees circle -1 359 triangle 2 179 rectangle 3 359 Multiply a dictionary by axis. >>> df.mul({'angles': 0, 'degrees': 2}) angles degrees circle 0 720 triangle 0 360 rectangle 0 720 >>> df.mul({'circle': 0, 'triangle': 2, 'rectangle': 3}, axis='index') angles degrees circle 0 0 triangle 6 360 rectangle 12 1080 Multiply a DataFrame of different shape with operator version. >>> other = pd.DataFrame({'angles': [0, 3, 4]}, ... index=['circle', 'triangle', 'rectangle']) >>> other angles circle 0 triangle 3 rectangle 4 >>> df * other angles degrees circle 0 NaN triangle 9 NaN rectangle 16 NaN >>> df.mul(other, fill_value=0) angles degrees circle 0 0.0 triangle 9 0.0 rectangle 16 0.0 Divide by a MultiIndex by level. >>> df_multindex = pd.DataFrame({'angles': [0, 3, 4, 4, 5, 6], ... 'degrees': [360, 180, 360, 360, 540, 720]}, ... index=[['A', 'A', 'A', 'B', 'B', 'B'], ... ['circle', 'triangle', 'rectangle', ... 'square', 'pentagon', 'hexagon']]) >>> df_multindex angles degrees A circle 0 360 triangle 3 180 rectangle 4 360 B square 4 360 pentagon 5 540 hexagon 6 720 >>> df.div(df_multindex, level=1, fill_value=0) angles degrees A circle NaN 1.0 triangle 1.0 1.0 rectangle 1.0 1.0 B square 0.0 0.0 pentagon 0.0 0.0 hexagon 0.0 0.0
- rsub(**kwargs)
Get Subtraction of dataframe and other, element-wise (binary operator rsub).
Equivalent to
other - dataframe
, but with support to substitute a fill_value for missing data in one of the inputs. With reverse version, sub.Among flexible wrappers (add, sub, mul, div, floordiv, mod, pow) to arithmetic operators: +, -, *, /, //, %, **.
- Parameters:
other (scalar, sequence, DeferredSeries, dict or DeferredDataFrame) – Any single or multiple element data structure, or list-like object.
axis ({0 or 'index', 1 or 'columns'}) – Whether to compare by the index (0 or ‘index’) or columns. (1 or ‘columns’). For DeferredSeries input, axis to match DeferredSeries index on.
level (int or label) – Broadcast across a level, matching Index values on the passed MultiIndex level.
fill_value (float or None, default None) – Fill existing missing (NaN) values, and any new element needed for successful DeferredDataFrame alignment, with this value before computation. If data in both corresponding DeferredDataFrame locations is missing the result will be missing.
- Returns:
Result of the arithmetic operation.
- Return type:
Differences from pandas
Only level=None is supported
See also
DeferredDataFrame.add
Add DeferredDataFrames.
DeferredDataFrame.sub
Subtract DeferredDataFrames.
DeferredDataFrame.mul
Multiply DeferredDataFrames.
DeferredDataFrame.div
Divide DeferredDataFrames (float division).
DeferredDataFrame.truediv
Divide DeferredDataFrames (float division).
DeferredDataFrame.floordiv
Divide DeferredDataFrames (integer division).
DeferredDataFrame.mod
Calculate modulo (remainder after division).
DeferredDataFrame.pow
Calculate exponential power.
Notes
Mismatched indices will be unioned together.
Examples
NOTE: These examples are pulled directly from the pandas documentation for convenience. Usage of the Beam DataFrame API will look different because it is a deferred API. In addition, some arguments shown here may not be supported, see ‘Differences from pandas’ for details.
>>> df = pd.DataFrame({'angles': [0, 3, 4], ... 'degrees': [360, 180, 360]}, ... index=['circle', 'triangle', 'rectangle']) >>> df angles degrees circle 0 360 triangle 3 180 rectangle 4 360 Add a scalar with operator version which return the same results. >>> df + 1 angles degrees circle 1 361 triangle 4 181 rectangle 5 361 >>> df.add(1) angles degrees circle 1 361 triangle 4 181 rectangle 5 361 Divide by constant with reverse version. >>> df.div(10) angles degrees circle 0.0 36.0 triangle 0.3 18.0 rectangle 0.4 36.0 >>> df.rdiv(10) angles degrees circle inf 0.027778 triangle 3.333333 0.055556 rectangle 2.500000 0.027778 Subtract a list and Series by axis with operator version. >>> df - [1, 2] angles degrees circle -1 358 triangle 2 178 rectangle 3 358 >>> df.sub([1, 2], axis='columns') angles degrees circle -1 358 triangle 2 178 rectangle 3 358 >>> df.sub(pd.Series([1, 1, 1], index=['circle', 'triangle', 'rectangle']), ... axis='index') angles degrees circle -1 359 triangle 2 179 rectangle 3 359 Multiply a dictionary by axis. >>> df.mul({'angles': 0, 'degrees': 2}) angles degrees circle 0 720 triangle 0 360 rectangle 0 720 >>> df.mul({'circle': 0, 'triangle': 2, 'rectangle': 3}, axis='index') angles degrees circle 0 0 triangle 6 360 rectangle 12 1080 Multiply a DataFrame of different shape with operator version. >>> other = pd.DataFrame({'angles': [0, 3, 4]}, ... index=['circle', 'triangle', 'rectangle']) >>> other angles circle 0 triangle 3 rectangle 4 >>> df * other angles degrees circle 0 NaN triangle 9 NaN rectangle 16 NaN >>> df.mul(other, fill_value=0) angles degrees circle 0 0.0 triangle 9 0.0 rectangle 16 0.0 Divide by a MultiIndex by level. >>> df_multindex = pd.DataFrame({'angles': [0, 3, 4, 4, 5, 6], ... 'degrees': [360, 180, 360, 360, 540, 720]}, ... index=[['A', 'A', 'A', 'B', 'B', 'B'], ... ['circle', 'triangle', 'rectangle', ... 'square', 'pentagon', 'hexagon']]) >>> df_multindex angles degrees A circle 0 360 triangle 3 180 rectangle 4 360 B square 4 360 pentagon 5 540 hexagon 6 720 >>> df.div(df_multindex, level=1, fill_value=0) angles degrees A circle NaN 1.0 triangle 1.0 1.0 rectangle 1.0 1.0 B square 0.0 0.0 pentagon 0.0 0.0 hexagon 0.0 0.0
- rtruediv(**kwargs)
Get Floating division of dataframe and other, element-wise (binary operator rtruediv).
Equivalent to
other / dataframe
, but with support to substitute a fill_value for missing data in one of the inputs. With reverse version, truediv.Among flexible wrappers (add, sub, mul, div, floordiv, mod, pow) to arithmetic operators: +, -, *, /, //, %, **.
- Parameters:
other (scalar, sequence, DeferredSeries, dict or DeferredDataFrame) – Any single or multiple element data structure, or list-like object.
axis ({0 or 'index', 1 or 'columns'}) – Whether to compare by the index (0 or ‘index’) or columns. (1 or ‘columns’). For DeferredSeries input, axis to match DeferredSeries index on.
level (int or label) – Broadcast across a level, matching Index values on the passed MultiIndex level.
fill_value (float or None, default None) – Fill existing missing (NaN) values, and any new element needed for successful DeferredDataFrame alignment, with this value before computation. If data in both corresponding DeferredDataFrame locations is missing the result will be missing.
- Returns:
Result of the arithmetic operation.
- Return type:
Differences from pandas
Only level=None is supported
See also
DeferredDataFrame.add
Add DeferredDataFrames.
DeferredDataFrame.sub
Subtract DeferredDataFrames.
DeferredDataFrame.mul
Multiply DeferredDataFrames.
DeferredDataFrame.div
Divide DeferredDataFrames (float division).
DeferredDataFrame.truediv
Divide DeferredDataFrames (float division).
DeferredDataFrame.floordiv
Divide DeferredDataFrames (integer division).
DeferredDataFrame.mod
Calculate modulo (remainder after division).
DeferredDataFrame.pow
Calculate exponential power.
Notes
Mismatched indices will be unioned together.
Examples
NOTE: These examples are pulled directly from the pandas documentation for convenience. Usage of the Beam DataFrame API will look different because it is a deferred API. In addition, some arguments shown here may not be supported, see ‘Differences from pandas’ for details.
>>> df = pd.DataFrame({'angles': [0, 3, 4], ... 'degrees': [360, 180, 360]}, ... index=['circle', 'triangle', 'rectangle']) >>> df angles degrees circle 0 360 triangle 3 180 rectangle 4 360 Add a scalar with operator version which return the same results. >>> df + 1 angles degrees circle 1 361 triangle 4 181 rectangle 5 361 >>> df.add(1) angles degrees circle 1 361 triangle 4 181 rectangle 5 361 Divide by constant with reverse version. >>> df.div(10) angles degrees circle 0.0 36.0 triangle 0.3 18.0 rectangle 0.4 36.0 >>> df.rdiv(10) angles degrees circle inf 0.027778 triangle 3.333333 0.055556 rectangle 2.500000 0.027778 Subtract a list and Series by axis with operator version. >>> df - [1, 2] angles degrees circle -1 358 triangle 2 178 rectangle 3 358 >>> df.sub([1, 2], axis='columns') angles degrees circle -1 358 triangle 2 178 rectangle 3 358 >>> df.sub(pd.Series([1, 1, 1], index=['circle', 'triangle', 'rectangle']), ... axis='index') angles degrees circle -1 359 triangle 2 179 rectangle 3 359 Multiply a dictionary by axis. >>> df.mul({'angles': 0, 'degrees': 2}) angles degrees circle 0 720 triangle 0 360 rectangle 0 720 >>> df.mul({'circle': 0, 'triangle': 2, 'rectangle': 3}, axis='index') angles degrees circle 0 0 triangle 6 360 rectangle 12 1080 Multiply a DataFrame of different shape with operator version. >>> other = pd.DataFrame({'angles': [0, 3, 4]}, ... index=['circle', 'triangle', 'rectangle']) >>> other angles circle 0 triangle 3 rectangle 4 >>> df * other angles degrees circle 0 NaN triangle 9 NaN rectangle 16 NaN >>> df.mul(other, fill_value=0) angles degrees circle 0 0.0 triangle 9 0.0 rectangle 16 0.0 Divide by a MultiIndex by level. >>> df_multindex = pd.DataFrame({'angles': [0, 3, 4, 4, 5, 6], ... 'degrees': [360, 180, 360, 360, 540, 720]}, ... index=[['A', 'A', 'A', 'B', 'B', 'B'], ... ['circle', 'triangle', 'rectangle', ... 'square', 'pentagon', 'hexagon']]) >>> df_multindex angles degrees A circle 0 360 triangle 3 180 rectangle 4 360 B square 4 360 pentagon 5 540 hexagon 6 720 >>> df.div(df_multindex, level=1, fill_value=0) angles degrees A circle NaN 1.0 triangle 1.0 1.0 rectangle 1.0 1.0 B square 0.0 0.0 pentagon 0.0 0.0 hexagon 0.0 0.0
- set_flags(**kwargs)
pandas.DataFrame.set_flags()
is not implemented yet in the Beam DataFrame API.If support for ‘set_flags’ is important to you, please let the Beam community know by writing to user@beam.apache.org or commenting on 20318.
- squeeze(**kwargs)
pandas.DataFrame.squeeze()
is not implemented yet in the Beam DataFrame API.If support for ‘squeeze’ is important to you, please let the Beam community know by writing to user@beam.apache.org or commenting on 20318.
- sub(**kwargs)
Get Subtraction of dataframe and other, element-wise (binary operator sub).
Equivalent to
dataframe - other
, but with support to substitute a fill_value for missing data in one of the inputs. With reverse version, rsub.Among flexible wrappers (add, sub, mul, div, floordiv, mod, pow) to arithmetic operators: +, -, *, /, //, %, **.
- Parameters:
other (scalar, sequence, DeferredSeries, dict or DeferredDataFrame) – Any single or multiple element data structure, or list-like object.
axis ({0 or 'index', 1 or 'columns'}) – Whether to compare by the index (0 or ‘index’) or columns. (1 or ‘columns’). For DeferredSeries input, axis to match DeferredSeries index on.
level (int or label) – Broadcast across a level, matching Index values on the passed MultiIndex level.
fill_value (float or None, default None) – Fill existing missing (NaN) values, and any new element needed for successful DeferredDataFrame alignment, with this value before computation. If data in both corresponding DeferredDataFrame locations is missing the result will be missing.
- Returns:
Result of the arithmetic operation.
- Return type:
Differences from pandas
Only level=None is supported
See also
DeferredDataFrame.add
Add DeferredDataFrames.
DeferredDataFrame.sub
Subtract DeferredDataFrames.
DeferredDataFrame.mul
Multiply DeferredDataFrames.
DeferredDataFrame.div
Divide DeferredDataFrames (float division).
DeferredDataFrame.truediv
Divide DeferredDataFrames (float division).
DeferredDataFrame.floordiv
Divide DeferredDataFrames (integer division).
DeferredDataFrame.mod
Calculate modulo (remainder after division).
DeferredDataFrame.pow
Calculate exponential power.
Notes
Mismatched indices will be unioned together.
Examples
NOTE: These examples are pulled directly from the pandas documentation for convenience. Usage of the Beam DataFrame API will look different because it is a deferred API. In addition, some arguments shown here may not be supported, see ‘Differences from pandas’ for details.
>>> df = pd.DataFrame({'angles': [0, 3, 4], ... 'degrees': [360, 180, 360]}, ... index=['circle', 'triangle', 'rectangle']) >>> df angles degrees circle 0 360 triangle 3 180 rectangle 4 360 Add a scalar with operator version which return the same results. >>> df + 1 angles degrees circle 1 361 triangle 4 181 rectangle 5 361 >>> df.add(1) angles degrees circle 1 361 triangle 4 181 rectangle 5 361 Divide by constant with reverse version. >>> df.div(10) angles degrees circle 0.0 36.0 triangle 0.3 18.0 rectangle 0.4 36.0 >>> df.rdiv(10) angles degrees circle inf 0.027778 triangle 3.333333 0.055556 rectangle 2.500000 0.027778 Subtract a list and Series by axis with operator version. >>> df - [1, 2] angles degrees circle -1 358 triangle 2 178 rectangle 3 358 >>> df.sub([1, 2], axis='columns') angles degrees circle -1 358 triangle 2 178 rectangle 3 358 >>> df.sub(pd.Series([1, 1, 1], index=['circle', 'triangle', 'rectangle']), ... axis='index') angles degrees circle -1 359 triangle 2 179 rectangle 3 359 Multiply a dictionary by axis. >>> df.mul({'angles': 0, 'degrees': 2}) angles degrees circle 0 720 triangle 0 360 rectangle 0 720 >>> df.mul({'circle': 0, 'triangle': 2, 'rectangle': 3}, axis='index') angles degrees circle 0 0 triangle 6 360 rectangle 12 1080 Multiply a DataFrame of different shape with operator version. >>> other = pd.DataFrame({'angles': [0, 3, 4]}, ... index=['circle', 'triangle', 'rectangle']) >>> other angles circle 0 triangle 3 rectangle 4 >>> df * other angles degrees circle 0 NaN triangle 9 NaN rectangle 16 NaN >>> df.mul(other, fill_value=0) angles degrees circle 0 0.0 triangle 9 0.0 rectangle 16 0.0 Divide by a MultiIndex by level. >>> df_multindex = pd.DataFrame({'angles': [0, 3, 4, 4, 5, 6], ... 'degrees': [360, 180, 360, 360, 540, 720]}, ... index=[['A', 'A', 'A', 'B', 'B', 'B'], ... ['circle', 'triangle', 'rectangle', ... 'square', 'pentagon', 'hexagon']]) >>> df_multindex angles degrees A circle 0 360 triangle 3 180 rectangle 4 360 B square 4 360 pentagon 5 540 hexagon 6 720 >>> df.div(df_multindex, level=1, fill_value=0) angles degrees A circle NaN 1.0 triangle 1.0 1.0 rectangle 1.0 1.0 B square 0.0 0.0 pentagon 0.0 0.0 hexagon 0.0 0.0
- subtract(**kwargs)
Get Subtraction of dataframe and other, element-wise (binary operator sub).
Equivalent to
dataframe - other
, but with support to substitute a fill_value for missing data in one of the inputs. With reverse version, rsub.Among flexible wrappers (add, sub, mul, div, floordiv, mod, pow) to arithmetic operators: +, -, *, /, //, %, **.
- Parameters:
other (scalar, sequence, DeferredSeries, dict or DeferredDataFrame) – Any single or multiple element data structure, or list-like object.
axis ({0 or 'index', 1 or 'columns'}) – Whether to compare by the index (0 or ‘index’) or columns. (1 or ‘columns’). For DeferredSeries input, axis to match DeferredSeries index on.
level (int or label) – Broadcast across a level, matching Index values on the passed MultiIndex level.
fill_value (float or None, default None) – Fill existing missing (NaN) values, and any new element needed for successful DeferredDataFrame alignment, with this value before computation. If data in both corresponding DeferredDataFrame locations is missing the result will be missing.
- Returns:
Result of the arithmetic operation.
- Return type:
Differences from pandas
Only level=None is supported
See also
DeferredDataFrame.add
Add DeferredDataFrames.
DeferredDataFrame.sub
Subtract DeferredDataFrames.
DeferredDataFrame.mul
Multiply DeferredDataFrames.
DeferredDataFrame.div
Divide DeferredDataFrames (float division).
DeferredDataFrame.truediv
Divide DeferredDataFrames (float division).
DeferredDataFrame.floordiv
Divide DeferredDataFrames (integer division).
DeferredDataFrame.mod
Calculate modulo (remainder after division).
DeferredDataFrame.pow
Calculate exponential power.
Notes
Mismatched indices will be unioned together.
Examples
NOTE: These examples are pulled directly from the pandas documentation for convenience. Usage of the Beam DataFrame API will look different because it is a deferred API. In addition, some arguments shown here may not be supported, see ‘Differences from pandas’ for details.
>>> df = pd.DataFrame({'angles': [0, 3, 4], ... 'degrees': [360, 180, 360]}, ... index=['circle', 'triangle', 'rectangle']) >>> df angles degrees circle 0 360 triangle 3 180 rectangle 4 360 Add a scalar with operator version which return the same results. >>> df + 1 angles degrees circle 1 361 triangle 4 181 rectangle 5 361 >>> df.add(1) angles degrees circle 1 361 triangle 4 181 rectangle 5 361 Divide by constant with reverse version. >>> df.div(10) angles degrees circle 0.0 36.0 triangle 0.3 18.0 rectangle 0.4 36.0 >>> df.rdiv(10) angles degrees circle inf 0.027778 triangle 3.333333 0.055556 rectangle 2.500000 0.027778 Subtract a list and Series by axis with operator version. >>> df - [1, 2] angles degrees circle -1 358 triangle 2 178 rectangle 3 358 >>> df.sub([1, 2], axis='columns') angles degrees circle -1 358 triangle 2 178 rectangle 3 358 >>> df.sub(pd.Series([1, 1, 1], index=['circle', 'triangle', 'rectangle']), ... axis='index') angles degrees circle -1 359 triangle 2 179 rectangle 3 359 Multiply a dictionary by axis. >>> df.mul({'angles': 0, 'degrees': 2}) angles degrees circle 0 720 triangle 0 360 rectangle 0 720 >>> df.mul({'circle': 0, 'triangle': 2, 'rectangle': 3}, axis='index') angles degrees circle 0 0 triangle 6 360 rectangle 12 1080 Multiply a DataFrame of different shape with operator version. >>> other = pd.DataFrame({'angles': [0, 3, 4]}, ... index=['circle', 'triangle', 'rectangle']) >>> other angles circle 0 triangle 3 rectangle 4 >>> df * other angles degrees circle 0 NaN triangle 9 NaN rectangle 16 NaN >>> df.mul(other, fill_value=0) angles degrees circle 0 0.0 triangle 9 0.0 rectangle 16 0.0 Divide by a MultiIndex by level. >>> df_multindex = pd.DataFrame({'angles': [0, 3, 4, 4, 5, 6], ... 'degrees': [360, 180, 360, 360, 540, 720]}, ... index=[['A', 'A', 'A', 'B', 'B', 'B'], ... ['circle', 'triangle', 'rectangle', ... 'square', 'pentagon', 'hexagon']]) >>> df_multindex angles degrees A circle 0 360 triangle 3 180 rectangle 4 360 B square 4 360 pentagon 5 540 hexagon 6 720 >>> df.div(df_multindex, level=1, fill_value=0) angles degrees A circle NaN 1.0 triangle 1.0 1.0 rectangle 1.0 1.0 B square 0.0 0.0 pentagon 0.0 0.0 hexagon 0.0 0.0
- to_clipboard(**kwargs)
pandas.DataFrame.to_clipboard()
is not implemented yet in the Beam DataFrame API.If support for ‘to_clipboard’ is important to you, please let the Beam community know by writing to user@beam.apache.org or commenting on 20318.
- to_csv(path, transform_label=None, *args, **kwargs)
Write object to a comma-separated values (csv) file.
- Parameters:
path_or_buf (str, path object, file-like object, or None, default None) –
String, path object (implementing os.PathLike[str]), or file-like object implementing a write() function. If None, the result is returned as a string. If a non-binary file object is passed, it should be opened with newline=’’, disabling universal newlines. If a binary file object is passed, mode might need to contain a ‘b’.
Changed in version 1.2.0: Support for binary file objects was introduced.
sep (str, default ',') – String of length 1. Field delimiter for the output file.
na_rep (str, default '') – Missing data representation.
float_format (str, Callable, default None) – Format string for floating point numbers. If a Callable is given, it takes precedence over other numeric formatting parameters, like decimal.
columns (sequence, optional) – Columns to write.
header (bool or list of str, default True) – Write out the column names. If a list of strings is given it is assumed to be aliases for the column names.
index (bool, default True) – Write row names (index).
index_label (str or sequence, or False, default None) – Column label for index column(s) if desired. If None is given, and header and index are True, then the index names are used. A sequence should be given if the object uses MultiIndex. If False do not print fields for index names. Use index_label=False for easier importing in R.
mode ({'w', 'x', 'a'}, default 'w') –
Forwarded to either open(mode=) or fsspec.open(mode=) to control the file opening. Typical values include:
’w’, truncate the file first.
’x’, exclusive creation, failing if the file already exists.
’a’, append to the end of file if it exists.
encoding (str, optional) – A string representing the encoding to use in the output file, defaults to ‘utf-8’. encoding is not supported if path_or_buf is a non-binary file object.
compression (str or dict, default 'infer') –
For on-the-fly compression of the output data. If ‘infer’ and ‘path_or_buf’ is path-like, then detect compression from the following extensions: ‘.gz’, ‘.bz2’, ‘.zip’, ‘.xz’, ‘.zst’, ‘.tar’, ‘.tar.gz’, ‘.tar.xz’ or ‘.tar.bz2’ (otherwise no compression). Set to
None
for no compression. Can also be a dict with key'method'
set to one of {'zip'
,'gzip'
,'bz2'
,'zstd'
,'xz'
,'tar'
} and other key-value pairs are forwarded tozipfile.ZipFile
,gzip.GzipFile
,bz2.BZ2File
,zstandard.ZstdCompressor
,lzma.LZMAFile
ortarfile.TarFile
, respectively. As an example, the following could be passed for faster compression and to create a reproducible gzip archive:compression={'method': 'gzip', 'compresslevel': 1, 'mtime': 1}
.Added in version 1.5.0: Added support for .tar files.
May be a dict with key ‘method’ as compression mode and other entries as additional compression options if compression mode is ‘zip’.
Passing compression options as keys in dict is supported for compression modes ‘gzip’, ‘bz2’, ‘zstd’, and ‘zip’.
Changed in version 1.2.0: Compression is supported for binary file objects.
Changed in version 1.2.0: Previous versions forwarded dict entries for ‘gzip’ to gzip.open instead of gzip.GzipFile which prevented setting mtime.
quoting (optional constant from csv module) – Defaults to csv.QUOTE_MINIMAL. If you have set a float_format then floats are converted to strings and thus csv.QUOTE_NONNUMERIC will treat them as non-numeric.
quotechar (str, default '"') – String of length 1. Character used to quote fields.
lineterminator (str, optional) –
The newline character or character sequence to use in the output file. Defaults to os.linesep, which depends on the OS in which this method is called (’\n’ for linux, ‘\r\n’ for Windows, i.e.).
Changed in version 1.5.0: Previously was line_terminator, changed for consistency with read_csv and the standard library ‘csv’ module.
chunksize (int or None) – Rows to write at a time.
date_format (str, default None) – Format string for datetime objects.
doublequote (bool, default True) – Control quoting of quotechar inside a field.
escapechar (str, default None) – String of length 1. Character used to escape sep and quotechar when appropriate.
decimal (str, default '.') – Character recognized as decimal separator. E.g. use ‘,’ for European data.
errors (str, default 'strict') – Specifies how encoding and decoding errors are to be handled. See the errors argument for
open()
for a full list of options.storage_options (dict, optional) –
Extra options that make sense for a particular storage connection, e.g. host, port, username, password, etc. For HTTP(S) URLs the key-value pairs are forwarded to
urllib.request.Request
as header options. For other URLs (e.g. starting with “s3://”, and “gcs://”) the key-value pairs are forwarded tofsspec.open
. Please seefsspec
andurllib
for more details, and for more examples on storage options refer here.Added in version 1.2.0.
- Returns:
If path_or_buf is None, returns the resulting csv format as a string. Otherwise returns None.
- Return type:
None or str
Differences from pandas
This operation has no known divergences from the pandas API.
See also
read_csv
Load a CSV file into a DeferredDataFrame.
to_excel
Write DeferredDataFrame to an Excel file.
Examples
NOTE: These examples are pulled directly from the pandas documentation for convenience. Usage of the Beam DataFrame API will look different because it is a deferred API.
>>> df = pd.DataFrame({'name': ['Raphael', 'Donatello'], ... 'mask': ['red', 'purple'], ... 'weapon': ['sai', 'bo staff']}) >>> df.to_csv(index=False) 'name,mask,weapon\nRaphael,red,sai\nDonatello,purple,bo staff\n' Create 'out.zip' containing 'out.csv' >>> compression_opts = dict(method='zip', ... archive_name='out.csv') >>> df.to_csv('out.zip', index=False, ... compression=compression_opts) To write a csv file to a new folder or nested folder you will first need to create it using either Pathlib or os: >>> from pathlib import Path >>> filepath = Path('folder/subfolder/out.csv') >>> filepath.parent.mkdir(parents=True, exist_ok=True) >>> df.to_csv(filepath) >>> import os >>> os.makedirs('folder/subfolder', exist_ok=True) >>> df.to_csv('folder/subfolder/out.csv')
- to_excel(path, *args, **kwargs)
Write object to an Excel sheet.
To write a single object to an Excel .xlsx file it is only necessary to specify a target file name. To write to multiple sheets it is necessary to create an ExcelWriter object with a target file name, and specify a sheet in the file to write to.
Multiple sheets may be written to by specifying unique sheet_name. With all data written to the file it is necessary to save the changes. Note that creating an ExcelWriter object with a file name that already exists will result in the contents of the existing file being erased.
- Parameters:
excel_writer (path-like, file-like, or ExcelWriter object) – File path or existing ExcelWriter.
sheet_name (str, default 'Sheet1') – Name of sheet which will contain DeferredDataFrame.
na_rep (str, default '') – Missing data representation.
float_format (str, optional) – Format string for floating point numbers. For example
float_format="%.2f"
will format 0.1234 to 0.12.columns (sequence or list of str, optional) – Columns to write.
header (bool or list of str, default True) – Write out the column names. If a list of string is given it is assumed to be aliases for the column names.
index (bool, default True) – Write row names (index).
index_label (str or sequence, optional) – Column label for index column(s) if desired. If not specified, and header and index are True, then the index names are used. A sequence should be given if the DeferredDataFrame uses MultiIndex.
startrow (int, default 0) – Upper left cell row to dump data frame.
startcol (int, default 0) – Upper left cell column to dump data frame.
engine (str, optional) – Write engine to use, ‘openpyxl’ or ‘xlsxwriter’. You can also set this via the options
io.excel.xlsx.writer
orio.excel.xlsm.writer
.merge_cells (bool, default True) – Write MultiIndex and Hierarchical Rows as merged cells.
inf_rep (str, default 'inf') – Representation for infinity (there is no native representation for infinity in Excel).
freeze_panes (tuple of int (length 2), optional) – Specifies the one-based bottommost row and rightmost column that is to be frozen.
storage_options (dict, optional) –
Extra options that make sense for a particular storage connection, e.g. host, port, username, password, etc. For HTTP(S) URLs the key-value pairs are forwarded to
urllib.request.Request
as header options. For other URLs (e.g. starting with “s3://”, and “gcs://”) the key-value pairs are forwarded tofsspec.open
. Please seefsspec
andurllib
for more details, and for more examples on storage options refer here.Added in version 1.2.0.
engine_kwargs (dict, optional) – Arbitrary keyword arguments passed to excel engine.
Differences from pandas
This operation has no known divergences from the pandas API.
See also
to_csv
Write DeferredDataFrame to a comma-separated values (csv) file.
ExcelWriter
Class for writing DeferredDataFrame objects into excel sheets.
read_excel
Read an Excel file into a pandas DeferredDataFrame.
read_csv
Read a comma-separated values (csv) file into DeferredDataFrame.
io.formats.style.Styler.to_excel
Add styles to Excel sheet.
Notes
For compatibility with
to_csv()
, to_excel serializes lists and dicts to strings before writing.Once a workbook has been saved it is not possible to write further data without rewriting the whole workbook.
Examples
NOTE: These examples are pulled directly from the pandas documentation for convenience. Usage of the Beam DataFrame API will look different because it is a deferred API.
Create, write to and save a workbook: >>> df1 = pd.DataFrame([['a', 'b'], ['c', 'd']], ... index=['row 1', 'row 2'], ... columns=['col 1', 'col 2']) >>> df1.to_excel("output.xlsx") To specify the sheet name: >>> df1.to_excel("output.xlsx", ... sheet_name='Sheet_name_1') If you wish to write to more than one sheet in the workbook, it is necessary to specify an ExcelWriter object: >>> df2 = df1.copy() >>> with pd.ExcelWriter('output.xlsx') as writer: ... df1.to_excel(writer, sheet_name='Sheet_name_1') ... df2.to_excel(writer, sheet_name='Sheet_name_2') ExcelWriter can also be used to append to an existing Excel file: >>> with pd.ExcelWriter('output.xlsx', ... mode='a') as writer: ... df1.to_excel(writer, sheet_name='Sheet_name_3') To set the library that is used to write the Excel file, you can pass the `engine` keyword (the default engine is automatically chosen depending on the file extension): >>> df1.to_excel('output1.xlsx', engine='xlsxwriter')
- to_feather(path, *args, **kwargs)
Write a DataFrame to the binary Feather format.
- Parameters:
path (str, path object, file-like object) – String, path object (implementing
os.PathLike[str]
), or file-like object implementing a binarywrite()
function. If a string or a path, it will be used as Root Directory path when writing a partitioned dataset.**kwargs – Additional keywords passed to
pyarrow.feather.write_feather()
. This includes the compression, compression_level, chunksize and version keywords.
Differences from pandas
This operation has no known divergences from the pandas API.
Notes
This function writes the dataframe as a feather file. Requires a default index. For saving the DeferredDataFrame with your custom index use a method that supports custom indices e.g. to_parquet.
Examples
NOTE: These examples are pulled directly from the pandas documentation for convenience. Usage of the Beam DataFrame API will look different because it is a deferred API.
>>> df = pd.DataFrame([[1, 2, 3], [4, 5, 6]]) >>> df.to_feather("file.feather")
- to_gbq(**kwargs)
pandas.DataFrame.to_gbq()
is not implemented yet in the Beam DataFrame API.If support for ‘to_gbq’ is important to you, please let the Beam community know by writing to user@beam.apache.org or commenting on 20318.
- to_hdf(**kwargs)
pandas.DataFrame.to_hdf()
is not yet supported in the Beam DataFrame API because HDF5 is a random access file format
- to_html(path, *args, **kwargs)
Render a DataFrame as an HTML table.
- Parameters:
buf (str, Path or StringIO-like, optional, default None) – Buffer to write to. If None, the output is returned as a string.
columns (array-like, optional, default None) – The subset of columns to write. Writes all columns by default.
col_space (str or int, list or dict of int or str, optional) – The minimum width of each column in CSS length units. An int is assumed to be px units..
header (bool, optional) – Whether to print column labels, default True.
index (bool, optional, default True) – Whether to print index (row) labels.
na_rep (str, optional, default 'NaN') – String representation of
NaN
to use.formatters (list, tuple or dict of one-param. functions, optional) – Formatter functions to apply to columns’ elements by position or name. The result of each function must be a unicode string. List/tuple must be of length equal to the number of columns.
float_format (one-parameter function, optional, default None) –
Formatter function to apply to columns’ elements if they are floats. This function must return a unicode string and will be applied only to the non-
NaN
elements, withNaN
being handled byna_rep
.Changed in version 1.2.0.
sparsify (bool, optional, default True) – Set to False for a DeferredDataFrame with a hierarchical index to print every multiindex key at each row.
index_names (bool, optional, default True) – Prints the names of the indexes.
justify (str, default None) –
How to justify the column labels. If None uses the option from the print configuration (controlled by set_option), ‘right’ out of the box. Valid values are
left
right
center
justify
justify-all
start
end
inherit
match-parent
initial
unset.
max_rows (int, optional) – Maximum number of rows to display in the console.
max_cols (int, optional) – Maximum number of columns to display in the console.
show_dimensions (bool, default False) – Display DeferredDataFrame dimensions (number of rows by number of columns).
decimal (str, default '.') – Character recognized as decimal separator, e.g. ‘,’ in Europe.
bold_rows (bool, default True) – Make the row labels bold in the output.
classes (str or list or tuple, default None) – CSS class(es) to apply to the resulting html table.
escape (bool, default True) – Convert the characters <, >, and & to HTML-safe sequences.
notebook ({True, False}, default False) – Whether the generated HTML is for IPython Notebook.
border (int) – A
border=border
attribute is included in the opening <table> tag. Defaultpd.options.display.html.border
.table_id (str, optional) – A css id is included in the opening <table> tag if specified.
render_links (bool, default False) – Convert URLs to HTML links.
encoding (str, default "utf-8") – Set character encoding.
- Returns:
If buf is None, returns the result as a string. Otherwise returns None.
- Return type:
str or None
Differences from pandas
This operation has no known divergences from the pandas API.
See also
to_string
Convert DeferredDataFrame to a string.
Examples
NOTE: These examples are pulled directly from the pandas documentation for convenience. Usage of the Beam DataFrame API will look different because it is a deferred API.
>>> df = pd.DataFrame(data={'col1': [1, 2], 'col2': [4, 3]}) >>> html_string = '''<table border="1" class="dataframe"> ... <thead> ... <tr style="text-align: right;"> ... <th></th> ... <th>col1</th> ... <th>col2</th> ... </tr> ... </thead> ... <tbody> ... <tr> ... <th>0</th> ... <td>1</td> ... <td>4</td> ... </tr> ... <tr> ... <th>1</th> ... <td>2</td> ... <td>3</td> ... </tr> ... </tbody> ... </table>''' >>> assert html_string == df.to_html()
- to_json(path, orient=None, *args, **kwargs)
Convert the object to a JSON string.
Note NaN’s and None will be converted to null and datetime objects will be converted to UNIX timestamps.
- Parameters:
path_or_buf (str, path object, file-like object, or None, default None) – String, path object (implementing os.PathLike[str]), or file-like object implementing a write() function. If None, the result is returned as a string.
orient (str) –
Indication of expected JSON string format.
DeferredSeries:
default is ‘index’
allowed values are: {‘split’, ‘records’, ‘index’, ‘table’}.
DeferredDataFrame:
default is ‘columns’
allowed values are: {‘split’, ‘records’, ‘index’, ‘columns’, ‘values’, ‘table’}.
The format of the JSON string:
’split’ : dict like {‘index’ -> [index], ‘columns’ -> [columns], ‘data’ -> [values]}
’records’ : list like [{column -> value}, … , {column -> value}]
’index’ : dict like {index -> {column -> value}}
’columns’ : dict like {column -> {index -> value}}
’values’ : just the values array
’table’ : dict like {‘schema’: {schema}, ‘data’: {data}}
Describing the data, where data component is like
orient='records'
.
date_format ({None, 'epoch', 'iso'}) – Type of date conversion. ‘epoch’ = epoch milliseconds, ‘iso’ = ISO8601. The default depends on the orient. For
orient='table'
, the default is ‘iso’. For all other orients, the default is ‘epoch’.double_precision (int, default 10) – The number of decimal places to use when encoding floating point values. The possible maximal value is 15. Passing double_precision greater than 15 will raise a ValueError.
force_ascii (bool, default True) – Force encoded string to be ASCII.
date_unit (str, default 'ms' (milliseconds)) – The time unit to encode to, governs timestamp and ISO8601 precision. One of ‘s’, ‘ms’, ‘us’, ‘ns’ for second, millisecond, microsecond, and nanosecond respectively.
default_handler (callable, default None) – Handler to call if object cannot otherwise be converted to a suitable format for JSON. Should receive a single argument which is the object to convert and return a serialisable object.
lines (bool, default False) – If ‘orient’ is ‘records’ write out line-delimited json format. Will throw ValueError if incorrect ‘orient’ since others are not list-like.
compression (str or dict, default 'infer') –
For on-the-fly compression of the output data. If ‘infer’ and ‘path_or_buf’ is path-like, then detect compression from the following extensions: ‘.gz’, ‘.bz2’, ‘.zip’, ‘.xz’, ‘.zst’, ‘.tar’, ‘.tar.gz’, ‘.tar.xz’ or ‘.tar.bz2’ (otherwise no compression). Set to
None
for no compression. Can also be a dict with key'method'
set to one of {'zip'
,'gzip'
,'bz2'
,'zstd'
,'xz'
,'tar'
} and other key-value pairs are forwarded tozipfile.ZipFile
,gzip.GzipFile
,bz2.BZ2File
,zstandard.ZstdCompressor
,lzma.LZMAFile
ortarfile.TarFile
, respectively. As an example, the following could be passed for faster compression and to create a reproducible gzip archive:compression={'method': 'gzip', 'compresslevel': 1, 'mtime': 1}
.Added in version 1.5.0: Added support for .tar files.
Changed in version 1.4.0: Zstandard support.
index (bool or None, default None) – The index is only used when ‘orient’ is ‘split’, ‘index’, ‘column’, or ‘table’. Of these, ‘index’ and ‘column’ do not support index=False.
indent (int, optional) – Length of whitespace used to indent each record.
storage_options (dict, optional) –
Extra options that make sense for a particular storage connection, e.g. host, port, username, password, etc. For HTTP(S) URLs the key-value pairs are forwarded to
urllib.request.Request
as header options. For other URLs (e.g. starting with “s3://”, and “gcs://”) the key-value pairs are forwarded tofsspec.open
. Please seefsspec
andurllib
for more details, and for more examples on storage options refer here.Added in version 1.2.0.
mode (str, default 'w' (writing)) – Specify the IO mode for output when supplying a path_or_buf. Accepted args are ‘w’ (writing) and ‘a’ (append) only. mode=’a’ is only supported when lines is True and orient is ‘records’.
- Returns:
If path_or_buf is None, returns the resulting json format as a string. Otherwise returns None.
- Return type:
None or str
Differences from pandas
This operation has no known divergences from the pandas API.
See also
read_json
Convert a JSON string to pandas object.
Notes
The behavior of
indent=0
varies from the stdlib, which does not indent the output but does insert newlines. Currently,indent=0
and the defaultindent=None
are equivalent in pandas, though this may change in a future release.orient='table'
contains a ‘pandas_version’ field under ‘schema’. This stores the version of pandas used in the latest revision of the schema.Examples
NOTE: These examples are pulled directly from the pandas documentation for convenience. Usage of the Beam DataFrame API will look different because it is a deferred API.
>>> from json import loads, dumps >>> df = pd.DataFrame( ... [["a", "b"], ["c", "d"]], ... index=["row 1", "row 2"], ... columns=["col 1", "col 2"], ... ) >>> result = df.to_json(orient="split") >>> parsed = loads(result) >>> dumps(parsed, indent=4) { "columns": [ "col 1", "col 2" ], "index": [ "row 1", "row 2" ], "data": [ [ "a", "b" ], [ "c", "d" ] ] } Encoding/decoding a Dataframe using ``'records'`` formatted JSON. Note that index labels are not preserved with this encoding. >>> result = df.to_json(orient="records") >>> parsed = loads(result) >>> dumps(parsed, indent=4) [ { "col 1": "a", "col 2": "b" }, { "col 1": "c", "col 2": "d" } ] Encoding/decoding a Dataframe using ``'index'`` formatted JSON: >>> result = df.to_json(orient="index") >>> parsed = loads(result) >>> dumps(parsed, indent=4) { "row 1": { "col 1": "a", "col 2": "b" }, "row 2": { "col 1": "c", "col 2": "d" } } Encoding/decoding a Dataframe using ``'columns'`` formatted JSON: >>> result = df.to_json(orient="columns") >>> parsed = loads(result) >>> dumps(parsed, indent=4) { "col 1": { "row 1": "a", "row 2": "c" }, "col 2": { "row 1": "b", "row 2": "d" } } Encoding/decoding a Dataframe using ``'values'`` formatted JSON: >>> result = df.to_json(orient="values") >>> parsed = loads(result) >>> dumps(parsed, indent=4) [ [ "a", "b" ], [ "c", "d" ] ] Encoding with Table Schema: >>> result = df.to_json(orient="table") >>> parsed = loads(result) >>> dumps(parsed, indent=4) { "schema": { "fields": [ { "name": "index", "type": "string" }, { "name": "col 1", "type": "string" }, { "name": "col 2", "type": "string" } ], "primaryKey": [ "index" ], "pandas_version": "1.4.0" }, "data": [ { "index": "row 1", "col 1": "a", "col 2": "b" }, { "index": "row 2", "col 1": "c", "col 2": "d" } ] }
- to_latex(**kwargs)
pandas.DataFrame.to_latex()
is not implemented yet in the Beam DataFrame API.If support for ‘to_latex’ is important to you, please let the Beam community know by writing to user@beam.apache.org or commenting on 20318.
- to_markdown(**kwargs)
pandas.DataFrame.to_markdown()
is not implemented yet in the Beam DataFrame API.If support for ‘to_markdown’ is important to you, please let the Beam community know by writing to user@beam.apache.org or commenting on 20318.
- to_msgpack(**kwargs)
pandas.DataFrame.to_msgpack()
is not yet supported in the Beam DataFrame API because it is deprecated in pandas.
- to_orc(**kwargs)
pandas.DataFrame.to_orc()
is not implemented yet in the Beam DataFrame API.If support for ‘to_orc’ is important to you, please let the Beam community know by writing to user@beam.apache.org or commenting on 20318.
- to_parquet(path, *args, **kwargs)
Write a DataFrame to the binary parquet format.
This function writes the dataframe as a parquet file. You can choose different parquet backends, and have the option of compression. See the user guide for more details.
- Parameters:
path (str, path object, file-like object, or None, default None) –
String, path object (implementing
os.PathLike[str]
), or file-like object implementing a binarywrite()
function. If None, the result is returned as bytes. If a string or path, it will be used as Root Directory path when writing a partitioned dataset.Changed in version 1.2.0.
Previously this was “fname”
engine ({'auto', 'pyarrow', 'fastparquet'}, default 'auto') – Parquet library to use. If ‘auto’, then the option
io.parquet.engine
is used. The defaultio.parquet.engine
behavior is to try ‘pyarrow’, falling back to ‘fastparquet’ if ‘pyarrow’ is unavailable.compression (str or None, default 'snappy') – Name of the compression to use. Use
None
for no compression. Supported options: ‘snappy’, ‘gzip’, ‘brotli’, ‘lz4’, ‘zstd’.index (bool, default None) – If
True
, include the dataframe’s index(es) in the file output. IfFalse
, they will not be written to the file. IfNone
, similar toTrue
the dataframe’s index(es) will be saved. However, instead of being saved as values, the RangeIndex will be stored as a range in the metadata so it doesn’t require much space and is faster. Other indexes will be included as columns in the file output.partition_cols (list, optional, default None) – Column names by which to partition the dataset. Columns are partitioned in the order they are given. Must be None if path is not a string.
storage_options (dict, optional) –
Extra options that make sense for a particular storage connection, e.g. host, port, username, password, etc. For HTTP(S) URLs the key-value pairs are forwarded to
urllib.request.Request
as header options. For other URLs (e.g. starting with “s3://”, and “gcs://”) the key-value pairs are forwarded tofsspec.open
. Please seefsspec
andurllib
for more details, and for more examples on storage options refer here.Added in version 1.2.0.
**kwargs – Additional arguments passed to the parquet library. See pandas io for more details.
- Return type:
bytes if no path argument is provided else None
Differences from pandas
This operation has no known divergences from the pandas API.
See also
read_parquet
Read a parquet file.
DeferredDataFrame.to_orc
Write an orc file.
DeferredDataFrame.to_csv
Write a csv file.
DeferredDataFrame.to_sql
Write to a sql table.
DeferredDataFrame.to_hdf
Write to hdf.
Notes
This function requires either the fastparquet or pyarrow library.
Examples
NOTE: These examples are pulled directly from the pandas documentation for convenience. Usage of the Beam DataFrame API will look different because it is a deferred API.
>>> df = pd.DataFrame(data={'col1': [1, 2], 'col2': [3, 4]}) >>> df.to_parquet('df.parquet.gzip', ... compression='gzip') >>> pd.read_parquet('df.parquet.gzip') col1 col2 0 1 3 1 2 4 If you want to get a buffer to the parquet content you can use a io.BytesIO object, as long as you don't use partition_cols, which creates multiple files. >>> import io >>> f = io.BytesIO() >>> df.to_parquet(f) >>> f.seek(0) 0 >>> content = f.read()
- to_period(**kwargs)
pandas.DataFrame.to_period()
is not implemented yet in the Beam DataFrame API.If support for ‘to_period’ is important to you, please let the Beam community know by writing to user@beam.apache.org or commenting on 20318.
- to_pickle(**kwargs)
pandas.DataFrame.to_pickle()
is not implemented yet in the Beam DataFrame API.If support for ‘to_pickle’ is important to you, please let the Beam community know by writing to user@beam.apache.org or commenting on 20318.
- to_sql(**kwargs)
pandas.DataFrame.to_sql()
is not implemented yet in the Beam DataFrame API.If support for ‘to_sql’ is important to you, please let the Beam community know by writing to user@beam.apache.org or commenting on 20318.
- to_stata(path, *args, **kwargs)
Export DataFrame object to Stata dta format.
Writes the DataFrame to a Stata dataset file. “dta” files contain a Stata dataset.
- Parameters:
path (str, path object, or buffer) – String, path object (implementing
os.PathLike[str]
), or file-like object implementing a binarywrite()
function.convert_dates (dict) – Dictionary mapping columns containing datetime types to stata internal format to use when writing the dates. Options are ‘tc’, ‘td’, ‘tm’, ‘tw’, ‘th’, ‘tq’, ‘ty’. Column can be either an integer or a name. Datetime columns that do not have a conversion type specified will be converted to ‘tc’. Raises NotImplementedError if a datetime column has timezone information.
write_index (bool) – Write the index to Stata dataset.
byteorder (str) – Can be “>”, “<”, “little”, or “big”. default is sys.byteorder.
time_stamp (datetime) – A datetime to use as file creation date. Default is the current time.
data_label (str, optional) – A label for the data set. Must be 80 characters or smaller.
variable_labels (dict) – Dictionary containing columns as keys and variable labels as values. Each label must be 80 characters or smaller.
version ({114, 117, 118, 119, None}, default 114) –
Version to use in the output dta file. Set to None to let pandas decide between 118 or 119 formats depending on the number of columns in the frame. pandas Version 114 can be read by Stata 10 and later. pandas Version 117 can be read by Stata 13 or later. pandas Version 118 is supported in Stata 14 and later. pandas Version 119 is supported in Stata 15 and later. pandas Version 114 limits string variables to 244 characters or fewer while versions 117 and later allow strings with lengths up to 2,000,000 characters. Versions 118 and 119 support Unicode characters, and pandas version 119 supports more than 32,767 variables.
pandas Version 119 should usually only be used when the number of variables exceeds the capacity of dta format 118. Exporting smaller datasets in format 119 may have unintended consequences, and, as of November 2020, Stata SE cannot read pandas version 119 files.
convert_strl (list, optional) – List of column names to convert to string columns to Stata StrL format. Only available if version is 117. Storing strings in the StrL format can produce smaller dta files if strings have more than 8 characters and values are repeated.
compression (str or dict, default 'infer') –
For on-the-fly compression of the output data. If ‘infer’ and ‘path’ is path-like, then detect compression from the following extensions: ‘.gz’, ‘.bz2’, ‘.zip’, ‘.xz’, ‘.zst’, ‘.tar’, ‘.tar.gz’, ‘.tar.xz’ or ‘.tar.bz2’ (otherwise no compression). Set to
None
for no compression. Can also be a dict with key'method'
set to one of {'zip'
,'gzip'
,'bz2'
,'zstd'
,'xz'
,'tar'
} and other key-value pairs are forwarded tozipfile.ZipFile
,gzip.GzipFile
,bz2.BZ2File
,zstandard.ZstdCompressor
,lzma.LZMAFile
ortarfile.TarFile
, respectively. As an example, the following could be passed for faster compression and to create a reproducible gzip archive:compression={'method': 'gzip', 'compresslevel': 1, 'mtime': 1}
.Added in version 1.5.0: Added support for .tar files.
Changed in version 1.4.0: Zstandard support.
storage_options (dict, optional) –
Extra options that make sense for a particular storage connection, e.g. host, port, username, password, etc. For HTTP(S) URLs the key-value pairs are forwarded to
urllib.request.Request
as header options. For other URLs (e.g. starting with “s3://”, and “gcs://”) the key-value pairs are forwarded tofsspec.open
. Please seefsspec
andurllib
for more details, and for more examples on storage options refer here.Added in version 1.2.0.
value_labels (dict of dicts) –
Dictionary containing columns as keys and dictionaries of column value to labels as values. Labels for a single variable must be 32,000 characters or smaller.
Added in version 1.4.0.
- Raises:
If datetimes contain timezone information * Column dtype is not representable in Stata
Columns listed in convert_dates are neither datetime64[ns] or datetime.datetime * Column listed in convert_dates is not in DeferredDataFrame * Categorical label contains more than 32,000 characters
Differences from pandas
This operation has no known divergences from the pandas API.
See also
read_stata
Import Stata data files.
io.stata.StataWriter
Low-level writer for Stata data files.
io.stata.StataWriter117
Low-level writer for pandas version 117 files.
Examples
NOTE: These examples are pulled directly from the pandas documentation for convenience. Usage of the Beam DataFrame API will look different because it is a deferred API.
>>> df = pd.DataFrame({'animal': ['falcon', 'parrot', 'falcon', ... 'parrot'], ... 'speed': [350, 18, 361, 15]}) >>> df.to_stata('animals.dta')
- to_timestamp(**kwargs)
pandas.DataFrame.to_timestamp()
is not implemented yet in the Beam DataFrame API.If support for ‘to_timestamp’ is important to you, please let the Beam community know by writing to user@beam.apache.org or commenting on 20318.
- to_xml(**kwargs)
pandas.DataFrame.to_xml()
is not implemented yet in the Beam DataFrame API.If support for ‘to_xml’ is important to you, please let the Beam community know by writing to user@beam.apache.org or commenting on 20318.
- truediv(**kwargs)
Get Floating division of dataframe and other, element-wise (binary operator truediv).
Equivalent to
dataframe / other
, but with support to substitute a fill_value for missing data in one of the inputs. With reverse version, rtruediv.Among flexible wrappers (add, sub, mul, div, floordiv, mod, pow) to arithmetic operators: +, -, *, /, //, %, **.
- Parameters:
other (scalar, sequence, DeferredSeries, dict or DeferredDataFrame) – Any single or multiple element data structure, or list-like object.
axis ({0 or 'index', 1 or 'columns'}) – Whether to compare by the index (0 or ‘index’) or columns. (1 or ‘columns’). For DeferredSeries input, axis to match DeferredSeries index on.
level (int or label) – Broadcast across a level, matching Index values on the passed MultiIndex level.
fill_value (float or None, default None) – Fill existing missing (NaN) values, and any new element needed for successful DeferredDataFrame alignment, with this value before computation. If data in both corresponding DeferredDataFrame locations is missing the result will be missing.
- Returns:
Result of the arithmetic operation.
- Return type:
Differences from pandas
Only level=None is supported
See also
DeferredDataFrame.add
Add DeferredDataFrames.
DeferredDataFrame.sub
Subtract DeferredDataFrames.
DeferredDataFrame.mul
Multiply DeferredDataFrames.
DeferredDataFrame.div
Divide DeferredDataFrames (float division).
DeferredDataFrame.truediv
Divide DeferredDataFrames (float division).
DeferredDataFrame.floordiv
Divide DeferredDataFrames (integer division).
DeferredDataFrame.mod
Calculate modulo (remainder after division).
DeferredDataFrame.pow
Calculate exponential power.
Notes
Mismatched indices will be unioned together.
Examples
NOTE: These examples are pulled directly from the pandas documentation for convenience. Usage of the Beam DataFrame API will look different because it is a deferred API. In addition, some arguments shown here may not be supported, see ‘Differences from pandas’ for details.
>>> df = pd.DataFrame({'angles': [0, 3, 4], ... 'degrees': [360, 180, 360]}, ... index=['circle', 'triangle', 'rectangle']) >>> df angles degrees circle 0 360 triangle 3 180 rectangle 4 360 Add a scalar with operator version which return the same results. >>> df + 1 angles degrees circle 1 361 triangle 4 181 rectangle 5 361 >>> df.add(1) angles degrees circle 1 361 triangle 4 181 rectangle 5 361 Divide by constant with reverse version. >>> df.div(10) angles degrees circle 0.0 36.0 triangle 0.3 18.0 rectangle 0.4 36.0 >>> df.rdiv(10) angles degrees circle inf 0.027778 triangle 3.333333 0.055556 rectangle 2.500000 0.027778 Subtract a list and Series by axis with operator version. >>> df - [1, 2] angles degrees circle -1 358 triangle 2 178 rectangle 3 358 >>> df.sub([1, 2], axis='columns') angles degrees circle -1 358 triangle 2 178 rectangle 3 358 >>> df.sub(pd.Series([1, 1, 1], index=['circle', 'triangle', 'rectangle']), ... axis='index') angles degrees circle -1 359 triangle 2 179 rectangle 3 359 Multiply a dictionary by axis. >>> df.mul({'angles': 0, 'degrees': 2}) angles degrees circle 0 720 triangle 0 360 rectangle 0 720 >>> df.mul({'circle': 0, 'triangle': 2, 'rectangle': 3}, axis='index') angles degrees circle 0 0 triangle 6 360 rectangle 12 1080 Multiply a DataFrame of different shape with operator version. >>> other = pd.DataFrame({'angles': [0, 3, 4]}, ... index=['circle', 'triangle', 'rectangle']) >>> other angles circle 0 triangle 3 rectangle 4 >>> df * other angles degrees circle 0 NaN triangle 9 NaN rectangle 16 NaN >>> df.mul(other, fill_value=0) angles degrees circle 0 0.0 triangle 9 0.0 rectangle 16 0.0 Divide by a MultiIndex by level. >>> df_multindex = pd.DataFrame({'angles': [0, 3, 4, 4, 5, 6], ... 'degrees': [360, 180, 360, 360, 540, 720]}, ... index=[['A', 'A', 'A', 'B', 'B', 'B'], ... ['circle', 'triangle', 'rectangle', ... 'square', 'pentagon', 'hexagon']]) >>> df_multindex angles degrees A circle 0 360 triangle 3 180 rectangle 4 360 B square 4 360 pentagon 5 540 hexagon 6 720 >>> df.div(df_multindex, level=1, fill_value=0) angles degrees A circle NaN 1.0 triangle 1.0 1.0 rectangle 1.0 1.0 B square 0.0 0.0 pentagon 0.0 0.0 hexagon 0.0 0.0