apache_beam.runners.interactive.sql.beam_sql_magics module
Module of beam_sql cell magic that executes a Beam SQL.
Only works within an IPython kernel.
- class apache_beam.runners.interactive.sql.beam_sql_magics.BeamSqlParser[source]
Bases:
object
A parser to parse beam_sql inputs.
- parse(args: List[str]) Namespace | None [source]
Parses a list of string inputs.
- The parsed namespace contains these attributes:
output_name: Optional[str], the output variable name. verbose: bool, whether to display more details of the magic execution. query: Optional[List[str]], the beam SQL query to execute.
- Returns:
The parsed args or None if fail to parse.
- apache_beam.runners.interactive.sql.beam_sql_magics.on_error(error_msg, *args)[source]
Logs the error and the usage example.
- class apache_beam.runners.interactive.sql.beam_sql_magics.BeamSqlMagics(**kwargs: Any)[source]
Bases:
Magics
- beam_sql(line: str, cell: str | None = None) PValue | None [source]
The beam_sql line/cell magic that executes a Beam SQL.
- Parameters:
line – the string on the same line after the beam_sql magic.
cell – everything else in the same notebook cell as a string. If None, beam_sql is used as line magic. Otherwise, cell magic.
Returns None if running into an error or waiting for user input (running on a selected runner remotely), otherwise a PValue as if a SqlTransform is applied.
- magics = {'cell': {'beam_sql': 'beam_sql'}, 'line': {'beam_sql': 'beam_sql'}}
- registered = True
- apache_beam.runners.interactive.sql.beam_sql_magics.collect_data_for_local_run(query: str, found: Dict[str, PCollection])[source]
- apache_beam.runners.interactive.sql.beam_sql_magics.apply_sql(query: str, output_name: str | None, found: Dict[str, PCollection], run: bool = True) Tuple[str, PValue | SqlNode, SqlChain] [source]
Applies a SqlTransform with the given sql and queried PCollections.
- Parameters:
query – The SQL query executed in the magic.
output_name – (optional) The output variable name in __main__ module.
found – The PCollections with variable names found to be used in the query.
run – Whether to prepare the SQL pipeline for a local run or not.
- Returns:
A tuple of values. First str value is the output variable name in __main__ module, auto-generated if not provided. Second value: if run, it’s a PValue; otherwise, a SqlNode tracks the SQL without applying it or executing it. Third value: SqlChain is a chain of SqlNodes that have been applied.
- apache_beam.runners.interactive.sql.beam_sql_magics.pcolls_from_streaming_cache(user_pipeline: Pipeline, query_pipeline: Pipeline, name_to_pcoll: Dict[str, PCollection]) Dict[str, PCollection] [source]
Reads PCollection cache through the TestStream.
- Parameters:
user_pipeline – The beam.Pipeline object defined by the user in the notebook.
query_pipeline – The beam.Pipeline object built by the magic to execute the SQL query.
name_to_pcoll – PCollections with variable names used in the SQL query.
- Returns:
A Dict[str, beam.PCollection], where each PCollection is tagged with their PCollection variable names, read from the cache.
When the user_pipeline has unbounded sources, we force all cache reads to go through the TestStream even if they are bounded sources.