apache_beam.ml.anomaly.detectors.offline module

class apache_beam.ml.anomaly.detectors.offline.OfflineDetector(*args, **kwargs)[source]

Bases: AnomalyDetector

A offline anomaly detector that uses a provided model handler for scoring.

Parameters:
  • keyed_model_handler – The model handler to use for inference. Requires a KeyModelHandler[Any, Row, float, Any] instance.

  • run_inference_args – Optional arguments to pass to RunInference

  • **kwargs – Additional keyword arguments to pass to the base AnomalyDetector class.

learn_one(x: Row) None[source]

Not implemented since OfflineDetector invokes RunInference directly.

score_one(x: Row) float | None[source]

Not implemented since OfflineDetector invokes RunInference directly.

OfflineDetector__spec_type = 'OfflineDetector'
classmethod from_spec(spec: Spec, _run_init: bool = True) Self | type[Self]

Generate a Specifiable subclass object based on a spec.

Parameters:
  • spec – the specification of a Specifiable subclass object

  • _run_init – whether to call __init__ or not for the initial instantiation

Returns:

the Specifiable subclass object

Return type:

Self

run_original_init() None

Execute the original __init__ method with its saved arguments.

For instances of the Specifiable class, initialization is deferred (lazy initialization). This function forces the execution of the original __init__ method using the arguments captured during the object’s initial instantiation.

classmethod spec_type()
to_spec() Spec

Generate a spec from a Specifiable subclass object.

Returns:

The specification of the instance.

Return type:

Spec

classmethod unspecifiable()