apache_beam.ml.inference.onnx_inference module

class apache_beam.ml.inference.onnx_inference.OnnxModelHandlerNumpy(model_uri: str, session_options=None, providers=['CUDAExecutionProvider', 'CPUExecutionProvider'], provider_options=None, *, inference_fn: Callable[[Sequence[numpy.ndarray], <sphinx.ext.autodoc.importer._MockObject object at 0x7f761e5e8970>, Optional[Dict[str, Any]]], Iterable[apache_beam.ml.inference.base.PredictionResult]] = <function default_numpy_inference_fn>, large_model: bool = False, model_copies: Optional[int] = None, min_batch_size: Optional[int] = None, max_batch_size: Optional[int] = None, max_batch_duration_secs: Optional[int] = None, **kwargs)[source]

Bases: apache_beam.ml.inference.base.ModelHandler

Implementation of the ModelHandler interface for onnx using numpy arrays as input. Note that inputs to ONNXModelHandler should be of the same sizes

Example Usage:

pcoll | RunInference(OnnxModelHandler(model_uri="my_uri"))
  • model_uri – The URI to where the model is saved.
  • inference_fn – The inference function to use on RunInference calls. default=default_numpy_inference_fn
  • large_model – set to true if your model is large enough to run into memory pressure if you load multiple copies. Given a model that consumes N memory and a machine with W cores and M memory, you should set this to True if N*W > M.
  • model_copies – The exact number of models that you would like loaded onto your machine. This can be useful if you exactly know your CPU or GPU capacity and want to maximize resource utilization.
  • min_batch_size – the minimum batch size to use when batching inputs.
  • max_batch_size – the maximum batch size to use when batching inputs.
  • max_batch_duration_secs – the maximum amount of time to buffer a batch before emitting; used in streaming contexts.
  • kwargs – ‘env_vars’ can be used to set environment variables before loading the model.
load_model() → <sphinx.ext.autodoc.importer._MockObject object at 0x7f761e5e8430>[source]

Loads and initializes an onnx inference session for processing.

run_inference(batch: Sequence[numpy.ndarray], inference_session: <sphinx.ext.autodoc.importer._MockObject object at 0x7f761e5e84f0>, inference_args: Optional[Dict[str, Any]] = None) → Iterable[apache_beam.ml.inference.base.PredictionResult][source]

Runs inferences on a batch of numpy arrays.

  • batch – A sequence of examples as numpy arrays. They should be single examples.
  • inference_session – An onnx inference session. Must be runnable with input x where x is sequence of numpy array
  • inference_args – Any additional arguments for an inference.

An Iterable of type PredictionResult.

get_num_bytes(batch: Sequence[numpy.ndarray]) → int[source]
Returns:The number of bytes of data for a batch.
get_metrics_namespace() → str[source]
Returns:A namespace for metrics collected by the RunInference transform.
share_model_across_processes() → bool[source]
model_copies() → int[source]
batch_elements_kwargs() → Mapping[str, Any][source]